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The management of landfill leachate presents a significant environmental
challenge, necessitating a comprehensive and dynamic treatment approach.
This comprehensive review delves into the critical issue of landfill leachate
treatment, exploring its environmental impact, treatment technologies,
regulatory frameworks, and the path towards sustainable management
practices. This review explores the complexities of landfill leachate,
emphasizing the need for sustainable waste management practices to
safeguard environmental health. Our analysis highlights the evolution of
conventional and advanced treatment technologies designed to mitigate
these risks, focusing on membrane technologies, advanced oxidation
processes, and the promising potential of emerging techniques such as
adsorption and biological nutrient removal. These technologies are evaluated
for their efficiency, cost implications, and sustainability impacts, underscoring the
challenges and opportunities within the current landscape of leachate treatment.
The review aims to provide insights into designing efficient and effective
treatment systems through a detailed analysis of conventional and advanced
treatment methods. By examining a case study in Changsha City, the
effectiveness of a comprehensive treatment system integrating various
technologies is demonstrated. The review underscores the
interconnectedness of human activities, environmental health, and waste
management, emphasizing the importance of a holistic approach. It stresses
the continuous improvement of leachate treatment technologies and the
adoption of sustainable practices to reduce the environmental footprint of
landfills. Ultimately, it calls for integrating multiple treatment processes,
economic considerations, and readiness to address future challenges in
landfill leachate treatment, contributing to the advancement of sustainable
waste management practices.

KEYWORDS

landfill leachate, treatment technologies, membrane technologies, advanced oxidation
processes, waste treatment

1 Introduction

Landfill leachate, a liquid byproduct of the decomposition process in landfills,
represents a significant environmental challenge that encapsulates the complexity of
modern waste management and the imperative of safeguarding environmental health
(Teng et al., 2021). As rainfall or other sources of moisture percolate through the waste
material accumulated in landfills, they dissolve and suspend a myriad of substances present
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in the waste, creating a potent mixture known as leachate (Mor and
Ravindra, 2023). This concoction’s composition can vary widely but
typically includes dissolved organic matter, inorganic macro-
components like salts and metals, and a range of xenobiotic
organic compounds, reflecting the diverse nature of disposed
materials (Kumar et al., 2023). Organic components, measured in
terms of biochemical oxygen demand (BOD) and chemical oxygen
demand (COD), indicate the leachate’s potential impact on water
bodies, while inorganic macro-components, such as ammonia,
chlorides, sulfates, and heavy metals like arsenic, cadmium,
chromium, lead, and mercury, underline the toxicological
concerns associated with leachate (Al-Yaqout and Hamoda,
2020). Furthermore, the presence of xenobiotic compounds,
which include pesticides, pharmaceuticals, and industrial
chemicals, adds to the complexity of leachate, given their
resistance to degradation and potential for bioaccumulation (de
Oliveira et al., 2020). The environmental impacts of uncontrolled
landfill leachate are profound and far-reaching. Leachate can seep
into groundwater and surface water, contaminating aquatic
ecosystems, wildlife, and human health (Essien et al., 2022). The
infiltration of pollutants into water supplies can disrupt aquatic
habitats, harm species diversity, and bioaccumulate the food chain,
presenting significant risks to public health through consuming
contaminated water and food (Sharma et al., 2023). Moreover, the
heavy metals and persistent organic pollutants found in leachate are
particularly concerning due to their toxicity, environmental
longevity, and potential to cause long-term ecological damage
(Hussein et al., 2021).

Recognizing the environmental hazards of landfill leachate, its
treatment and management have become critical components of
sustainable waste management practices (El-Saadony et al., 2023).
Effective leachate treatment aims to neutralize its harmful
components, making it safe for discharge or further use (Kumar
et al., 2023). This necessitates a multifaceted approach that combines
physical, chemical, and biological treatment processes tailored to the
specific composition of the leachate and local regulatory requirements
(Torretta et al., 2017). Physical treatments, such as sedimentation and
filtration, remove suspended solids and particulate matter (Siddiqi
et al., 2022). Chemical treatments, including precipitation,
coagulation, and advanced oxidation, target dissolved pollutants,
reducing their concentration to safer levels (Kurniawan et al.,
2006). Biological aerobic and anaerobic treatments further degrade
organic substances, transforming them into less harmful compounds
(Kurniawan et al., 2010). The importance of landfill leachate
treatment extends beyond the immediate goal of pollution control.
It embodies the broader principles of environmental protection and
sustainable waste management (Mukherjee et al., 2015). Bymitigating
the adverse impacts of leachate on ecosystems and human health,
effective treatment practices contribute to the preservation of water
quality, protect biodiversity, and ensure the wellbeing of communities
(Senathirajah and Palanisami, 2023). Furthermore, advancements in
leachate treatment technologies offer opportunities for resource
recovery, such as the extraction of valuable materials or the reuse
of treated water, aligning with the principles of the circular economy
and resource efficiency (Puyol et al., 2017).

Treating landfill leachate is not just a technical challenge but a
fundamental aspect of environmental stewardship and public health
protection (Nath and Debnath, 2022). It reflects the evolving

understanding of waste not merely as a byproduct to be disposed
of but as a potential source of pollution that must be managed with
foresight and responsibility. As such, the continuous improvement
of leachate treatment technologies, alongside adopting more
sustainable waste management practices, is essential to reducing
the environmental footprint of landfills. This includes the
development of more efficient and cost-effective treatment
solutions and the implementation of waste reduction, reuse, and
recycling initiatives that can minimize leachate generation in the
first place (Kamaruddin et al., 2017).

Ultimately, the comprehensive management and treatment of
landfill leachate highlight the interconnectedness of human
activities, environmental health, and the need for a holistic
approach to waste management (Torretta et al., 2017). This
review aims to provides an integrated analysis of both
conventional and advanced treatment technologies, emphasizing
recent advancements and emerging techniques such as adsorption
and biological nutrient removal. Unlike previous reviews that may
focus solely on specific technologies or methodologies, this review
evaluates a broad spectrum of treatment methods, offering a
practical guidance for designing and optimizing treatment
systems by evaluating the efficiency, cost implications, and
sustainability impacts of various methods. Additionally, we
incorporate a detailed case study from Changsha City,
demonstrating the practical application and effectiveness of a
comprehensive treatment system that integrates various
technologies. This real-world example bridges the gap between
theoretical discussions and practical implementation, providing
actionable insights for practitioners and policymakers. By
addressing the interconnectedness of human activities,
environmental health, and waste management, our review
advocates for a holistic approach that emphasizes continuous
improvement of leachate treatment technologies and the
adoption of sustainable practices. This comprehensive perspective
makes our review an invaluable resource for engineers,
environmental scientists, and waste management professionals
seeking to implement effective and sustainable treatment
solutions in diverse contexts.

2 Characteristics of landfill leachate

2.1 Physical and chemical properties of
landfill leachate

Leachate embodies a dynamic concoction of substances, each
contributing to its hazardous nature. Landfill leachate’s physical,
chemical, and biological characteristics delineate a complex and
multifaceted environmental challenge that requires a nuanced
understanding for effective management and treatment (Table 1)
(Andreottola and Cannas, 2024; Castrillón et al., 2010; Naveen et al.,
2017; Luo et al., 2020; Subiza-Pérez et al., 2023).

Physically, leachate is primarily a liquid matrix. However, its
appearance, viscosity, and other physical properties can vary greatly
depending on the landfill’s age, the composition of waste, and the
amount of precipitation the landfill receives (Anjum et al., 2023).
Typically, young leachate is characterized by a high organic load,
evident in its dark color and strong odor (Wijekoon et al., 2022). In
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contrast, older leachate may appear clearer but contain higher
concentrations of dissolved inorganic compounds (Abdel-Shafy
et al., 2024). The physical properties of leachate, such as pH,
temperature, and conductivity, are critical indicators of its overall
composition and the potential challenges it presents for treatment
(Abdel-Shafy et al., 2024). For instance, high conductivity in leachate
signifies a high concentration of dissolved ions such as chlorides,
sulfates, and ammonia, which can affect the efficiency of certain
treatment processes. Similarly, pH levels can influence the solubility
of metals and the effectiveness of chemical treatments, with acidic or
alkaline conditions necessitating specific adjustments in the
treatment strategy (Deng et al., 2020).

Chemically, leachate is a cocktail of dissolved organic and
inorganic matter, heavy metals, and xenobiotic compounds (Sil
and Kumar, 2017). The organic fraction is typically dominated
by biodegradable substances like carbohydrates, fats, proteins,
and persistent organic pollutants that resist natural degradation
processes (Dignac et al., 2000). COD and BOD are key parameters
used to quantify the organic strength of leachate, reflecting its

potential impact on receiving environments and treatment
systems (Naveen et al., 2017). Inorganic components include a
range of salts, metals, and nutrients, with ammonia being
particularly prevalent due to the nitrogenous decomposition of
organic waste (Borah et al., 2020). Heavy metals such as arsenic,
cadmium, chromium, lead, and mercury are of significant concern
due to their toxicity and propensity to accumulate in ecosystems
(Rahman and Singh, 2019). Moreover, the presence of
xenobiotics—synthetic chemicals like pharmaceuticals, pesticides,
and industrial chemicals—poses a unique challenge, as these
compounds often exhibit resistance to degradation and can
disrupt biological processes in treatment systems and natural
environments (Priya et al., 2024). Table 2 presents a detailed
analysis of the physical and chemical properties of landfill
leachate from various regions around the world, showing
significant variability across different regions (Abunama et al.,
2021a). These variations highlight the importance of regional
assessments in understanding leachate pollution potential and
tailoring appropriate management strategies.

TABLE 1 Characteristics of landfill leachate and implications for treatment (Andreottola and Cannas, 2024; Castrillón et al., 2010; Naveen et al., 2017; Luo
et al., 2020; Subiza-Pérez et al., 2023).

Aspect Characteristics Implications for treatment

Physical Liquid matrix, varying appearance and viscosity, pH, temperature, conductivity Influences treatment process selection, affects solubility and treatment
effectiveness

Chemical Dissolved organic/inorganic matter, heavy metals, xenobiotics (e.g.,
pharmaceuticals, pesticides), COD, BOD, ammonia

Requires targeted removal or neutralization of specific compounds, challenges
due to persistence and toxicity of pollutants

Biological Microbial communities, biodegradation of organic matter, presence of
pathogenic organisms

Utilization of microbial activity for degradation, management of pathogenic or
harmful microorganisms

TABLE 2 Physical and chemical properties of landfill leachate across different continents (Abunama et al., 2021a).

Parameter Africa Asia Europe North America Oceania South America

Organic BOD (mg/L) 566.22 1305.85 1281.98 270.11 60.66 875.73

COD (mg/L) 3026.81 5,983.26 5,890.65 1628.52 1594.5 3117.69

Inorganic pH 7.72 7.72 8.03 7.95 7.81 8.13

TKN (mg/L) 26.485 34.55 42.66 26.485 28.33 34.55

AN (mg/L) 297.89 450.22 525.77 297.89 350.55 450.22

TDS (mg/L) 10,403.1 11,456.3 15,382.9 3077.1 17,487.5 4364.6

Heavy metals Cl (mg/L) 84.32 98.72 103.21 72.33 55.66 84.12

Fe (mg/L) 7.11 25.99 41 22.04 4.88 26.28

Cu (mg/L) 0.256 0.489 0.323 0.141 0.022 1.131

Ni (mg/L) 0.45 0.56 0.52 0.32 0.24 0.45

Zn (mg/L) 0.65 2.738 2.105 0.91 0.159 1.66

Pb (mg/L) 0.331 0.55 0.54 1.441 0.006 2.524

Cr (mg/L) 0.49 0.62 0.49 42.585 0.32 1.66

Hg (mg/L) 0.221 0.33 0.32 0.723 0.0003 3.783

As (mg/L) 0.0433 0.225 0.0525 33.8 0.1 0.221

Cy (mg/L) 0.261 0.216 0.075 0.025 0 0.055

Frontiers in Environmental Science frontiersin.org03

Wang and Qiao 10.3389/fenvs.2024.1439128

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2024.1439128


Biologically, leachate is a living, evolving entity, teeming with
microorganisms, such as bacteria, fungi and protozoa, which are
adapted to its unique chemical milieu. The microbial communities
within leachate play a pivotal role in the biodegradation of organic
matter, facilitating the natural attenuation of some pollutants (Qi
et al., 2023). However, the diversity and activity of these microbial
populations can be both a boon and a bane for leachate treatment
(Dave et al., 2020). Bacteria such as Pseudomonas and Clostridium
spp., and fungi like Aspergillus and Penicillium spp., are integral to
breaking down organic pollutants and transforming hazardous
substances. While certain bacteria and fungi are harnessed in
biological treatment processes to degrade organic pollutants, the
presence of pathogenic organisms or those capable of generating
harmful byproducts necessitates careful management to prevent
environmental and health risks (Mani et al., 2020). The
methanogenic archaea, including Methanobacterium and
Methanosarcina spp., also play a crucial role by converting waste
into methane, highlighting the importance of microbial activity in
both waste reduction and potential energy recovery.

The interplay between the physical, chemical, and biological
characteristics of leachate significantly influences the selection and
design of treatment processes. Physical attributes like suspended
solids and temperature necessitate pre-treatment steps such as
sedimentation and filtration to prevent system clogging and
optimize subsequent treatment stages. Chemical properties,
including pH, organic load, and the presence of toxic
compounds, determine the need for neutralization, biological
treatment, or advanced oxidation processes to ensure effective
contaminant removal. Biological factors, such as microbial
content and biodegradability, guide the choice of biological
treatment methods, which might require nutrient
supplementation for optimal microbial activity. Consequently,
tailored and integrated treatment strategies are developed to
address the specific challenges presented by leachate’s complex
composition, ensuring efficient and sustainable management to
mitigate its environmental impact.

2.2 Factors on the composition of
landfill leachate

The composition of landfill leachate is influenced by a myriad of
factors, including the age of the landfill, the types of waste it
contains, climatic conditions, and the specific landfill operating
technologies employed (Mor and Ravindra, 2023). Each of these
factors plays a critical role in determining the leachate’s physical,
chemical, and biological characteristics, thus influencing its
potential environmental impact and the strategies required for its
effective management and treatment (Table 2) (Cano et al., 2020;
Golwala et al., 2022; Ma et al., 2022; Abdel-Shafy et al., 2024).

The age of a landfill significantly affects the composition of the
leachate produced. In the initial stages of landfilling, leachate tends
to have a high organic content, characterized by a high BOD and
COD, due to the abundance of readily degradable organic matter
(Lindamulla et al., 2022). As the landfill matures, the rate of organic
matter decomposition decreases, leading to a reduction in BOD
levels (Kulikowska and Klimiuk, 2008). However, the concentration
of inorganic compounds, such as ammonia, chlorides, and heavy

metals, may increase over time due to the continued degradation
and leaching processes (Prieto-Espinoza et al., 2022). This temporal
evolution in leachate composition necessitates adaptable treatment
approaches that effectively address the shifting balance between
organic and inorganic constituents (Saxena et al., 2022) (Table 3). In
2022, Liu et al. conducted a study on the molecular differences
between young landfill leachate (YL) and mature landfill leachate
(ML) (Liu J. et al., 2022). The results indicated that the COD of YL
was 74,853 mg/L, while the COD of ML was 3,098 mg/L, suggesting
a higher concentration of organic matter in young leachate.
Regarding molecular composition, YL contained lower molecular
weight organic compounds, primarily consisting of CHO
compounds and aliphatic compounds. In contrast, ML
predominantly contained CHON compounds and high oxygen
highly unsaturated and phenolic compounds. The molecular
structure of YL was relatively simple, with higher bioavailability
and more straight-chain structures. ML, however, featured more
oxygen-containing functional groups and benzene-ring structures,
indicating a more complex molecular structure. In terms of chemical
properties, YL exhibited lower nominal oxidation state of carbon
and modified aromaticity index, indicating that its organic matter
was in a more reduced state. Conversely, ML’s organic matter had
higher oxidation states and aromaticity, reflecting that over time, the
organic matter in mature leachate had undergone extensive
biochemical reactions, leading to more complex structures (Table 4).

Moreover, the nature of the waste material disposed of in a
landfill is another critical determinant of leachate composition.
Landfills containing a high proportion of organic waste, such as
food scraps and yard waste, tend to produce leachate with high levels
of organic pollutants and a greater potential for biological activity
(Kjeldsen et al., 2002). Conversely, landfills with significant
industrial or hazardous waste may generate leachate with higher
concentrations of toxic metals and xenobiotic organic compounds
(El-Saadony et al., 2023). The diversity of waste types, including
e-waste, pharmaceuticals, and plastics, contributes to the complexity
of leachate, requiring targeted treatment solutions capable of
addressing a broad spectrum of contaminants (Srivastava
et al., 2021).

Also, climatic conditions, including precipitation,
temperature, and humidity, play a pivotal role in the
generation and composition of leachate. High rainfall areas
will likely produce larger volumes of leachate, potentially
diluting its contaminant concentrations but increasing the
overall load of pollutants that must be managed (Wijekoon
et al., 2022). Temperature affects the rate of biochemical
reactions within the landfill, with warmer conditions typically
accelerating organic matter decomposition and, consequently,
influencing the rate of leachate generation and its organic content
(Mohammad et al., 2022). Humidity can also impact the moisture
content within the landfill, affecting leachate production rates
and composition (Abunama et al., 2021b).

Finally, a landfill’s design and operational practices can
significantly influence leachate composition (Ma et al., 2022).
Modern landfills equipped with engineered liners and leachate
collection systems are designed to minimize the direct contact of
waste with groundwater, thereby reducing leachate generation and
its potential contamination (Abdel-Shafy et al., 2024). Additionally,
using daily covers can limit rainwater infiltration, further controlling
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leachate volume and composition (Khasawneh et al., 2022). Landfill
gas management systems, which capture and treat or utilize the
methane produced during organic decomposition, can also impact
the biochemical processes within the landfill, indirectly affecting
leachate composition (Japperi et al., 2021).

In sum, the composition of landfill leachate results from
complex interactions between the age of the landfill, the types of
waste it contains, prevailing climatic conditions, and the
technologies employed in landfill operation. Understanding these
factors is crucial for the development of effective leachate

TABLE 3 Impact of various factors on the composition of landfill leachate (Kulikowska and Klimiuk, 2008; Lindamulla et al., 2022; Prieto-Espinoza et al.,
2022; Saxena et al., 2022).

Factors Options Leachate composition

Landfill Age Young Landfill (<10 years) High in volatile organic compounds, BOD, and COD due to active decomposition of organic matter

Middle-Aged Landfill (10–20 years) Reduced levels of BOD and COD as the rate of organic decomposition decreases, increase in
inorganic compounds such as ammonia

Old Landfill (>20 years) Lower BOD, higher concentrations of inorganic compounds, heavy metals, and stabilized organic
compounds

Type of Waste Material Organic Waste High levels of BOD, COD, and volatile organic compounds due to decomposition of organic matter

Industrial and Hazardous Waste Increased concentrations of toxic metals, xenobiotics, and specific industrial chemicals

Construction and Demolition Waste Elevated levels of inorganic compounds, such as salts and heavy metals, lower organic content

E-Waste Presence of heavy metals (e.g., lead, mercury, cadmium) and potentially hazardous chemicals from
electronic components

Climatic Condition High Rainfall/High Humidity Diluted concentrations of contaminants due to increased volume, potential for higher leachate
production

Arid/Dry Concentrated leachate due to lower precipitation, reduced leachate volume but higher concentration
of contaminants

Cold Temperatures Slowed decomposition rates leading to lower BOD and COD in the short term, potential for seasonal
variation in leachate composition

Design or Operational
Practice

Engineered Liners and Leachate Collection
Systems

Minimizes the infiltration of external water, reducing leachate volume and potentially concentrating
contaminants

Daily Covers Reduces rainwater infiltration, controlling leachate production and influencing its composition by
limiting dilution

Landfill Gas Management Systems Affects the biochemical degradation processes within the landfill, potentially altering the organic
content of the leachate

TABLE 4 Comparative Molecular Characteristics of Young and Mature Landfill Leachates in the example landfills in southwest China (Liu J. et al., 2022).

Property Young landfill leachate Mature landfill leachate

Age New Landfill for temporary stockpile 27 years

COD 74,853 mg/L 3098 mg/L

DOM Species Count 1122 5,075

Main Compounds Aliphatic Compounds, LOHUPC HOHUPCs

Bioavailability Higher Lower

Nominal Oxidation State of Carbon −0.8010 −0.0692

Aromaticity (AImod) 0.1254 0.2464

Straight-chain Structures More Fewer

Benzene-ring Structures Fewer More

Proportion of different DOM classes Low O HUPC 417.96 (23.75%) 2881.86 (27.86%)

High O HUPC 0% 3863.53 (37.55%)

Polyphenols and Polycyclic Aromatics 1% 8%

Aliphatic Compounds 1320.62 (75.03%) 2767.64 (26.76%)
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management strategies, as they directly influence the environmental
impact of landfills and the technical and economic feasibility of
leachate treatment solutions.

2.3 Typical values of pollutants in leachate
from different regions

To provide a global perspective, typical values for different
classes of contaminants in leachate reported from around the
world are described below. These values highlight the variability
in leachate composition and typical values for different classes of
contaminants in leachate from different regions are critical for
designing effective treatment strategies.

Organic pollutants like BOD and COD are critical for assessing
the pollution levels. For instance, in tropical regions, average BOD
values reported were 2435.16 mg/L in Africa, 3455.77 mg/L in
America, and 2127.79 mg/L in Asia, while COD values were
7985.1 mg/L in Africa, 6185.17 mg/L in America, and
7504.32 mg/L in Asia (Lindamulla et al., 2022). In China, BOD5

concentrations varied from 750 to 25,000 mg/L, with an average of
8,500 mg/L, and COD levels ranged from 2,000 to 62,000 mg/L,
averaging 19,250 mg/L (Ma et al., 2022).

Inorganic pollutants like Total Dissolved Solids (TDS) and
Ammonium Nitrogen (NH4

+-N) also show significant variability.
Polish landfills reported TDS values from 2,225 mg/L to 7,830 mg/L,
while NH4

+-N concentrations in tropical regions varied widely, with
higher concentrations in younger leachates (Wdowczyk and
Szymańska-Pulikowska, 2021). China reported NH4+-N levels
ranging from 100 to 3,100 mg/L, with a mean of 1,300 mg/L
(Ma et al., 2022). Brazil’s ammonium nitrogen levels ranged
between 0.4 and 1,800 mg/L, reflecting the diversity of landfill
conditions and waste compositions across the country
(Lindamulla et al., 2022).

Heavy metals, another major pollutant category, had varied
concentrations with iron ranging from 0.019 mg/L in inactive
Polish landfills to 38.73 mg/L in active ones, and zinc reaching
up to 2,560 mg/L in Polish active landfills (Wdowczyk and
Szymańska-Pulikowska, 2021). In Thailand, heavy metals like
cadmium, chromium, copper, nickel, lead, and zinc were
generally below 1 mg/L, though still posing potential ecological
and health risks (Ma et al., 2022). This highlights the need for careful
monitoring and tailored remediation strategies to address potential
environmental and health impacts.

The Leachate Pollution Index (LPI) further highlights the
pollution potential of leachate, being higher in open dumps
compared to engineered landfills (Lindamulla et al., 2022). Young
leachates typically show higher LPI values than older leachates,
indicating a higher pollution potential in newer landfills. This global
variability in leachate composition underscores the importance of
site-specific assessments and tailored treatment approaches for
effective leachate management.

3 Regulations and standards

Countries around the world are increasingly recognizing the
importance of effective landfill leachate treatment as a critical

component of waste management and environmental protection.
The significant number of research publications on this topic,
particularly from nations with large populations, underscores
their commitment to addressing the challenges posed by waste
and pollutants. Figure 1 shows the research on “landfill leachate
treatment” collected from the Scopus database from 2014 to 2023.
The top five countries are China (1,675 articles), India (500 articles),
the United States (498 articles), Malaysia (418 articles), and Brazil
(302 articles). These all reflect a positive stance in mitigating the
impact of rapid industrial and urban development on the
environment, and countries have also invested heavily in research
to develop efficient landfill leachate treatment technologies, further
highlighting the global recognition of the need for advanced and
sustainable waste management practices. This joint effort is not only
aimed at improving public health and environmental quality, but
also at promoting global sustainable development.

3.1 Global regulations on landfill leachate
management

International and national regulations governing the disposal
and treatment of landfill leachate are crucial for protecting the
environment and public health from the potential hazards posed by
waste management practices (Daniel et al., 2021). These regulations
are designed to set minimum standards for leachate management,
ensure the safe handling of this potentially toxic byproduct, and
encourage sustainable practices in the waste management industry
(Table 5) (Oakes and Shank, 1979; Directive, 2003; Protection, 2003;
Obradović et al., 2010; Pollutants, 2011; Gas, 2017; Bergesen et al.,
2018; Bhawan and Nagar, 2020; Lin et al., 2022; Santana et al., 2022).

At the international level, the Basel Convention on the Control
of Transboundary Movements of Hazardous Wastes and their
disposal is one of the most significant treaties (Ahmed, 2019). It
impacts leachate management by restricting the international
movement of hazardous wastes, which includes leachate, and
encouraging proper disposal (Amos et al., 2024). Another
important piece of international legislation is the Stockholm
Convention on Persistent Organic Pollutants, which addresses
the treatment and disposal of leachate due to its potential to
carry organic pollutants that can persist in the environment
(Omoto, 2014). The European Union (EU) has established
stringent directives for waste management, including the Landfill
Directive (1999/31/EC), which sets the standards for waste disposal
in landfills, including the collection and treatment of leachate
(Schiopu and Gavrilescu, 2010). It specifies that landfills must be
designed and operated to collect and treat leachate to prevent
groundwater and environmental contamination. Furthermore, the
EU’s Water Framework Directive (2000/60/EC) also affects leachate
management by setting out a framework for the protection of inland
surface waters, transitional waters, coastal waters, and groundwater,
requiring that leachate be treated to prevent the pollution of water
bodies (Kyriakopoulos, 2021).

The Resource Conservation and Recovery Act (RCRA) provides
the framework for properly managing solid and hazardous waste in
the United States (Hinds, 2022). Under Subtitle of RCRA, the
Environmental Protection Agency (EPA) has established
regulations that require municipal solid waste landfills to use
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composite liners and leachate collection systems to protect
groundwater (Bonaparte et al., 2024). The National Pollutant
Discharge Elimination System (NPDES), part of the Clean Water
Act, regulates the discharge of leachate into surface waters, requiring
permits and setting treatment standards (Hudiburgh, 2020). The
EPA’s treatment standards for hazardous wastes subject to land
disposal restrictions include several key parameters that must be
monitored under applicable regulations (Agency, 2024). These
standards specify regulated hazardous constituents, which are
chemicals or compounds that need to be treated to meet specific
numerical limits before disposal. For instance, chloroform must be

reduced to a concentration of 0.046 mg/L for wastewaters and
6.0 mg/kg for nonwastewaters. Characteristic wastes, such as
those exhibiting ignitability, corrosivity, reactivity, or toxicity,
require deactivation of these characteristics and treatment of any
underlying hazardous constituents (UHCs) to meet universal
treatment standards (UTS). Ignitable wastes must be treated by
methods such as combustion or deactivation, depending on their
total organic carbon content, to remove the ignitability
characteristic. Corrosive wastes need deactivation to eliminate
corrosivity, with high-level radioactive corrosive wastes requiring
vitrification. Reactive wastes are generally treated by deactivation,

FIGURE 1
Number of publications from the top 15 countries on the topic “Landfill leachate treatment” collected in the Scopus database from 2014 to 2023.

TABLE 5 Global laws and regulations on landfill leachate management (Oakes and Shank, 1979; Directive, 2003; Protection, 2003; Obradović et al., 2010;
Pollutants, 2011; Gas, 2017; Bergesen et al., 2018; Bhawan and Nagar, 2020; Lin et al., 2022; Santana et al., 2022).

Country Regulation/Law Key provisions

European
Union

Landfill Directive (1999/31/EC) Sets standards for waste disposal in landfills, including leachate treatment to
prevent groundwater contamination

United States Resource Conservation and Recovery Act (RCRA) Requires municipal solid waste landfills to use liners and leachate collection
systems to protect groundwater

China Standard for Pollution Control on the Landfill Site of Municipal Solid
Waste (GB 16889–2008)

Details requirements for leachate collection, treatment, and discharge, including
limitations on contaminants

India Hazardous and Other Wastes (Management and Transboundary
Movement) Rules, 2016

Specifies criteria for handling, treatment, and disposal of hazardous waste,
including leachate from landfills

Brazil National Solid Waste Policy (Política Nacional de Resíduos Sólidos -
PNRS, Law No. 12,305/2010)

Emphasizes the treatment and environmentally sound disposal of waste,
including leachate management

Canada Canadian Environmental Protection Act (CEPA) Provides a framework for the safe management of hazardous waste and
substances, including leachate

Australia National Environment Protection (Assessment of Site Contamination)
Measure 1999

Establishes guidelines for the assessment and management of site contamination,
including leachate

Germany Technical Instructions on Municipal Waste (TA Siedlungsabfall) Specifies technical requirements for waste treatment facilities, including leachate
management systems

Japan Waste Management and Public Cleansing Law Regulates waste disposal and cleaning operations, ensuring proper leachate
control and treatment

South Africa National Environmental Management: Waste Act, 2008 Lays down waste management measures to protect health and the environment,
including leachate standards
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with reactive cyanide wastes having specific concentration-based
standards, such as 590 mg/kg total cyanide and 30 mg/kg amenable
cyanide for nonwastewaters, and 0.86 mg/L amenable cyanide for
wastewaters. Toxicity characteristic wastes must be treated to meet
numerical standards for metals, pesticides, and organics, as well as
the UTS for UHCs. Additionally, alternative treatment standards are
available for certain waste types like contaminated soil and debris,
allowing for a reduction in hazardous constituent concentration by
90% or to levels not exceeding 10 times the UTS. These parameters
ensure that hazardous wastes are adequately treated to minimize
their environmental impact before land disposal.

In China, the Environmental Protection Ministry released the
“Standard for Pollution Control on the Landfill Site of Municipal
Solid Waste” (GB 16889–2008), which sets out leachate collection,
treatment, and discharge requirements (Liu Q. et al., 2022). These
include specific limitations on contaminants such as BOD, COD,
ammonia nitrogen, total phosphorus, and heavy metals in the
discharged leachate (Shi et al., 2021). India has enacted the
Hazardous and Other Wastes (Management and Transboundary
Movement) Rules, 2016, which set forth the criteria for identifying
hazardous waste and its handling, treatment, and disposal standards,
including leachate from landfills (Sadala et al., 2023). The Central
Pollution Control Board (CPCB) of India provides technical
guidelines for the secure landfill of hazardous waste, emphasizing
the need for a comprehensive leachate management system (Kumar
et al., 2007). In Brazil, the National Solid Waste Policy (Política et al.
- PNRS) established under Law No. 12,305/2010 requires proper
leachate management and emphasizes the treatment and
environmentally sound disposal of waste (Galavote et al., 2022).

These examples demonstrate the common goal across different
regulatory frameworks: minimizing environmental and health risks
associated with leachate from landfills. National regulations often
incorporate or build upon international guidelines, tailoring
requirements to local conditions and available technologies.
However, the effectiveness of these regulations often depends on
the robustness of enforcement mechanisms and the commitment of
local authorities to uphold standards. The significance of these
regulations extends beyond environmental protection. They also
have profound economic and social implications. Strict regulatory
standards drive innovation in the waste management sector, leading
to the development of new treatment technologies and practices that
can reduce the volume and toxicity of leachate. Moreover, by
requiring the safe disposal of leachate, regulations also prevent
the long-term social costs associated with environmental cleanup
and healthcare for communities affected by pollution (Fang
et al., 2021).

3.2 Regulatory influence on landfill leachate
treatment technology selection

Regulatory standards significantly influence the selection of
landfill leachate treatment technologies. These regulations protect
the environment and public health from the potential hazards posed
by untreated or inadequately treated leachate (Tenodi et al., 2020).
As such, they set specific benchmarks that leachate must meet before
it can be released into the environment or treated further for
potential reuse.

The impact of regulatory standards on the choice of treatment
technology is multifaceted. Initially, these standards determine the
permissible levels of various pollutants, such as organic matter,
heavy metals, and nitrogen compounds, that can be present in the
treated leachate (Salem et al., 2008). This directly affects the
technology selection, as different processes vary in their ability to
remove or neutralize specific contaminants (Ahmed et al., 2017). For
instance, high BOD and COD levels might necessitate biological
treatment processes, such as activated sludge systems (Haydar et al.,
2007). At the same time, the presence of heavy metals may require
chemical precipitation or ion exchange technologies (Saleh et al.,
2022). Furthermore, regulations often specify the methods that must
be used for testing and monitoring leachate quality (Brennan et al.,
2016). These requirements can influence the choice of technology by
necessitating systems that treat leachate effectively and allow for easy
sampling and monitoring. Technologies that offer more control and
predictability in their operation, such as membrane bioreactors, can
become preferred options under stringent monitoring requirements
(Galinha et al., 2018). Advanced treatment technologies like reverse
osmosis, nanofiltration, and advanced oxidation processes become
more prevalent in jurisdictions with strict environmental standards
(Valdés et al., 2021). These technologies can achieve the low
contaminant levels required for discharge into sensitive
environments or for meeting the high-quality standards necessary
for leachate reuse in irrigation or industrial processes (Torretta
et al., 2017).

Moreover, regulations also impact the economic aspects of
technology choice. Compliance with stringent standards often
comes with higher operational and maintenance costs (Siddiqi
et al., 2022). As a result, regulatory frameworks can indirectly
incentivize the development and adoption of more cost-effective
and energy-efficient technologies (Pan et al., 2015). For example, the
push to meet low nitrogen limits could encourage the adoption of
innovative nitrogen removal processes that consume less energy
than traditional methods (Nourmohammadi et al., 2013).
Regulatory standards also influence the long-term planning and
scalability of treatment solutions. Facilities must consider current
regulations and potential future tightening of standards (Bunce
et al., 2018). This foresight leads to the selection of technologies
that are compliant now and adaptable to future regulatory changes,
thereby protecting the investment in treatment infrastructure over
time. Environmental policies and regulatory standards can also
foster the integration of multiple treatment technologies. To meet
comprehensive standards that cover a wide range of contaminants,
treatment plants may combine physical, chemical, and biological
processes in a tiered treatment strategy. Such integration can achieve
higher levels of purification than standalone systems.

In addition to these factors, regulations may promote
sustainable practices by advocating for treatment technologies
that minimize waste generation or allow for resource recovery
(Capodaglio, 2017). Techniques that enable the recovery of
byproducts, such as biogas production or the retrieval of precious
metals, might be preferred in regions where sustainability is a
regulatory goal (Chrispim et al., 2021).

In conclusion, the impact of regulatory standards on the choice
of landfill leachate treatment technology is profound, driving
innovation and influencing every aspect from the design phase to
operational strategy. By setting the bar for environmental
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TABLE 6 Conventional landfill leachate treatment technologies (Torretta et al., 2017; Dogaris et al., 2020; Ahmed et al., 2021; Younas et al., 2021; Siddiqi et al., 2022).

Treatment Brief overview Advantages Limitations Applicability Representative
technologies

Typical target
pollutants

Removal efficiency

Physical Involves the separation of
substances without a chemical
reaction, such as screening,
sedimentation, and flotation

— Low energy
requirement

— Simple operations

— Often requires
subsequent treatment

— Limited effectiveness for
dissolved contaminants

— Preliminary treatment
— Suitable for large

suspended solids

— Screening
— Sedimentation
— Flotation

— Suspended solids
— Particulate matter
— Colloidal particles

— Sedimentation: 50%–70%
suspended solids

— Filtration techniques: 85%–

95% COD, 80%–90% BOD

Chemical Uses chemical reactions to
remove pollutants, including
precipitation, oxidation, and ion
exchange

— Effective for specific
contaminants

— Can achieve high levels
of purification

— Can produce secondary
waste

— Chemicals used can be
hazardous

— Versatile, can treat a
range of leachate types

— Used for heavy metals

— Precipitation
— Oxidation
— Ion Exchange

— Heavy metals
— Dissolved organics
— Inorganic compounds

— Coagulation-flocculation:
60%–90% suspended solids
and 50%–70% COD

— Precipitation:80%–95%
heavy metals

— Oxidation-reduction: 80%–
90% color and 70%–85%
COD

— Fenton’s reagent:75%–90%
COD and 80%–95% organic
pollutants

Biological Employs microorganisms to
degrade organic pollutants,
categorized into aerobic and
anaerobic processes

— Cost-effective
— Environmentally

friendly

— Sensitive to toxic
compounds

— May require long
treatment times

— Ideal for organic-rich
leachate

— Commonly used in
municipal wastewater

— Aerobic and Anaerobic
Digestion

— Membrane Bioreactors

— Organic matter (BOD,
COD)

— Nitrogen
— Phosphorus

— Activated sludge: 70%–90%
BOD and 60%–80% COD

— Digesters: 80%–90% BOD
and 70%–85% COD

— Constructed wetlands: 60%–

80% BOD, 50%–70% COD,
and 40%–60% ammonia
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compliance, regulations ensure that the selected technologies not
only mitigate the potential impact of leachate on the environment
but also align with the broader goals of sustainability and public
health protection.

4 Conventional landfill leachate
treatment technologies

Landfill leachate treatment is a crucial component of modern
waste management systems, aiming to mitigate the environmental
impact of leachate discharge from landfills. As leachate comprises a
complex mixture of dissolved and suspended contaminants, its
treatment requires a multifaceted approach involving various
conventional technologies. These include physical, chemical, and
biological methods, each with principles, advantages, limitations,
and practical considerations (Table 6) (Torretta et al., 2017; Dogaris
et al., 2020; Ahmed et al., 2021; Younas et al., 2021; Siddiqi
et al., 2022).

4.1 Physical methods

Physical methods for landfill leachate treatment involve
processes that primarily rely on physical separation or filtration
mechanisms to remove suspended solids and particulate matter
(Renou et al., 2008). These methods typically include sedimentation,
filtration, and membrane technologies (Bashir et al., 2016).
Sedimentation involves allowing suspended solids to settle out of
the leachate under the influence of gravity, facilitating their removal
from the liquid phase (Wang et al., 2021). Filtration techniques, such
as sand or activated carbon filtration, employ porous media to trap
suspended solids and organic compounds as the leachate passes
through the filter bed (Loh et al., 2021). Membrane technologies,
including microfiltration, ultrafiltration, nanofiltration, and reverse
osmosis, utilize semi-permeable membranes to remove
contaminants based on their molecular size and charge selectively
(Rai and Shrivastav, 2022). Air stripping is a physical treatment
process that removes volatile contaminants, such as VOCs and
ammonia, from landfill leachate by passing air through the liquid
(De et al., 2019a; 2022). The process relies onHenry’s Law to transfer
contaminants from the liquid to the gas phase, using packed towers
or aeration tanks to maximize contact surface area. Air stripping is
effective, simple to operate, and can achieve high removal
efficiencies (up to 90% for ammonia). However, it produces off-
gas that requires further treatment to prevent air pollution and can
be energy-intensive. Despite these challenges, air stripping is an
essential part of leachate treatment, often used alongside other
technologies to improve overall performance.

In terms of efficiency, sedimentation can remove 50%–70% of
suspended solids. Filtration techniques, such as activated carbon
filtration, can achieve removal efficiencies of 85%–95% for COD and
80%–90% for BOD (De et al., 2019b; Mojiri et al., 2019). Membrane
technologies, including microfiltration, ultrafiltration,
nanofiltration, and reverse osmosis, utilize semi-permeable
membranes to selectively remove contaminants based on their
molecular size and charge. Microfiltration and ultrafiltration can
remove 90%–99% of suspended solids and bacteria, while

nanofiltration is effective in removing 70%–90% of divalent ions
and 50%–70% of monovalent ions (Peng, 2017). Reverse osmosis
offers the highest removal efficiencies, capable of removing 95%–
99% of dissolved solids, heavy metals, and organics (Peng, 2017).

The principal advantage of physical treatment methods lies in
their ability to achieve high levels of contaminant removal,
particularly for suspended solids and larger organic molecules
(Saravanan et al., 2021). These methods are often effective in
reducing turbidity and removing colloidal particles, thereby
improving the treated leachate’s visual clarity and overall quality
(Zakaria et al., 2023). Additionally, physical treatment processes are
generally straightforward to implement and operate, requiring
minimal chemical additives and relatively low energy inputs
compared to some chemical and biological methods (Nyabadza
et al., 2023). However, physical treatment methods also have certain
limitations and practical considerations. The potential for
membrane fouling or clogging, particularly in membrane-based
processes, can reduce treatment efficiency and increase
operational costs (Asif and Zhang, 2021). Moreover, physical
methods may not effectively remove dissolved contaminants such
as heavy metals or organic compounds, which may require
additional treatment steps (Saleh et al., 2022). Furthermore,
membrane technologies’ high capital and operational costs can
limit their widespread adoption, particularly in regions with
limited financial resources (Othman et al., 2022).

4.2 Chemical methods

Chemical methods for landfill leachate treatment involve the
addition of chemical reagents or agents to facilitate the precipitation,
coagulation, flocculation, oxidation, or neutralization of
contaminants present in the leachate (Aziz et al., 2022). These
methods aim to enhance the removal of dissolved metals, organic
compounds, and other pollutants through chemical reactions that
transform them into insoluble precipitates or aggregates that can be
separated from the liquid phase (El-Saadony et al., 2023; Chen et al.,
2024). Common chemical treatment processes include coagulation-
flocculation, precipitation, oxidation-reduction, and advanced
oxidation processes (AOPs) (Sengupta and Pal, 2021).

Coagulation-flocculation involves the addition of coagulants,
such as ferric chloride or aluminum sulfate, followed by the addition
of flocculants, such as polymers, to promote the aggregation of
suspended solids and colloidal particles into larger flocs that can be
easily separated from the leachate (Abujazar et al., 2022).
Precipitation methods rely on adding chemicals that react with
dissolved contaminants to form insoluble precipitates, which can
then be removed by sedimentation or filtration (Pohl, 2020).
Oxidation-reduction processes, such as ozonation or chlorination,
involve adding oxidizing agents to degrade organic pollutants or
reduce the concentration of toxic compounds (Wang and Chen,
2020). AOPs utilize powerful oxidants such as hydrogen peroxide or
ozone, combined with UV radiation or catalysts, to generate highly
reactive hydroxyl radicals that can mineralize organic contaminants
into simpler, less harmful compounds (Pandis et al., 2022).

Regarding removal efficiency, coagulation-flocculation can
remove 60%–90% of suspended solids and 50%–70% of COD
(Teh et al., 2016). Precipitation is highly effective in removing
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heavy metals, achieving removal efficiencies of 80%–95% for metals
such as lead, cadmium, and chromium (Fu and Wang, 2011).
Oxidation-reduction processes like ozonation can remove 80%–

90% of color and 70%–85% of COD (Miklos et al., 2018).
Advanced oxidation processes, such as the use of Fenton’s
reagent, can remove 75%–90% of COD and 80%–95% of organic
pollutants (Babuponnusami and Muthukumar, 2014).

The primary advantage of chemical treatment methods lies in
their versatility and effectiveness in targeting a wide range of
contaminants present in leachate (Pisharody et al., 2022).
Chemical processes can achieve high removal efficiencies for
dissolved metals, organic compounds, and recalcitrant pollutants
that may not be effectively treated by physical or biological methods
alone (Nidheesh et al., 2022). Additionally, chemical treatment
processes can often be tailored to specific leachate compositions
and treatment objectives by adjusting the type and dosage of
chemical additives used (Khoo et al., 2020). One of the common
disadvantages of chemical treatment methods, particularly
coagulation-flocculation and precipitation, is the generation of
sludge. This sludge, a byproduct of the treatment process,
consists of the aggregated contaminants and excess chemical
reagents, posing a significant disposal challenge (Sharma et al.,
2022). Using chemical reagents can also increase operational
costs and pose health and safety risks to operators if improperly
handled. The management of this sludge is crucial as it requires
appropriate handling, treatment, and disposal to avoid secondary
pollution. Chemical sludge typically needs to be dewatered and may
require further stabilization or treatment before disposal in landfills
or use in other applications. The disposal costs and environmental
impacts associated with sludge management must be considered
when evaluating the overall feasibility and sustainability of chemical
treatment methods (Hou et al., 2023).

4.3 Biological methods

Biological methods for landfill leachate treatment harness the
metabolic activity of microorganisms to degrade organic pollutants
and remove nutrients from the leachate (Wu D. et al., 2015). These
methods typically involve aerobic treatment, anaerobic treatment,
and constructed wetlands, which utilize different microbial
communities and environmental conditions to facilitate the
leachate’s biodegradation and transformation of contaminants
(Kurniawan et al., 2010). Aerobic treatment involves exposing the
leachate to oxygen-rich conditions, allowing aerobic bacteria to
metabolize organic compounds and oxidize them into simpler,
less harmful substances (Bhambore and Suresh Kumar, 2022).
On the other hand, anaerobic treatment processes operate under
oxygen-free conditions and rely on anaerobic bacteria to degrade
organic matter through fermentation and methanogenesis,
producing methane gas as a byproduct (Zamri et al., 2021).
Constructed wetlands are engineered systems that mimic natural
wetland ecosystems and utilize wetland vegetation, soil, and
microbial communities to remove contaminants from the
leachate through physical, chemical, and biological processes
(Hassan et al., 2021). These systems provide an ideal habitat for
the growth of wetland plants and microorganisms, which can
absorb, adsorb, and metabolize pollutants in the leachate,

improving its quality (Bakhshoodeh et al., 2020). Additionally,
constructed wetlands can enhance nutrient removal and promote
groundwater recharge by facilitating water infiltration and retention
in the soil (Chand et al., 2022).

When it comes to biological methods for landfill leachate
treatment, aerobic treatment processes, such as activated sludge,
can remove 70%–90% of BOD and 60%–80% of COD (Peng, 2017).
Anaerobic treatment using digesters can achieve removal efficiencies
of 80%–90% of BOD and 70%–85% of COD, with the added benefit
of producing biogas as a byproduct (Mukherjee et al., 2015).
Constructed wetlands offer another effective solution, capable of
removing 60%–80% of BOD, 50%–70% of COD, and 40%–60% of
ammonia (Wu S. et al., 2015).

Here we need to mention a mature biological treatment
technology that has been widely used in the field of wastewater
treatment for many years, biological nutrient removal (BNR). BNR
harnesses the metabolism of microorganisms to remove nutrients,
notably nitrogen and phosphorus, from wastewater (Deng et al.,
2023). BNR is crucial for preventing eutrophication in aquatic
environments caused by nutrient overloads (Kabuba et al., 2022).
BNR operates through various biological mechanisms, including
nitrification, denitrification, and phosphorus uptake by specific
bacteria, under different operational conditions to remove these
nutrients (Rout et al., 2021a). Factors influencing the efficiency of
BNR include biomass concentration, hydraulic retention time,
temperature, and pH, which need to be optimized to enhance
microorganism activity and nutrient removal (Mishra et al., 2022).
The complexity of BNR systems, which can include multiple tanks
and stages for different phases of nutrient removal, requires careful
design and operation to achieve the desired outcomes (Al-Hazmi
et al., 2022). BNR offers a cost-effective and environmentally friendly
approach to nutrient removal, avoiding using chemicals and
leveraging natural biological processes (Al-Hazmi et al., 2024).
This technology requires for a large footprint due to the extensive
infrastructure needed and the complexity of operation and
maintenance, which demands skilled personnel and continuous
monitoring (Abyar and Nowrouzi, 2023).

Biological treatment methods can achieve sustainable and cost-
effective leachate treatment through natural processes (Chand et al.,
2022). Biological processes are highly efficient in removing organic
pollutants and nutrients from the leachate, often achieving high
removal efficiencies under favorable environmental conditions (Li
et al., 2021). Moreover, biological treatment methods are generally
environmentally friendly and produce minimal secondary waste or
harmful byproducts compared to chemical or physical methods
(Sathya et al., 2023). Nevertheless, compared with chemical or
physical methods, the required processing time is longer because
the microbial degradation process can be relatively slow, especially
under certain environmental conditions (Sharma, 2020).
Additionally, biological treatment systems may be sensitive to
fluctuations in temperature, pH, and other environmental
parameters, which can affect treatment performance and
reliability (Sundui et al., 2021). Moreover, toxic or inhibitory
substances in the leachate, such as heavy metals or recalcitrant
organic compounds, may limit the effectiveness of biological
treatment processes and require additional pre-treatment or post-
treatment steps to achieve desired treatment objectives (Ilmasari
et al., 2022).
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In conclusion, conventional landfill leachate treatment
technologies encompass diverse physical, chemical, and biological
methods, each offering unique advantages, limitations, and practical
considerations. Physical methods rely on separation or filtration
mechanisms to remove suspended solids and colloidal particles from
the leachate. In contrast, chemical methods involve the addition of
chemical reagents to facilitate the precipitation, coagulation, or
oxidation of contaminants. Biological methods harness the
metabolic activity of microorganisms to degrade organic
pollutants and remove nutrients from the leachate through
natural processes. While each treatment method has its strengths
and weaknesses, selecting an appropriate treatment technology
depends on factors such as leachate composition, treatment
objectives, regulatory requirements, and site-specific
considerations. By understanding each treatment method’s
principles, advantages, limitations, and practicality, stakeholders
can make informed decisions to design and implement effective
leachate treatment systems that meet environmental standards and
protect human health and the environment.

5 Advanced landfill leachate treatment
technologies

5.1 Common technology

5.1.1 Membrane technology
Membrane technology has emerged as a pivotal solution in

treating landfill leachate (Chen et al., 2021). This technology offers a
versatile and efficient approach to removing contaminants,

including dissolved salts, heavy metals, organic compounds, and
particulates (El Batouti et al., 2021). The application of membrane
technology in leachate treatment primarily involves reverse osmosis,
nanofiltration, ultrafiltration, and membrane bioreactors, each
serving unique roles in the purification process (Table 7) (de
Almeida et al., 2020; Magalhães et al., 2020; Yusuf et al., 2020; El
Batouti et al., 2022).

5.1.2 Reverse osmosis (RO)
Reverse osmosis is a cornerstone of membrane technology for

leachate treatment, renowned for its ability to remove a wide array of
contaminants, including dissolved salts and organic molecules
(Feria-Díaz et al., 2021). The principle of RO involves applying
pressure to the leachate across a semi-permeable membrane, which
allows water molecules to pass while retaining the majority of
dissolved solids (Mengesha and Sahu, 2022). This process is
particularly effective in reducing leachate conductivity, making it
a critical step in compliance with stringent discharge regulations
(Keyikoglu et al., 2021). RO systems can achieve removal efficiencies
exceeding 99% for various contaminants, rendering them
indispensable in scenarios requiring high-quality effluent
(Srivastava et al., 2022). However, the performance of RO
systems is significantly influenced by factors such as membrane
fouling, feed water quality, and operating pressure (Odabaşı et al.,
2022). Membrane fouling, caused by the accumulation of particles
and microorganisms on the membrane surface, can lead to
decreased efficiency and increased operational costs (Sengar and
Vijayanandan, 2022). To mitigate these effects, pre-treatment
processes and regular maintenance are crucial. Additionally,
generates a concentrated brine that requires further management

TABLE 7 Membrane technology in landfill leachate treatment (de Almeida et al., 2020; Magalhães et al., 2020; Yusuf et al., 2020; El Batouti et al., 2022).

Process Introduction Mechanism Target
pollutants

Removal
efficiency

Factors
affecting
removal
efficiency

Advantages Limitations

RO RO is a high-efficiency
filtration process that
removes contaminants
by applying pressure to
push water through a
semi-permeable
membrane

Solution/
diffusion; Size
exclusion

Dissolved salts,
metals, organics,
and some
microorganisms

Remove
exceeding 99%
for various

contaminants

Membrane
fouling level, feed
water quality,
operating
pressure

High removal
efficiencies for a wide
range of
contaminants;
Produces high-quality
effluent

High energy
consumption;
Generates
concentrated waste
stream

NF NF is a selective
filtration technology
that removes specific
ions and small
molecules from water

Size exclusion;
Electrostatic
exclusion

Hardness ions
(e.g., Ca, Mg),
heavy metals,
certain organic
compounds

Up to 99.62%
removal of PFAS.

Membrane
fouling level, feed
composition,
operating
pressure

Lower pressure and
energy requirements
than RO; Can
selectively remove
contaminants

Less effective for
monovalent ions;
Still produces a
waste concentrate

UF UF uses a semi-
permeable membrane to
remove suspended
solids, bacteria, viruses,
and large molecules

Size exclusion Suspended solids,
bacteria, viruses,
macromolecules

Remove 90%–
99% of

suspended solids
and bacteria

Membrane
fouling level, pore
size of the
membrane, feed
water turbidity

Low energy
requirement; Effective
pre-treatment for RO/
NF; High removal of
particulates and
microorganisms

Limited in
removing
dissolved ions and
small molecules

MBR MBR combines
biological treatment
with membrane
filtration to degrade
organic pollutants and
remove solids

Biological
degradation; Size
exclusion

Organic
pollutants,
nutrients (N, P),
suspended solids

High removal
rates for BOD
(85%–95%) and

COD
(70%–85%)

Biomass
concentration,
membrane
fouling level,
hydraulic
retention time

High-quality effluent;
Compact design; High
organic and nutrient
removal efficiency

Higher operational
and maintenance
costs due to
fouling; Energy-
intensive
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or treatment, presenting an environmental and operational
challenge (Sengar and Vijayanandan, 2022). RO is particularly
suitable for final polishing of treated leachate to meet
discharge standards.

5.1.3 Nanofiltration (NF)
Nanofiltration occupies a niche between reverse osmosis and

ultrafiltration, with a pore size that allows it to selectively remove
divalent and multivalent ions, some monovalent ions, and organic
molecules (Zhao et al., 2021). NF is particularly valued for its ability
to soften water by removing hardness ions, such as calcium and
magnesium, alongside a significant reduction in organic content and
color (Patel et al., 2023). NF’s selectivity allows it to target pollutants
with lower pressure and energy requirements than RO, making it a
cost-effective option for many treatment scenarios (Yadav et al.,
2022). The process is well-suited for pre-treatment in RO systems or
as a standalone treatment for leachates with moderate
contamination levels (Ali, 2021). Like RO, NF also produces
concentrate streams that require careful disposal or further
treatment (Song et al., 2020). The efficiency of NF is contingent
upon membrane fouling, feed composition, and operating pressure
(Yang et al., 2024). Similar to RO, the presence of pre-treatment
processes is vital to prevent fouling and ensure consistent
performance. While NF offers the advantage of selective
contaminant removal with reduced energy consumption, its
limitations include less effectiveness for monovalent ions and the
production of a waste concentrate that requires further treatment
(Tian et al., 2021).

5.1.4 Ultrafiltration (UF)
Ultrafiltration is a membrane filtration process employing

larger pore sizes than NF and RO, making it ideal for removing
suspended solids, bacteria, viruses, and high molecular weight
solutes (Urošević and Trivunac, 2020). Factors like membrane
fouling, pore size, and feed water turbidity can impact UF’s
removal efficiency (Peters et al., 2021). Nonetheless, UF
systems require lower energy to operate and serve as an
excellent pre-treatment step for RO and NF processes by
reducing the load of suspended solids and microbial content,
thereby extending the lifespan of downstream membranes (El
Batouti et al., 2022). UF is often used as a pre-treatment step to
protect downstream RO or NF systems from fouling. It can
typically remove 90%–99% of suspended solids and bacteria.
The primary advantage of UF lies in its ability to operate at
lower pressures, thereby reducing energy costs (Fan et al., 2020).
It is also less susceptible to chemical damage, allowing for a
broader range of chemical cleaning agents. Although UF is highly
effective in removing particulates and microorganisms, its
limitations lie in its inability to address dissolved ions and
small molecules, underscoring the need for a comprehensive
treatment approach that may include subsequent NF or RO
stages (Castro-Muñoz, 2020).

5.1.5 Membrane bioreactors (MBR)
The membrane bioreactor technology integrates biological

treatment processes with membrane filtration, offering a
compact and efficient solution for degrading organic
pollutants and removing solids (Neoh et al., 2016). In an MBR

system, a bioreactor degrades organic pollutants through
microbial activity, while a membrane filtration unit separates
treated water from biomass and suspended solids (Deng et al.,
2022). MBRs can achieve high levels of organic and nutrient
removal, with the added benefit of producing a clarified,
disinfected effluent (Hai et al., 2014). Integrating biological
treatment and membrane separation enhances system stability
and reduces the footprint compared to conventional treatment
setups (Waqas et al., 2020). MBRs are suitable for leachate with
high organic loads and in locations where space is limited. They
can achieve high removal rates for BOD (85%–95%) and COD
(70%–85%), along with effective solids separation. The
performance of MBRs is influenced by factors such as biomass
concentration, membrane fouling, and hydraulic retention time.
Despite the challenges of operational and maintenance costs
associated with fouling and energy consumption, MBRs
provide significant advantages, including high-quality effluent,
compact design, and efficient removal of organic matter and
nutrients (Meng et al., 2007).

5.2 Advanced oxidation processes

The treatment of landfill leachate using AOPs has garnered
significant attention due to the complexity and variability of leachate
composition (Fang et al., 2021). AOPs are characterized by their
ability to generate highly reactive species, particularly hydroxyl
radicals, which can non-selectively degrade a wide range of
pollutants (Anandan et al., 2020). Usually there are four primary
AOPs: the Fenton process, ozonation, photocatalysis, and
electrochemical oxidation (Table 8) (Rekhate and Srivastava,
2020; Wang and Zhuan, 2020; Pandis et al., 2022).

5.2.1 Fenton process
The Fenton process is a chemical treatment method that

involves the reaction of hydrogen peroxide (H2O2) with ferrous
iron (Fe2+) to produce hydroxyl radicals (·OH·) (Benassi et al., 2021).
These radicals are extremely reactive and can break down various
organic pollutants, including dyes, pharmaceuticals, and other
complex organic compounds in landfill leachate (Ateş and
Argun, 2021). The mechanism of action in the Fenton process is
homogeneous catalysis, where the reaction occurs in solution,
allowing for the widespread generation of hydroxyl radicals (Liu
et al., 2021). This process is particularly effective for treating
organic-rich leachate, offering several advantages, such as high
efficiency in degrading organic pollutants and operating under
ambient conditions (Soltani et al., 2022). The Fenton process is
effective for treating leachate with high concentrations of refractory
organic compounds. It can remove 75%–90% of COD and 80%–95%
of organic pollutants. However, the process is highly sensitive to
operational conditions such as pH, temperature, and the ratios of Fe
to H2O2 and reaction time (O’Dowd and Pillai, 2020). A major
limitation of the Fenton process is sludge production from iron salts,
necessitating further treatment steps (Ziembowicz and Kida, 2022).
Additionally, precise control over the reaction conditions is crucial
to prevent the consumption of hydrogen peroxide by excessive iron,
which would otherwise reduce the efficiency of pollutant
degradation (Liu et al., 2024).
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5.2.2 Ozonation
Ozonation employs ozone (O3), a potent oxidizing agent, to

oxidize pollutants directly (Tripathi and Hussain, 2022). This
process is highly effective for removing color, odor, and
microorganisms from landfill leachate and degrading some
organic compounds (Yang C. et al., 2021). The direct oxidation
mechanism of ozonation allows for rapid reaction rates, making it a
valuable option for enhancing the biodegradability of recalcitrant
organic compounds in leachate (Yang Y. et al., 2021). Ozonation can
remove 80%–90% of color and 70%–85% of COD. The efficiency of
ozonation is influenced by ozone dosage, contact time, and the
quality of water being treated. Its advantages include effective color
and odor removal, disinfection capabilities, and the absence of
sludge production (Hussain et al., 2022). However, ozonation
requires significant energy to generate ozone gas, and the
potential formation of by-products during the oxidation of
certain pollutants can be a concern (Wang and Chen, 2020).
Despite these limitations, ozonation remains a favored choice for
specific applications within leachate treatment, particularly when
targeting pollutants susceptible to oxidation by ozone.

5.2.3 Photocatalysis
Photocatalysis involves using light (typically UV) and a catalyst

(commonly titanium dioxide, TiO2) to produce reactive species
capable of degrading pollutants (Gopinath et al., 2020). This
process is governed by heterogeneous catalysis, where the catalyst
remains in a solid phase, distinct from the liquid phase in which the
pollutants are dissolved (Iervolino et al., 2020). Photocatalysis is

effective against many contaminants, including organic pollutants,
bacteria, and viruses, making it an attractive option for treating
landfill leachate (Han et al., 2020). Factors affecting the efficiency of
photocatalysis include light intensity, catalyst type and
concentration, and the pH of the solution (Gusain et al., 2020).
Photocatalysis offers the potential for low energy costs, especially
when powered by solar energy, and the absence of sludge production
(Ahmad et al., 2020). Catalyst recovery and reuse and dependence
on UV light for optimal performance limit its widespread
application (Kefeni and Mamba, 2020). Despite these challenges,
photocatalysis presents a sustainable option for leachate treatment,
especially in sunny climates where solar radiation can be
effectively harnessed.

5.2.4 Electrochemical oxidation
Electrochemical oxidation utilizes an electrical current to

facilitate the oxidation of pollutants at an electrode surface or
within the bulk solution (Fitch et al., 2022). Through direct and
indirect oxidation mechanisms, this method can target a broad
spectrum of pollutants, including dyes, pharmaceuticals, and
complex organic molecules (da Silva et al., 2021). This process is
effective for treating leachate with a high load of organic pollutants
and ammonia. Electrochemical oxidation can remove 75%–95% of
COD and up to 90% of ammonia. One of the primary advantages of
electrochemical oxidation is the absence of chemical additives
coupled with precise control over the treatment process (Yang L.
et al., 2021). This method offers an environmentally friendly
approach to leachate treatment, albeit with considerations for

TABLE 8 AOPs in landfill leachate treatment (Rekhate and Srivastava, 2020; Wang and Zhuan, 2020; Pandis et al., 2022).

Process Introduction Mechanism
of action

Target
pollutants

Removal
efficiency

Factors
affecting
removal
efficiency

Advantages Limitations

Fenton Process A chemical process
using hydrogen
peroxide (H2O2) and
iron (Fe) catalysts to
produce hydroxyl
radicals for the
oxidation of pollutants

Homogeneous
catalysis

Organic
pollutants, dyes,
pharmaceuticals

Remove 35%–90%
of COD and 80%–

95% of organic
pollutants

pH,
temperature, Fe
and H2O2 ratio,
reaction time

Highly efficient in
degrading organic
pollutants; Can
operate at ambient
conditions

Production of
sludge; Requires
post-treatment to
remove iron;
Sensitive to
operational
conditions

Ozonation The application of
ozone (O3), a strong
oxidizing agent, to
break down organic
and inorganic
materials

Direct oxidation Color, odor,
microorganisms,
some organic
compounds

Remove 80%–90%
of color and 70%–

85% COD.

Ozone dosage,
contact time,
water quality

Effective for color
and odor removal;
Can disinfect; No
sludge production

High energy
consumption for
ozone generation;
May form by-
products

Photocatalysis Uses light to activate a
catalyst (typically
TiO2), generating
reactive species that
degrade contaminants

Heterogeneous
catalysis

Organic
pollutants,
bacteria, viruses

achieved up to
86.14% removal of
endosulfan, 96.2%
of methylene blue,

97.3% of
rhodamine B, and
84.67% of crystal

violet dye

Light intensity,
catalyst type and
concentration,
pH

Can be powered by
solar energy; Low
energy cost; No
sludge

Catalyst recovery
and reuse; May
require UV light

Electrochemical
Oxidation

An electrochemical
reaction where
pollutants are oxidized
at the anode surface or
in the bulk solution

Direct and indirect
oxidation

Dyes,
pharmaceuticals,
complex organic
molecules

Remove 75%–95%
of COD and up to
90% of ammonia

Electrode
material, current
density,
conductivity,
pH

No chemical
addition needed;
Precise control over
process

High energy
consumption;
Electrode
degradation;
Sludge generation;
Management
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high energy consumption and potential electrode degradation over
time (Deng et al., 2020).

5.3 Other technologies

As environmental standards become increasingly stringent,
adopting innovative and efficient treatment technologies is
essential. Emerging technologies for treating landfill leachate are
pivotal in addressing the environmental challenges posed by the
complex and variable composition. These technologies, including
adsorption, ion exchange, and biological nutrient removal (BNR),
offer innovative solutions to remove many pollutants, from organic
compounds and heavy metals to nitrogen and phosphorus (Table 9)
(Bhambri and Karn, 2020; Deng et al., 2020; Hasan et al., 2021;
Rajesh Banu et al., 2021).

5.3.1 Adsorption
Adsorption is a versatile and widely implemented method for

contaminant removal, characterized by the adherence of pollutants
onto the surface of an adsorbent material (Shen et al., 2023). This
process can occur through physical adsorption, driven by weak van
der Waals forces, or chemical adsorption, involving stronger
covalent bonds (Rathi and Kumar, 2021). The mechanism is
influenced by the surface area, porosity, and chemical nature of
the adsorbent, as well as the properties of the pollutants (Ambaye
et al., 2021). Adsorption is particularly effective for removing
organic compounds, heavy metals, and dyes from leachate,
making it a valuable tool for improving water quality (Saravanan
et al., 2021). The adsorption efficiency is determined by factors such
as the type and concentration of pollutants, contact time, adsorbent
material, and environmental conditions like temperature (Rathi and
Kumar, 2021). Activated carbon is among the most commonly used

adsorbents due to its high surface area and porosity, although other
materials like biochar, zeolites, and engineered nanomaterials are
also employed (Sharma et al., 2022). The primary advantages of
adsorption include its simplicity, cost-effectiveness, and the absence
of harmful by-products. The finite adsorption capacity of materials,
which necessitates their periodic regeneration or replacement
(Sharma et al., 2024). Similar to coagulation-flocculation, the
adsorption method also generates sludge, which consists of spent
adsorbent materials saturated with contaminants (Kurniawan et al.,
2021a). The management of this adsorption sludge is a critical issue,
as it involves the disposal or regeneration of spent adsorbents.
Regeneration can often be achieved through thermal, chemical,
or biological methods to restore the adsorbent’s capacity for
reuse. However, these processes can be energy-intensive and
costly, and not all adsorbents can be regenerated effectively.
Disposal of non-regenerable adsorbents must be conducted in an
environmentally safe manner, often requiring landfilling or
incineration, which introduces additional costs and
environmental concerns. The environmental impact and cost of
managing adsorption sludge are important factors in assessing the
overall sustainability of the adsorption process.

5.3.2 Ion exchange
Ion exchange is a specialized technique designed for removing

dissolved ions from wastewater, functioning through the reversible
exchange of ions between a liquid and a solid phase (Liu et al., 2023).
Ion exchange relies on electrostatic interactions between charged
particles, making it particularly suitable for targeting specific ionic
contaminants such as heavy metals, hardness-causing ions (e.g.,
calcium and magnesium), and radionuclides (Liu et al., 2023). The
performance of ion exchange systems is influenced by the resin or
medium’s ion exchange capacity, the leachate’s flow rate, and the
water’s chemical composition, including the presence of competing

TABLE 9 Emerging technologies in landfill leachate treatment (Bhambri and Karn, 2020; Deng et al., 2020; Hasan et al., 2021; Rajesh Banu et al., 2021).

Technology Introduction Mechanism
of action

Target
pollutants

Removal
efficiency

Factors
affecting
removal
efficiency

Advantages Limitations

Adsorption A process where
pollutants are
captured on the
surface of a material

Surface adsorption;
Physical and
chemical
adsorption

Organic
compounds,
metals, dyes

Achieve up to
99% removal of

emerging
contaminants and

95.1% for
strontium

Adsorbent
material, contact
time,
concentration of
pollutants,
temperature

Low cost;
Simplicity of
design; No harmful
by-products

Limited capacity;
Requires
regeneration or
disposal of
adsorbents

Ion Exchange Involves the exchange
of ions between a solid
phase and a liquid
phase to remove
dissolved ions

Electrostatic
exclusion

Heavy metals,
hardness,
radionuclides

Remove nutrients
up to 98% for
ammonium,
91.38% for

arsenic, and over
99% colorants

Ion exchange
capacity, flow
rate, water
chemistry

High specificity;
Efficient for
targeted
contaminants

Regeneration of
resins needed;
Sensitive to
competing ions

Simultaneous Partial
Nitrification,
Anammox, and
Denitrification

An innovative
biological process
integrating partial
nitrification,
anammox, and
denitrification to treat
high-strength
nitrogenous leachate
efficiently

Partial
Nitrification,
Anammox, and
Denitrification

Ammonia
(NH4+)
Nitrite (NO2-)
Nitrate (NO3-)

SNAD achieves
nitrogen removal
efficiencies of

80%–94.56% for
total inorganic

nitrogen and over
90% for total
nitrogen

Dissolved Oxygen
Levels,
Temperature, pH,
Organic Carbon
Availability,
ammonia and
Nitrite
Concentrations

Cost-effective;
High Efficiency;
Low Sludge
Production;
Sustainable

Complex Control;
Environmental
Sensitivity;
Startup Time;
Monitoring
Needs
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ions (Xu et al., 2024). Factors such as resin specificity, regeneration
requirements, and operational parameters must be carefully
managed to optimize performance (Clark et al., 2024). Ion
exchange resins, synthetic or natural, are chosen based on their
selectivity for certain ions, offering high specificity and efficiency in
contaminant removal (Wang et al., 2024). Ion exchange offers the
advantage of high specificity and efficiency for targeted
contaminants, providing a tailored approach to leachate
treatment (Aziz et al., 2023). The need for regular resin
regeneration with chemicals like brine, which can generate
secondary waste streams (Sahu, 2021). It is sensitive to
competing ions, which can reduce the efficiency of targeted ion
removal, requiring careful water chemistry management (Chen
et al., 2023).

5.3.3 Simultaneous partial nitrification, anammox,
and denitrification (SNAD)

SNAD is an emerging biological treatment technology that
integrates partial nitritation, anaerobic ammonium oxidation
(anammox), and denitrification processes within a single reactor
(Singh et al., 2022). This integrated approach shows great potential
for treating landfill leachate with high ammonia concentrations. The
SNAD process involves three main steps: partial nitritation, which
converts part of the ammonia into nitrite; anammox, which utilizes
the remaining ammonia and the produced nitrite to generate
nitrogen gas; and denitrification, which reduces any remaining
nitrate to nitrogen gas. These processes occur simultaneously in
the same reactor, achieving efficient nitrogen removal. SNAD
achieves nitrogen removal efficiencies of 80%–94.56% for total
inorganic nitrogen and over 90% for total nitrogen, while also
reducing oxygen demand and sludge production compared to
conventional methods (Zheng et al., 2016). SNAD technology
offers several advantages for landfill leachate treatment, including
high nitrogen removal efficiency, energy savings due to lower
oxygen and organic carbon requirements compared to traditional
nitrification-denitrification processes, reduced operational costs,
smaller footprint due to the integration of three processes in one
reactor, and less sludge production, which lowers sludge handling
costs (Su et al., 2022). Despite its promising prospects, SNAD
technology faces challenges such as the need for precise control
of parameters like dissolved oxygen and pH, long startup times due
to the slow growth of anammox bacteria, and sensitivity to
temperature. Future research will focus on optimizing operational
parameters, enhancing system stability, and exploring innovative
reactor designs to further improve the application of SNAD
technology in landfill leachate treatment.

In summary, when selecting an appropriate landfill leachate
treatment technology, it is essential to consider the balance between
efficiency, cost, and sustainability (Özdemir et al., 2020; Cherni et al.,
2021; Dereli et al., 2021; Saadatlu et al., 2023). Membrane
technologies are highly effective, capable of removing up to 99%
of dissolved salts and other specific pollutants. However, their
application involves significant capital and operational costs,
particularly with RO, due to the expenses associated with energy
use, membrane replacement, and maintenance. Despite these costs,
advancements in technology are gradually improving the
sustainability of membrane processes, although energy use and
membrane disposal remain concerns. AOPs offer another robust

solution, particularly for degrading resistant organic compounds
and pathogens. Nevertheless, they come with high operational costs,
mainly due to the chemical inputs and energy demands, such as for
ozone generation or UV lamps. These factors also contribute to
moderate sustainability concerns, especially regarding potential
secondary pollution. Emerging technologies provide a more cost-
effective and sustainable approach. While their efficiency varies
depending on the materials and infrastructure used, they excel in
targeting specific contaminants like heavy metals and nutrients.
These technologies emphasize the use of recyclable materials and
natural processes, thereby enhancing environmental friendliness.
The choice of leachate treatment technology should be guided by
specific treatment goals, regulatory requirements, and sustainability
objectives, balancing efficiency with environmental and economic
considerations to achieve effective and responsible leachate
management.

6 Comprehensive treatment system

The cornerstone of addressing the leachate challenge lies in
implementing a comprehensive treatment system that
synergistically combines various treatment methodologies to
remove contaminants effectively and meet or exceed regulatory
discharge standards (Abdelfattah and El-Shamy, 2024). These
systems are designed not only to mitigate the adverse
environmental impacts of leachate but also to contribute to the
sustainability of landfill operations by enabling the possibility of
resource recovery and reuse of treated water (Mojiri et al., 2020).

6.1 Comprehensive treatment system

A comprehensive landfill leachate treatment system is a multi-
faceted and dynamic approach that mitigates leachate contaminants’
environmental impacts through a well-orchestrated sequence of
processes (Figure 2) (Britz, 2020; Babaei et al., 2021; Fang et al.,
2021; Righetto et al., 2021; Teng et al., 2021; Nath and Debnath,
2022). Initiating with pretreatment, the system begins by addressing
the more tangible aspects of leachate—easily separable solids are
removed, and the pH is carefully adjusted. This foundational step is
about preparing the leachate for the complex journey ahead and
safeguarding the intricate mechanisms of downstream processes
from potential abrasion, blockages, and harmful chemical
interactions. As the leachate advances, it encounters the primary
treatment phase, a sophisticated interplay between biology and
chemistry. Here, living microbes engage in a digestive ballet,
utilizing both aerobic and anaerobic pathways to metabolize
organic pollutants, thereby reducing the load of substances that
demand oxygen in the water. Concurrently, a suite of physical-
chemical treatments, each a targeted strike—coagulation,
flocculation, and flotation—work in concert to clear out
suspended solids, strip away color, and separate particulate
organic matter. This systematic approach continues into the
secondary treatment, where a more refined attack is launched on
dissolved organic compounds that have eluded the grasp of
biological processes. This stage employs the precision of AOPs,
the fine sieve of membrane filtration technologies like reverse
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osmosis, and the binding affinities of adsorption techniques, each
method meticulously selected to ensure no contaminant is left
unchallenged. Nearing the end, the leachate undergoes tertiary
treatment—an exemplary display of purification, where the
effluent is polished to meet stringent quality standards. Further,
membrane filtration stands sentinel against the minutest of
pollutants, disinfection processes wage war on pathogenic
microorganisms, and additional specific treatments meticulously
remove any lingering traces of heavy metals or nitrogen compounds.

The comprehensive landfill leachate treatment system’s
responsibility does not end with the effluent; sludge management
remains a testament to the ethos of sustainability that underpins the
entire operation (Torretta et al., 2017). This critical phase manages
the solid byproducts of the leachate’s treatment to minimize further
environmental impact, reclaim valuable resources, and embody the
cyclic nature of waste transformed into worth (Remmas et al., 2023).
Implementing a comprehensive landfill leachate treatment system is
a paragon of environmental responsibility and technological
ingenuity, offering multifarious benefits that resonate far beyond the
confines of waste management. Such systems are critical in preventing
the percolation of hazardous contaminants into the groundwater and

surface waters, safeguarding the aquatic ecosystems and public health
against the potential onslaught of toxic substances (Ravindiran et al.,
2023). By utilizing progressively targeted treatments that include
biological degradation, chemical transformation, and physical
separation, these systems adeptly reduce the concentrations of
organic and inorganic pollutants, heavy metals, and pathogens to
meet stringent regulatory standards (Rathod et al., 2024). Beyond
the immediate environmental benefits, these systems embrace the
principles of a circular economy, often allowing for the recovery of
resources such as biogas, which can be converted to energy, and treated
water, which can be repurposed for industrial or agricultural use (Zarei,
2020). This contributes to the conservation of natural resources and
offers economic advantages by offsetting operational costs and
generating revenue (Ekins and Zenghelis, 2021). Comprehensive
treatment systems are committed to sustainable development as they
adapt to the ever-changing waste composition and emerging
contaminants, ensuring resilience against future environmental
challenges. Thus, these systems’ significance lies in their immediate
efficacy in pollution control and their strategic contribution to long-
term environmental sustainability and economic viability (Mojiri
et al., 2020).

FIGURE 2
Components of a comprehensive treatment system.
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6.2 Example of comprehensive treatment
system for landfill leachate

In the bustling urban environment of Changsha City, the capital of
Hunan Province, China (28.2282°N, 112.9388°E), located 35 km north in
Qiaoyi Town,Wangcheng District, the ChangshaMunicipal SolidWaste
Treatment Site stands as a pivotal solution to the city’swastemanagement
challenges. Operated by Welle Environmental Protection Technology
Group Co., Ltd., this project exemplifies a cutting-edge approach to
handling landfill leachate treatment (Welle Environmental Protection
TechnologyGroupCo.L, 2024). As the sole comprehensive co-processing
site for municipal solid waste in Changsha, it is responsible for
managing domestic waste from the city’s expansive area, municipal
sludge from 13 sewage treatment plants, and all leachate in the
reservoir area. The facility is ingeniously divided into two
functional units: landfill and incineration plant, with 80% of
domestic waste processed through incineration for electricity
generation and the remaining 20% allocated for landfilling. The
core challenge in managing landfill leachate stems from its highly
concentrated and variable composition, which can severely impact
local water sources and the broader environment.

To tackle this, Welle Group Co., Ltd has designed a
comprehensive leachate treatment system addressing both landfill
leachate and domestic/low-concentration sewage (Figure 3). The
process for high-concentration leachate regeneration is a testament
to engineering excellence, employing a sophisticated combination of
“pretreatment + up-flow anaerobic sludge blanket (UASB) + external
membrane bioreactors (MBR) + nanofiltration (NF) + reverse
osmosis (RO). This multi-stage approach ensures the thorough
removal of contaminants, making the leachate safe for discharge or
reuse. In addition to the high-concentration leachate treatment, the
facility also addresses the treatment of domestic and low-concentration
inorganic sewage. The domestic sewage treatment follows a “mixed
coagulation and sedimentation + anaerobic-aerobic (A/O) + built-in

MBR” process. In contrast, the low-concentration inorganic sewage is
treated through “coagulation and air flotation + multi-media filtration
+ RO.” These processes are designed to efficiently handle the varied
waste streams entering the facility, ensuring that all forms of
wastewater are effectively managed. The landfill leachate treatment,
in particular, employs an “external MBR + NF + RO” process. This
specific treatment path is crucial for dealing with the highly
contaminated leachate from the landfill, effectively reducing its
pollutant load before release or reuse. The concentrated liquid
produced from these treatment processes undergoes advanced
oxidation/reduction treatment, showcasing the facility’s
commitment to minimizing environmental impact. This liquid is
then cleverly returned to the factory for consumption, embodying
the principles of sustainability and resource recovery. The
achievements of this project are both tangible and impactful. After
undergoing the comprehensive treatment processes, the landfill
leachate meets the stringent emission standards outlined in Table 2
of the “Pollution Control Standards for Domestic Waste Landfills”
(GB16889-2008) (Table 10). Similarly, the effluent from the three
sewage systems at the incineration plant complies with the “Water
Quality for Industrial Water for Recycling of UrbanWastewater” (GB/
T19923-2005), which sets the water quality standards for
supplementary water in open circulating water systems. The project
addresses the immediate need for waste and leachate treatment and
contributes to resource conservation and pollution reduction goals. It
stands as a testament to the power of technology and strategic planning
in solving the complex environmental challenges of our time.

6.3 Optimizing integrated landfill leachate
treatment systems

In environmental management, optimizing and modeling an
integrated system for landfill leachate treatment serve as

FIGURE 3
Comprehensive wastewater treatment system by Welle Group Co., Ltd, addressing high-concentration landfill leachate and domestic/low-
concentration sewage through advanced multi-stage processes for effective contaminant removal and safe discharge or reuse.
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cornerstones for enhancing system efficiency, curbing
expenditures, and adhering to environmental norms
(Awewomom et al., 2024). The essence of this optimization
lies in crafting a flexible treatment architecture that
proficiently manages the intricate and diverse makeup of
leachate while remaining nimble to fluctuations in waste
inputs and legislative edicts. A synergy of suitable treatment
modalities—such as UASB, MBR, NF, and RO—complements the
specific leachate profile, ensuring that downstream processing is
primed for optimal treatment (Huang et al., 2024). Operational
parameters like retention time, aeration rate, and chemical
dosing are meticulously fine-tuned to bolster the removal of
pollutants, and real-time monitoring systems are deployed for
on-the-fly adjustments. The model’s sophistication extends to
embodying resource recovery, advocating for repurposing
byproducts like biogas into energy and advocating for the
reuse of treated water.

The modeling facet delves into the assimilation of
comprehensive data, which informs the simulation of the
system’s multifaceted treatment dynamics through advanced
mathematical constructs (Ergene et al., 2022). These models are
enriched with predictive analytics and scenario simulations,
courtesy of machine learning algorithms, paving the way for a
thorough understanding of potential operational outcomes.
Validation through empirical data ensures the model’s fidelity,
while optimization algorithms distill the operational sweet spot
that marries environmental efficacy with economic prudence
(Podlasek, 2023). This ongoing, iterative process is honed by
real-world performance feedback and shifting regulatory
frameworks, propelling landfill leachate treatment toward
unparalleled operational finesse.

7 Challenges and future

In addressing the complex challenges of landfill leachate
treatment, it is crucial to consider the economic, operational, and
emerging contaminant-related hurdles that impede the efficacy of
current systems. This section delves into the multifaceted issues
faced by waste management facilities, highlighting the significant
financial burdens, operational difficulties due to leachate variability,
and the rising threat of emerging contaminants like pharmaceuticals
and microplastics. These challenges necessitate innovative solutions
and strategic approaches to ensure effective, sustainable leachate
management in the future.

7.1 Comprehensive challenges in landfill
leachate treatment: Economic, operational,
and emerging contaminant

The foremost economic challenge in landfill leachate treatment
lies in the high capital and operational costs associated with
advanced treatment systems (El-Saadony et al., 2023).
Technologies such as RO, NF, and MBRs are effective in
removing a wide range of contaminants but require substantial
financial investment. These systems are not only expensive to install
but also incur ongoing costs related to energy consumption,
maintenance, and the need for skilled personnel to operate and
monitor the processes. The financial burden is further amplified by
the variability in leachate composition, which demands adaptable
systems capable of handling fluctuations in pollutant
concentrations. This variability necessitates continuous system
optimization, leading to additional costs associated with adaptive
management and process upgrades (Yadav et al., 2021). Table 11,
which outlines the costs of various representative leachate treatment
technologies, underscores the financial strain on waste management
facilities (Gerald et al., 1998; Randall and Ubay Cokgor, 2000;
Mahamuni and Adewuyi, 2010; Ju-Chang Huang, 2017; Ighalo
et al., 2022; Pérez et al., 2022; Kurniawan et al., 2023). Moreover,
the costs are notmerely limited to initial capital outlays but extend to
operational expenses that accumulate over the system’s lifecycle
(Abdelfattah and El-Shamy, 2024). As such, the economic challenges
of landfill leachate treatment call for innovative approaches to
reduce costs while maintaining treatment efficacy.

Operationally, the treatment of landfill leachate is fraught with
difficulties due to the high variability of leachate quality. This
variability is influenced by factors such as seasonal changes,
waste composition, and the age of the landfill, all of which affect
the concentration and types of pollutants present in the leachate.
The dynamic nature of leachate composition requires continuous
monitoring and adjustment of treatment processes to ensure
consistent performance (Upadhyay et al., 2023). Operators must
continuously monitor and adjust treatment processes, requiring
skilled personnel and sophisticated control systems. The potential
for system failure or suboptimal performance poses significant
environmental risks, including groundwater contamination and
non-compliance with discharge regulations, leading to potential
fines and reputational damage. Addressing these operational
challenges requires a holistic approach that integrates cost-
effective treatment technologies with operational efficiency and

TABLE 10 Emission standards in Table 2 of the ‘pollution control standards
for municipal solid waste landfills’ (GB16889-2008).

Pollutant control item Emission concentration
limit

Color (Dilution times) 40

Chemical Oxygen Demand (COD_Cr)
(mg/L)

100

Biochemical Oxygen Demand (BOD_5)
(mg/L)

30

Suspended Solids (SS) (mg/L) 30

Total Nitrogen (TN) (mg/L) 30

Ammonia Nitrogen (NH₃-N) (mg/L) 25

Total Phosphorus (TP) (mg/L) 3

Fecal Coliform Group (CFU/L) 10,000

Total Mercury (Hg) (mg/L) 0.001

Total Cadmium (Cd) (mg/L) 0.01

Total Chromium (Cr) (mg/L) 0.1

Hexavalent Chromium (Cr6+) (mg/L) 0.05

Total Arsenic (As) (mg/L) 0.1

Total Lead (Pb) (mg/L) 0.1
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environmental stewardship (Kundariya et al., 2021). The
development of more energy-efficient membrane technologies or
the adoption of natural treatment solutions, such as constructed
wetlands, offers promising avenues for reducing operational
difficulties and associated costs (Kataki et al., 2021). For instance,
the development of more energy-efficient membrane technologies
or the adoption of natural treatment solutions, such as constructed
wetlands, offers promising avenues for reducing operational
difficulties and associated costs. Moreover, embracing circular
economy principles, where treated leachate is reused for
industrial or agricultural purposes, can help mitigate operational
challenges while contributing to sustainability goals. (Bakan et al.,
2022; Das et al., 2023).

The emergence of new contaminants, such as pharmaceuticals,
personal care products, microplastics, and other micropollutants,
presents a significant challenge to traditional wastewater and
landfill leachate treatment systems (Kumar et al., 2023). These
substances, often called emerging contaminants (ECs), have
become a focal point for environmental scientists and engineers
due to their potential to bypass conventional treatment processes
and enter the aquatic environment, posing risks to wildlife and
human health (Ahmed et al., 2021; Morin-Crini et al., 2021).
Traditional wastewater and landfill leachate treatment systems
were designed to remove organic matter, nutrients, and major
pollutants (Lindamulla et al., 2022). However, these systems often
lack the specificity to capture and degrade ECs effectively, many of
which are designed to be biologically active and resistant to
degradation (Teng and Chen, 2023). Pharmaceuticals, for
example, are engineered to resist metabolic breakdown to
ensure their efficacy, making them persistent in the
environment (González-González et al., 2022). Microplastics,
conversely, are resistant to biodegradation due to their synthetic
polymer composition, accumulating in water bodies and
potentially entering the food chain (Huang et al., 2021). The
presence of ECs in water and leachate streams can significantly
reduce the treatment efficiency of these systems (Rout et al.,
2021b). Certain contaminants can inhibit microbial activity in
biological treatment processes, reducing the degradation rate of

organic pollutants and altering the microbial community structure
(Aragaw, 2021). For example, antibiotics in wastewater can inhibit
the growth of bacteria critical to the biological treatment processes,
leading to a decrease in overall treatment efficiency (Zhu et al.,
2021). Moreover, some ECs can form complex compounds with
other elements in the wastewater, making them more difficult to
remove and requiring additional treatment stages or more
advanced treatment technologies (Shahid et al., 2021). Notably,
based on the environmental risks and regulatory status of
chemicals, and following technical feasibility and socioeconomic
assessments, the Ministry of Ecology and Environment of China
published the latest list of key controlled emerging contaminants
in 2023 (Table 12) (China, 2022). The newly listed contaminants
are now subject to environmental risk management measures,
including those related to their manufacture, use, import, or
export. Some contaminants have transition periods or
exemptions. This initiative highlights the government’s
commitment to addressing emerging contaminants and urges
relevant departments to take action to prevent environmental
and public health risks. For landfill leachate treatment, the
presence of these new pollutants complicates the process, often
requiring upgrades or advanced technologies to effectively manage
them. Proactively addressing these contaminants can improve
treatment efficiency and reduce environmental contamination
risks. It is worth mentioning that, Per- and polyfluoroalkyl
substances (PFAS) are synthetic chemicals widely used for their
water- and grease-resistant properties, found in various consumer
products and industrial applications (Venkatesh Reddy et al.,
2024). Their strong carbon-fluorine bonds make them highly
persistent and resistant to conventional water treatment
methods, posing significant challenges for removal (Jin et al.,
2021). Traditional processes like coagulation, sedimentation,
and standard filtration are largely ineffective against PFAS,
necessitating the use of advanced technologies (Nguyen and Le
Tran, 2024). Methods such as granular activated carbon
adsorption, ion exchange, and high-pressure membrane
filtration (nanofiltration and reverse osmosis) show varying
degrees of success but often involve high operational costs and
complex waste management (Lee et al., 2022). Emerging
technologies like electrochemical treatment, plasma-based
processes, and combined treatment approaches offer potential
but require further development and investment (Blotevogel
et al., 2023). The inclusion of PFAS-specific treatments
increases operational complexity and costs for water treatment
facilities, which must adapt to stringent regulatory standards.
Research continues to focus on more efficient and cost-effective
removal technologies to address the persistent nature of PFAS and
protect public health and the environment.

The impact of emerging contaminants on the efficiency of
wastewater and landfill leachate treatment systems presents a
complex challenge that requires immediate and sustained
attention. While these contaminants pose significant
environmental and public health risks, they also provide an
impetus for innovation in treatment technologies and strategies.
Addressing this challenge will require a combination of
technological advancement, regulatory action, public education,
and international cooperation to ensure the safety and

TABLE 11 Costs of representative leachate treatment technologies (Gerald
et al., 1998; Randall andUbayCokgor, 2000;Mahamuni and Adewuyi, 2010;
Huang, 2017; Ighalo et al., 2022; Pérez et al., 2022; Kurniawan et al., 2023).

Treatment method Approximate cost (/m³ of treated
wastewater)

Adsorption 0.038–51,120 USD
The main cost is depended on the adsorbent
Adsorbent Cost Performance:
- Very cheap: <1 $/mol chemical species
- Most adsorbents: 1–200 $/mol chemical species
- Very expensive: >200 $/mol chemical species

Air-stripping 0.0134 USD

Reverse osmosis 0.5 USD

Biological nutrient removal 0.615USD

Ultrafiltration 0.69 USD

Advanced oxidation
processes

US/UV/O3: 23.717 USDUS/UV/H2O2:
17.216 USDUS/UV: 6.821 USD

Frontiers in Environmental Science frontiersin.org20

Wang and Qiao 10.3389/fenvs.2024.1439128

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2024.1439128


TABLE 12 2023 List of Key Controlled New Pollutants posted by Ministry of Ecology and Environment of the People’s Republic of China (China, 2022).

No. New pollutant name CAS no. Main environmental risk control measures

1 Perfluorooctane sulfonic acid (PFOS) and its salts and perfluorooctane
sulfonyl fluoride

1763–23–1
307–35–7
2795–39–3
29,457–72–5
29,081–56–9
70,225–14–8
56,773–42–3
251,099–16–8

1. Prohibit production.
2. Prohibit processing and use (except for certain uses such as firefighting
foam until 31 Dec 2023).

3. Conduct mandatory clean production audits for companies using PFOS
for firefighting foam.

4. Require environmental management clearance for import/export until
1 Jan 2024.

5. Manage as hazardous waste if no longer in use or declared as waste
6. Establish soil pollution prevention measures for enterprises involving

PFOS.

2 Perfluorooctanoic acid (PFOA) and its salts and related compounds — 1. Prohibit new production facilities.
2. Prohibit production and use (except for certain uses in semiconductor
manufacturing, photography coatings, protective textiles, invasive
medical devices, and other specified uses).

3. Conduct mandatory clean production audits for companies using
PFOA.

4. Require environmental management clearance for import/export.
5. Manage as hazardous waste if no longer in use or declared as waste
6. Establish soil pollution prevention measures for enterprises involving

PFOA.

3 Decabromodiphenyl ether 1163–19–5 1. Prohibit production and use (except for certain uses in textiles, plastic
casings, polyurethane foam until 31 Dec 2023).

2. Conduct mandatory clean production audits for companies using
decabromodiphenyl ether.

3. Require environmental management clearance for import/export until
1 Jan 2024.

4. Manage as hazardous waste if no longer in use or declared as waste
5. Establish soil pollution prevention measures for enterprises involving

decabromodiphenyl ether

4 Short-chain chlorinated paraffins 85,535–84–8
68,920–70–7
71,011–12–6
85,536–22–7
85,681–73–8
108,171–26–2

1. Prohibit production and use (except for certain uses in rubber, leather,
lubricants, decorative lights, paints, adhesives, metal processing, and
flexible PVC until 31 Dec 2023).

2. Conduct mandatory clean production audits for companies using short-
chain chlorinated paraffins.

3. Require environmental management clearance for import/export until
1 Jan 2024.

4. Manage as hazardous waste if no longer in use or declared as waste
5. Establish soil pollution prevention measures for enterprises involving

short-chain chlorinated paraffins

5 Hexachlorobutadiene 87–68–3 1. Prohibit production, use, and import/export.
2. Ensure compliance with emission standards for related enterprises.
3. Manage as hazardous waste if no longer in use or declared as waste
4. Establish soil pollution prevention measures for enterprises involving

hexachlorobutadiene

6 Pentachlorophenol and its salts and esters 87–86–5
131–52–2

27,735–64–4
3772–94–9
1825–21–4

1. Prohibit production, use, and import/export
2. Manage as hazardous waste if no longer in use or declared as waste
3. Establish soil pollution prevention measures for enterprises involving

pentachlorophenol

7 Trifluralin 115–32–2
10,606–46–9

1. Prohibit production, use, and import/export.
2. Manage as hazardous waste if no longer in use or declared as waste

8 Perfluorohexane sulfonic acid (PFHxS) and its salts and related compounds — 1. Prohibit production, use, and import/export.
2. Manage as hazardous waste if no longer in use or declared as waste

9 Dechlorane Plus and its isomers 13,560–89–9
135,821–03–3
135,821–74–8

1. Prohibit production, use, and import/export from 1 Jan 2024
2. Manage as hazardous waste if no longer in use or declared as waste

10 Dichloromethane 75–09–2 1. Prohibit production of paint removers containing dichloromethane
2. Prohibit use in cosmetics
3. Ensure compliance with volatile organic compounds content limits and
emission standards.

4. Conduct regular environmental risk assessments.
5. Establish soil pollution prevention measures for enterprises involving

dichloromethane.
6. Strictly control soil pollution risks

(Continued on following page)
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sustainability of water resources in the face of emerging
environmental threats.

7.2 Future research

Embracing the future of landfill leachate treatment demands a
multi-faceted approach: pioneering new materials for adsorption
and catalysis, harnessing microbial genetic engineering for targeted
bioremediation, and committing to process intensification for
enhanced efficiency. These innovative pathways herald a new era
of sustainability and effectiveness in managing complex waste
challenges.

7.2.1 New materials for adsorption and catalysis
Future research in landfill leachate treatment increasingly

focuses on developing new materials for adsorption and catalysis,
driven by the need for more efficient, cost-effective, and sustainable
treatment solutions. These materials are at the forefront of
addressing complex pollutants, including emerging contaminants
that traditional treatment methods struggle to remove. Advanced
adsorbents, such as modified biochars, nanocomposites, and metal-
organic frameworks (MOFs), are being explored for their high
surface area, porosity, and tunable surface chemistry, which can
significantly enhance the adsorption of pollutants (Zango et al.,
2020). For instance, biochars produced from agricultural waste can
be engineered at the nano-scale to improve their adsorption capacity
for specific contaminants like pharmaceuticals and heavy metals
(Bhandari et al., 2023). Catalytic materials are equally crucial for
breaking down pollutants through AOPs. New photocatalysts,
including quantum dots and graphitic carbon nitride (g-C3N4),
offer the potential for more efficient light absorption and
utilization, enabling the degradation of contaminants under
visible light and thus reducing energy consumption (Wang et al.,
2020). The development of these materials aims to enhance the
efficiency and specificity of contaminant removal and minimize
secondary pollution and the use of harsh chemicals in the treatment

process (Ahmed et al., 2021). Research also focuses on the
regeneration and reuse of these materials to ensure the
sustainability of the treatment processes (Baskar et al., 2022).
Innovative approaches to regenerate spent adsorbents and
catalysts, such as thermal, chemical, and ultrasonic methods, are
being studied to extend their life and reduce operational costs
(Ferella, 2020). Overall, exploring new materials for adsorption
and catalysis represents a dynamic and promising area of landfill
leachate treatment, offering potential breakthroughs in efficiency,
sustainability, and tackling a broader spectrum of pollutants.

7.2.2 Microbial genetic engineering
Microbial genetic engineering stands at the forefront of

biotechnological innovations in landfill leachate treatment (Saeed
et al., 2022). The natural biodegradation processes employed by
microorganisms offer a sustainable and efficient means of removing
organic pollutants from leachate (Pisharody et al., 2022). However,
leachate’s complex and toxic nature often limits the effectiveness of
native microbial communities (Nimonkar et al., 2022). Genetic
engineering presents an opportunity to overcome these
limitations by enhancing the metabolic capabilities of
microorganisms, enabling them to degrade a wider array of
contaminants, including recalcitrant and emerging pollutants
(Haripriyan et al., 2022). The manipulation of microbial genomes
involves introducing genes responsible for producing specific
enzymes that can break down complex molecules or modifying
existing metabolic pathways to increase their efficiency and
specificity (Michalska et al., 2020). This can lead to the creation
of microbial strains capable of rapid pollutant degradation, reduced
biomass production, and enhanced tolerance to high pollutant
concentrations and toxic substances (Maqsood et al., 2023).
Ongoing research focuses on identifying key enzymatic pathways
for the degradation of specific contaminants, developing genetic
tools for efficient genome editing, and integrating genetically
engineered microbes into existing treatment processes (Saravanan
et al., 2022). Additionally, the ecological safety of releasing
genetically modified organisms into environmental treatment

TABLE 12 (Continued) 2023 List of Key Controlled New Pollutants posted byMinistry of Ecology and Environment of the People’s Republic of China (China,
2022).

No. New pollutant name CAS no. Main environmental risk control measures

11 Chloroform 67–66–3 1. Prohibit production of paint removers containing chloroform
2. Ensure compliance with volatile organic compounds content limits and
emission standards.

3. Conduct regular environmental risk assessments.
4. Establish soil pollution prevention measures for enterprises involving

chloroform.
5. Strictly control soil pollution risks

12 Nonylphenol 25,154–52–3
84,852–15–3

1. Prohibit use as pesticide adjuvants.
2. Prohibit use in the production of nonylphenol ethoxylates.
3. Prohibit use in cosmetics

13 Antibiotics — 1. Strictly enforce prescription requirements for antibacterial drugs.
2. Manage antibiotic residues as hazardous waste.
3. Ensure compliance with emission standards for pharmaceutical

industries

14 Phased-out group (hexabromocyclododecane, chlordane, mirex,
hexachlorobenzene, DDT, α-hexachlorocyclohexane, β-
hexachlorocyclohexane, lindane, endosulfan as a raw material and its
isomers, and polychlorinated biphenyls)

— 1. Prohibit production, use, and import/export.
2. Manage as hazardous waste if no longer in use or declared as waste.
3. Strictly control soil pollution risks according to soil pollution risk

management standards
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systems is a critical consideration, necessitating rigorous
containment strategies and risk assessments.

7.2.3 Process enhancement
Process intensification in landfill leachate treatment aims to enhance

the efficiency and effectiveness of treatment processes by integrating and
optimizing physical, chemical, and biological methods. The goal is to
achieve more with less—reducing the footprint, energy consumption,
and operational costs of treatment systems while maximizing pollutant
removal efficiency (Cardoso et al., 2021). This can involve the
development of novel reactor designs that facilitate enhanced contact
between the leachate and treatment agents, using AOPs to break down
complex organic molecules, and integrating membrane technologies for
selective pollutant removal and water recovery (Titchou et al., 2021).
Process intensification can leverage the synergies between different
treatment modalities, such as combining adsorption processes with
biodegradation to handle a broader range of contaminants more
effectively.

Future research directions include exploring hybrid treatment
systems that integrate emerging materials for adsorption and
catalysis with genetically engineered microbial processes,
developing energy-efficient AOPs, and optimizing process
parameters through advanced modeling and control strategies.
The aim is to develop compact, modular treatment systems that
can be easily adapted to varying leachate compositions and volumes,
ensuring robust and sustainable leachate management strategies for
the future.

7.2.4 Circular economy and sustainability in future
landfill leachate treatment

The circular economy and sustainability principles are
increasingly influencing the development and adoption of future
landfill leachate treatment technologies, steering them towards more
environmentally friendly and resource-efficient solutions (Bandala
et al., 2021). This shift is a response to the growing awareness of the
environmental impacts of waste management practices and the
urgent need to transition towards more sustainable models of
production and consumption. The role of circular economy
concepts in shaping future leachate treatment technologies is
profound, focusing on waste minimization, resource recovery,
and the closed-loop reuse of materials and water (Yusuf et al., 2020).

At the heart of the circular economy is reducing waste and
preventing pollution (Dincă et al., 2022). Future landfill leachate
treatment technologies are being designed with a preventative
approach, aiming to minimize the generation of leachate and its
associated contaminants at the source (Bandala et al., 2021). This
can be achieved through better landfill design, including
impermeable liners and covers and waste pre-treatment to reduce its
leachate-generating potential. By addressing the problem at its source,
these technologies contribute to a more sustainable and less resource-
intensive waste management system. Another cornerstone of the
circular economy is the recovery and reuse of resources, which plays
a significant role in shaping leachate treatment technologies (Puntillo
et al., 2021). Emerging technologies are not only aimed at treating
leachate to meet environmental discharge standards but also at
recovering valuable resources from it (Li and Liu, 2021). Nutrient
recovery, for example, can transform leachate into a source of nitrogen
and phosphorus for agricultural use (Kurniawan et al., 2021b).

Similarly, advanced treatment processes can recover water for
irrigation or industrial applications, contributing to water
conservation and reducing the demand for freshwater resources
(Meese et al., 2022). The recovery of energy in the form of biogas
from the anaerobic treatment of leachate further underscores the
potential of these technologies to contribute to a more sustainable
and energy-efficient waste management system (An et al., 2023). The
circular economy encourages a systemic view of waste management,
promoting the integration of leachate treatment technologies within
broader waste and water management systems (Smol et al., 2020).
Future technologies will likely be characterized by their ability to
integrate with other treatment and recovery processes, creating
synergies that enhance overall efficiency and sustainability (Kehrein
et al., 2020). For example, integrating leachate treatment with solid
waste management processes can facilitate the co-treatment of organic
waste and leachate, optimizing resource recovery and minimizing
environmental impacts (Mishra et al., 2023).

Collectively, the influence of circular economy and sustainability
principles on the future of landfill leachate treatment technologies is
transformative, driving innovation towards solutions that are
effective in treating leachate and minimizing waste, recovering
resources, and integrating seamlessly into a circular and
sustainable waste management framework. As these principles
continue to gain traction, they will undoubtedly shape the
development of more sustainable, efficient, and integrated
leachate treatment technologies, aligning waste management
practices with the broader goals of environmental sustainability
and resource conservation.

8 Conclusion

The environmental impact of untreated leachate is significant,
with potential contamination of groundwater, surface water, and
overall ecosystem health, necessitating robust and dynamic
treatment solutions.

This comprehensive review of landfill leachate treatment
technologies presents a global perspective, focusing on the
physicochemical properties of leachate, regulatory frameworks, and
specific country examples. The study highlights the complex
composition of landfill leachate, which includes a mix of organic and
inorganic pollutants, heavy metals, and xenobiotic compounds. The
review also underscores the importance of global regulatory frameworks
in shaping landfill leachate management practices. International
agreements, such as the Basel Convention and the Stockholm
Convention, along with national regulations from countries like the
United States, China, India, and Brazil, are setting standards and
encouraging the adoption of advanced treatment technologies.

Key findings emphasize the evolution of conventional and
advanced treatment technologies. Traditional methods such as
physical, chemical, and biological treatments remain
fundamental. Physical methods, including sedimentation and
membrane filtration, effectively remove suspended solids and
larger organic molecules. Chemical treatments like coagulation-
flocculation and advanced oxidation processes are crucial for
targeting dissolved pollutants and heavy metals. Biological
treatments utilize microbial processes to degrade organic
pollutants and are particularly effective for nutrient removal.
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Advanced treatment technologies, including MBRs, NF, RO, and
AOPs), provide higher efficiency and are essential for meeting
stringent regulatory standards. These technologies can remove a
broader range of contaminants, including emerging pollutants such
as pharmaceuticals and microplastics, which traditional methods
may not adequately address. Economic considerations are also
crucial in the treatment process. The high capital and operational
costs of advanced leachate treatment systems pose significant
challenges. Technologies such as RO, NF, and MBR are effective
but require substantial investment in equipment, maintenance, and
energy consumption. Addressing these economic challenges
necessitates the development of cost-effective, energy-efficient
solutions and the integrating of resource recovery practices, such
as biogas production and water reuse, to offset operational costs. A
case study from Changsha City illustrates the practical application
and effectiveness of a comprehensive treatment system that
integrates various technologies. This example provides valuable
insights into designing integrated systems capable of meeting
diverse regulatory requirements and addressing complex
environmental challenges.

In conclusion, the continuous improvement of landfill leachate
treatment technologies is vital. Adopting innovative and sustainable
practices is essential to reduce the environmental footprint of
landfills. Future research should focus on developing cost-
effective, energy-efficient solutions and exploring emerging
technologies for better pollutant removal. By emphasizing a
global perspective and integrating multiple treatment processes,
this review significantly contributes to advancing sustainable
waste management practices and protecting environmental health.
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