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Multi-view real-life images taken by eco-meteorological observation stations can
provide high-throughput visible light (RGB) image data for vegetationmonitoring,
but at present, there are few research reports on the vegetationmonitoring effect
of multi-view images and its difference from satellite remote sensing monitoring.
In this study, with the underlying surface mixed with karst bare rock and
vegetation as the research object, the far-view images and near-view images
of 4 eco-meteorological stations were used to compare the segmentation effect
of machine learning segmentation algorithm on images from far and near views,
analyze the vegetation growth characteristics of visible images from far and near
views, and investigate the differences between multi-view images and satellite
remote sensing monitoring. The results showed that: (1) machine learning
algorithm was suitable for green vegetation segmentation of multi-view
images. The segmentation accuracy of machine learning algorithm for a near
view imagewas higher than that for a far view image, with an accuracy rate of over
85%. Images captured under weak light conditions could obtain higher
vegetation segmentation accuracy, and the proportion of bare rocks had no
obvious influence on image segmentation accuracy. (2) The interannual variation
trends of vegetation presented by different RGB vegetation indexes varied greatly,
and the interannual variation difference of vegetation from a far view was greater
than that from a near view. NDYI and RGBVI showed good consistency in
vegetation changes from far and near views, and could also better show the
interannual differences of vegetation. From the perspective of intra-year
variation, various RGB vegetation indexes showed seasonal changes in
different degrees. The vegetation in karst areas grew well from April to
October, and the RGB vegetation indexes reached the peaks from May to
June at most stations. The seasonal distribution of vegetation indexes were
more obvious from a far view. (3) There was significant difference in the
correlation between ground-based multi-view RGB vegetation indexes and
NDVI of different satellites. The correlation with FY3D NDVI was weaker than
that with MODIS NDVI. Most RGB vegetation indexes from a far view had a good
correlation with MODIS NDVI, and the indexes with significant differences (P <
0.05) accounted for 70.5%. The correlation of most RGB vegetation indexes with
FY3D NDVI and MODIS NDVI from a far view was better than that from a near
view, and there was a significant difference in the RGB indexes with the highest
correlation with NDVI of the 2 satellites from both far and near views in different
stations. The machine learning algorithm combined with NLM filtering
optimization had great advantages in multi-view image segmentation.
Different RGB vegetation indices had different responses to vegetation growth
changes, which may be related to the band composition of vegetation index and
vegetation morphology and location. The image shooting mode of satellite was
closer to the far-view Angle, so the correlation and fitting degree between
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satellite NDVI and far-view NDVI were higher. The research results provided
theoretical basis and technical support for improving the ability of multi-view
remote sensing monitoring of vegetation growth in karst ecological station.
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ground-based remote sensing, visible light image, image segmentation, vegetation
growth, multiple views

Highlights

• Machine learning algorithms are suitable for green vegetation
segmentation of ground-based multi-view visible light images
obtained at ecological meteorological stations.

• The vegetation indexes of ground-based visible light images
from the far view showmore significant seasonal variation and
interannual difference.

• The ground-based vegetation growth monitoring results from
the far view are better consistent with those from the
satellite scale.

1 Introduction

In recent years, ecological meteorological observation stations
have been widely built, and many of these stations are equipped with
multi-view cameras to perform real-life shooting, which makes
ground-based multi-view RGB images normalized data. The
monitoring objects cover a wide range, including rice, corn,
sugarcane and other crops, as well as natural vegetation carriers
such as forests and grasslands. As a representative of the application
of ground-based remote sensing, multi-view images obtained by
ecological meteorological observation stations can overcome the
influence of complex weather such as clouds and rain on the image
quality to a great extent, and meanwhile, ground-based remote
sensing can effectively capture detailed images of ground objects
and realize high-throughput time sequence observation of plant
growth. As an important part of the space-sky-ground integrated
monitoring network, it effectively makes up for the shortcomings of
satellite remote sensing and unmanned aerial vehicle
remote sensing.

The image data obtained by carrying a visible light (RGB) camera
system under facility conditions can effectively monitor vegetation
growth information (Zhao et al., 2021), including growth period (Liu
et al., 2020; Lu et al., 2011; Wu, 2014; Wu et al., 2018), coverage
(Campillo et al., 2008; Purcell, 2000; Yang et al., 2018), growth (Han
et al., 2019; Zhou et al., 2015) and nitrogen (Chen et al., 2017; Shi et al.,
2020), and the research objects aremainly crops and pasture. The basis
and premise of quantitative monitoring and evaluation of vegetation
based on multi-view RGB images segmentation refers to the division
of images containing complex spatial distribution information into
different regions with specific semantic labels (Min et al., 2020), such
as vegetation and soil. At present, many image segmentation methods
have been developed, such as region (Liu et al., 2021), feature space
clustering (Li et al., 2020), edge detection (Ren et al., 2004), histogram
thresholding (Chen et al., 2011) and fuzzy technique (Ma et al., 2008).
With the rapid development of computer technology, deep learning
(Li et al., 2021) and artificial neural network (Ma et al., 2020) have also

been applied to color image segmentation. Based on different color
channels of image RGB after segmentation, various indexes have been
derived for dynamicmonitoring of vegetation growth (Sulik and Long,
2016; Guijarro et al., 2011; Pérez et al., 2000).

Karst is one of the four fragile ecological systems alongside loess,
plateau and cold desert. It is widely distributed in southwestern
China, where rocky desertification is prominent. Rocky
desertification refers to a form of land degradation characterized
by the destruction of surface vegetation, severe soil erosion and
extensive exposure of bedrock due to human activities in a specific
natural environment background (Yuan, 2008). The special rocky
desertification landscape makes karst areas barren with shallow soil
layers, and the vegetation is mainly shrubs, herbaceous plants and
grasslands, which are sensitive to climate change and meteorological
disasters and weak in disaster bearing capacity (Chen et al., 2022).
Due to the severe constraints of rocky desertification on social and
economic development and the improvement of people’s living
conditions, karst areas are a key focus for government
departments to carry out rocky desertification control, vegetation
protection and restoration. Vegetation growth is an important
indicator determining the severity of rocky desertification (Zhou
and Zhang, 1996; Qiu et al., 2021), and it is of great significance to
carry out vegetation monitoring and evaluation for complex habitats
in karst areas (Li H. et al., 2024; Li K. et al., 2024). At present, the
application of ground-based visible images is mostly limited to
images with vertical or approximately-vertical views (The line of
sight of the camera is perpendicular or nearly perpendicular to the
ground). For example, aiming at the karst bare rock and vegetation
mixed underlying surface, scholars have studied applicable
segmentation algorithms and growth monitoring models for RGB
images of vegetation canopy obtained from vertical view, and the
machine learning algorithm has been proved to be applicable (Chen
et al., 2023), but this study only used images from near views from
ecological meteorological stations. Usually, ecological
meteorological stations will be equipped with cameras with
multiple views, both in far and near views, but there are few
reports about the comparison of images from different views.
Moreover, the results of remote sensing monitoring need to be
verified on the ground, and photos taken in the field investigation
are also one of the important evidences. Multi-view images obtained
by the ecological meteorological stations are equivalent to photos
taken in the field investigation by manpower, but there is no relevant
report on the similarities and differences between these images and
satellite remote sensing monitoring. On the other hand, clarifying
the differences between them can provide important reference for
the construction of ecological meteorological observation stations.

In this study, with typical vegetation dominated by shrubs
and herbaceous plants under mixed bedrock conditions in
Guangxi karst areas as the research object, multi-view canopy
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RGB images obtained by ecological meteorological observation stations
were used to compare the effectiveness of machine learning
segmentation algorithm for multi-view image segmentation in karst
areas, and investigate the vegetation growth trends characterized by
images from far and near views, based on which the difference between
multi-view images and satellite remote sensing monitoring was
analyzed, aiming to provide decision-making reference for
quantitative application of multi-view images obtained by ecological
meteorological stations in karst areas and site selection and construction
of ecological meteorological stations.

2 Data and methods

2.1 Data

2.1.1 General situation of study area
Located in Guangxi Zhuang Autonomous Region in the south of

China (Figure 1), the study area belongs to the south subtropical
humid climate zone, where Karst landforms are widely distributed,
covering an area of 8,331,000 hm2, in which rocky desertification
accounts for 18.4%. The poor soil and serious natural disasters in these
areas have a great impact on vegetation ecological protection and
economic development, making the areas poor and lagged behind
in China.

2.1.2 Multi-view RGB images
The multi-view image data used in the study was collected

from the 4 ecological meteorological observation and test stations

built in karst areas (Figure 1), namely, Mashan Station
(23°39′28.0″ N, 108°19′17.0″ E), Huanjiang Station
(24°44′26.0″ N, 108°19′22.0″ E), Pingguo Station (23°23′27.9″
N, 107°23′21.0″ E) and Du’an Station (24°0′16.9″N, 107°59′3.00″
E), respectively, all of which carried out full-scale and multi-
gradient stereoscopic observation of vegetation andmeteorological
elements in karst areas in themode of one main station with one or two
substations. The main station adopted the far view and the sub-stations
adopted the near view. The camera model was ZQZ-TIM, and it used a
1/1.8 inch CMOS sensor with the total pixels of about 6.44 million,
aperture value of F1.5-4.3, 30 times optical zoom, 16 times digital zoom,
wide dynamic effect, plus image noise reduction function, all of which
enable it to better display day/night images. In this study, image
sequences from both the far view and near view were selected for
each test station. Due to differences in the construction time of different
test stations, the image sequence time was Mashan (January
2018–December 2021), Huanjiang (January 2020–December 2021),
Du’an (January 2021–December 2021) and Pingguo (January
2021–December 2021).

2.1.3 Satellite remote sensing images
FY3D NDVI: From Fengyun-3 satellite series products, with a

spatial resolution of 250 m, in a time range from January 2021 to
October 2023.

MODIS NDVI: From the MODIS vegetation indexes products,
developed by the NASA MODIS land product group based on
statistical algorithms, with spatial resolutions of 250, 500, and
1,000 m, respectively, in a time range from January 2021 to
October 2023.

FIGURE 1
Distribution of karst eco-meteorological stations in the study area.
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2.2 Methods

2.2.1 Multi-view RGB image segmentation
For the extraction of vegetation information on the

underlying surface mixed with bare rocks and vegetation in
karst areas, the superiority of machine learning method has
been confirmed in our previous study (Chen et al., 2023). In
this method, K-means unsupervised clustering is used to generate
training samples, and then the filtered clustering samples are
used as the training samples of Support Vector Machine (SVM)
vegetation-background classifier, and finally, the background-
plant segmented images are filtered by Non-Local Mean (NLM)
to remove misdivided edge pixels. The specific process is shown
in Figure 2.

2.2.1.1 K-means clustering based on image features
K-means algorithm uses distance as a similarity evaluation

index, and the closer the distance between two objects, the
greater their similarity. As far as the algorithm is concerned, a
category is composed of objects with close distance, and compact
and independent categories are taken as the final iterative
convergence objects. Considering that the color information
contained in the scene can be roughly divided into 3 categories
(plant category, background highlight category and background
shadow category), the minimization of the sum of squares of the
distances from the RGB values of pixel points to the RGB values of
pixel points in the center of a category is taken as the optimized
objective function.

2.2.1.2 Segmentation of image sequences based on SVM
SVM is a pattern recognition method based on statistical

learning theory. The main idea is to map a low-dimensional
unclassifiable vector to a high-dimensional space, and establish
a maximum-interval hyperplane in the high-dimensional space,
so as to maximize the distance between the two parallel
hyperplanes closest to the plane on both sides of the plane.
SVM has certain advantages in small sample, nonlinear and
high-dimensional pattern recognition. Taking 35% pixels
closest to a category center in the K-means clustering results

as the SVM training sample data, 24 features were extracted
from the training samples to form classification feature
vectors (Table 1).

2.2.1.3 NLM filtering optimization
After processing in (1) and (2), the automatic time sequence

image segmentation was completed. Illumination and imaging
quality make it easy to have false segmentation at the edge of
vegetation, which affects further morphological analysis and
feature extraction. In order to eliminate the false segmentation of
leaf edge, NLM filtering algorithm was introduced to further refine
the plant segmentation results. The NLM operator can protect long
and narrow structures similar to vegetation leaves, and it can
eliminate pixel segmentation ambiguity at the edge of vegetation
leaves by enhancing non-adjacent pixels mutually on the same
structure within a certain neighborhood range. Specifically, an
anisotropic structural-aware filter was adopted to realize NLM
function, as shown in Formula 1.

E C( ) � ∑
p

∑
q∈A p( )

Kpq C p( ) − C q( )( )2 (1)

where,C is the classification function;A(p) is the 9 × 9 neighborhood
window q∈A(p) near point p; and Kpq is the weight coefficient. The
specific forms are shown in Formulas 2, 3.

Kpq � 1
2

e
− p−qT( )∑−1

p

p−q( )[ ]
+ e

− p−qT( )∑−1
q

p−q( )[ ]⎧⎪⎪⎪⎨⎪⎪⎪⎩
⎫⎪⎪⎪⎬⎪⎪⎪⎭ (2)

∑
p

� 1
A| | ∑

p′∈A p( )
∇I p′( )∇I p′( )T (3)

where, ∇I(p) = {∇xI(p), ∇yI(p)}
T is the gradient vectors in x and y

directions of point p. The anisotropic structural-aware filter
defines the possibility that point p and q are in similar
structures in an image. If p and q are in the same structure

FIGURE 2
Flow chart of vegetation segmentation based on
machine learning.

TABLE 1 Feature description of plant pixel classification.

Features description Number

Color features RGB 3

YUV 3

HSV 3

XYZ 3

L*a*b 3

CMY 3

Texture features Gray level co-occurrence matrix 1

9 × 9 window texture energy 1

Partial Fourier transform (LFT) 1

Discrete cosine transform (DCT) 1

Gradient features x direction 1 step gradient 1

y direction 1 step gradient 1
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(such as leaves in the image), the calculated value of Kpq will be
large, and even if p and q are not first-order adjacent pixels, they
will also reinforce each other.

2.2.1.4 Evaluation of image segmentation accuracy
In the images, 3 kinds of ground objects, such as grass, soil

and bare rock, were identified manually, which was used as
reference for segmentation results, and then the accuracy of
classified images obtained before and after filtering by the
above three segmentation algorithms was evaluated. The
calculation formulas of accuracy evaluation indexes Qseg and
Sr are shown in Formulas 4, 5.

Qseg �
∑i�m
i�0

∑j�n
j�0

A p( )ij ∩ B p( )ij( )
∑i�m
i�0

∑j�n
j�0

A p( )ij ∪ B p( )ij( )
(4)

Sr �
∑i�m
i�0

∑j�n
j�0

A p( )ij ∩ B p( )ij( )
∑i�m
i�0

∑j�n
j�0

B p( )ij
(5)

where, A is the foreground (green vegetation) pixel set (p = 255) or
background (information other than green vegetation) pixel set
(p = 0) of a segmented image; B is the foreground pixel set (p = 255)
or background pixel set (p = 0) obtained by manual field labeling;
m and n are the number of rows and columns of the image,
respectively; and i and j are corresponding coordinates,
respectively. The larger the values of Qseg and Sr, the higher the

segmentation accuracy. Qseg represents the overall consistency of
the background and foreground of the segmentation results, while
Sr only represents the consistency of the foreground
segmentation results.

2.2.2 Calculation of RGB image vegetation indexes
After segmenting the green vegetation in a RGB image, the R, G

and B color channel values of each pixel in the green vegetation
region were extracted, and then, all pixels in this region were
averaged. Next, the visible light indexes of green vegetation were
calculated according to the formula in Table 2.

2.2.3 Preprocessing of satellite remote
sensing data

FY3D NDVI: Based on the FY3D NDVI product with a
resolution of 250 m downloaded from Fengyun Satellite Remote
Sensing Data Service Network (http://satellite.nsmc.org.cn/
portalsite/default.aspx), monthly NDVI data sequences were
generated by the maximum value composites method (MVC).
The FY3D NDVI data sequences of corresponding positions of
the 4 ecological stations were extracted, and the sequence time
periods were consistent with the image sequences of the
ecological stations.

MODIS NDVI: Based on the MOD13Q1 16d NDVI products
with a resolution of 250 m downloaded by NASA official website
(https://ladsweb.modaps.eosdis.nasa.gov/search/), the monthly
NDVI data sequences were generated by the MVC method. The
MODISNDVI data sequences of corresponding positions of the four
ecological stations were extracted, and the sequence time periods
were consistent with the image sequences of the ecological stations.

TABLE 2 RGB image vegetation index.

Vegetation index Formula Full name and literature

NDYI NDYI = (G-B)/(G+B) Sulik and Long (2016)

VARI VARI = (G-R)/(G+R-B) Vegetation atmospherically resistant index
(Gitelson et al., 2002)

MGRVI MGRVI = (g2-r2)/(g2+r2) Modified green red vegetation index
(Bendig et al., 2015)

RGBVI RGBVI = (g2-br)/(g2+br) Red green blue vegetation index
(Bendig et al., 2015)

NGRDI NGRDI = (G-R)/(G+R) Normalized green red vegetation index
(Pérez et al., 2000)

CIVE CIVE = 0.441r-0.811g+0.385b+18.78745 Color index of vegetation extraction
(Kataoka et al., 2003)

VEG VEG = g/(r0.667b0.333) Vegetative index
(Hague et al., 2006)

DGCI DGCI = (H+S+I)/3 Dark green color index
(Karcher and Michael, 2003)

ExG ExG = 2g-r-b Excess green index
(Woebbecke et al., 1995)

ExR ExR = 1.4r-g Excess red index
(Meyer et al., 1999)

ExGR ExGR = 3g-2.4r-b Excess green index minus excess red index
(Meyer and Neto, 2008)

Notes: R, G and B are the red, green and blue band values; r, g and b are the normalized red, green and blue band values, respectively.
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2.2.4 Comparison of differences among remote
sensing vegetation monitoring at multiple scales

The Pearson correlation coefficients between FY3D NDVI,
MODIS NDVI and vegetation indexes of multi-view RGB images
were calculated by statistical methods, and then the significance tests
were performed, so as to analyze the differences between satellite
remote sensing monitoring and ground-based multi-view image
monitoring.

3 Results and analysis

3.1 Effect of machine learning vegetation
segmentation

The visual results of segmentation of images obtained by the
4 ecological meteorological stations from different views are shown in
Tables 3, 4, and the accuracy analysis results are shown in Table 5. The
segmentation accuracy of images obtained by all stations from a near
view was higher than that from a far view, and the accuracy of images
from the near view was higher than 85% except that of Du’an Station.
Compared with the effect under strong light, the segmentation effect
of images was better from both far and near views, the accuracy of
which was over 79% from the far view and 86% from the near view.

Among the 4 stations, the image segmentation effect at
Huanjiang Station was the most stable, with an accuracy of
over 80%, and the accuracy obtained with the near view was
over 87%. The results showed that there was significant
differences in the images taken under strong and weak light at
Mashan Station from the far view, as the mountain shadow area
of this station was large under strong light. There was a similar
situation for Du’an Station from the near view. Therefore, the
difference (variance) of image segmentation accuracy for the
2 stations under strong and weak light was obviously greater than
that for other 3 stations. Moreover, the proportion of bare rocks
had no obvious influence on the image segmentation accuracy.
The reason was that the proportion of bare rocks in the view areas
of Mashan Station and Pingguo Station was relatively high, but
the segmentation accuracy was not low under stable light (weak
light), and the Sr value reached 93.37% for the near view of
Mashan Station, which was higher than those of other stations.

3.2 Monitoring of vegetation growth change
from different views

Since there were only 1-year time sequences for Du’an Station
and Pingguo Station, interannual comparison was only made for

TABLE 3 Image and segmentation results obtained under strong light.
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Mashan Station and Huanjiang Station. There were differences in
the interannual variation trends of vegetation indexes in RGB
images from the far and near views. For Mashan Station, NDYI,
RGBVI and ExG from the far and near views all decreased

continuously; VARI, ExGR, MGRVI, NGRDI and VEG from the
far also showed a downward trend, but their change trends from the
near view were inconsistent; CIVE showed no obvious interannual
change, ExR and DGCI from the far view were on the increase, while

TABLE 4 Image and segmentation results obtained under weak light.

TABLE 5 RGB image segmentation accuracy statistics.

Stations Precision index Far view Near view

Direct light Scattered light Direct light Scattered light

Du’ an
Huanjiang

Qseg 75.14% 79.09% 80.86% 86.71%

Sr 78.12% 80.69% 85.48% 90.70%

Mashan Qseg 81.72% 82.99% 87.15% 88.29%

Sr 80.57% 80.08% 87.66% 90.34%

Du’ an
Huanjiang

Qseg 76.61% 79.48% 86.35% 85.22%

Sr 78.78% 80.93% 91.41% 93.37%

Mashan Qseg 77.41% 79.90% 85.82% 86.05%

Sr 82.01% 83.65% 87.93% 89.83%

Note: Direct light means that the light environment is mainly direct radiation on sunny days, while scattered light is mainly scattered radiation on cloudy days or before sunrise/after sunset.
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there was no obvious change from the near view (Figure 3). For
Huanjiang Station, there was no significant difference in the annual
means of CIVE, VEG and DGCI from far and near views in 2020 and
2021, while ExR in 2020 was significantly lower than that in 2021,
but NDYI, VARI, MGRVI, RGBVI, and NGRDI in 2020 were all
significantly higher than those 2021 (Figure 4). The results showed
that NDYI and RGBVI showed good consistency in vegetation
changes from far and near views at the two stations, and these
2 indexes could better reflect the interannual differences in
vegetation changes at ecological stations.

There were significant differences in the monthly mean values
of vegetation indexes in RGB images obtained by the 4 ecological
stations, but the change trends were basically the same over time,
showing seasonal changes in different degrees. Among the
vegetation indexes, NDYI, VARI, MGRVI, RGBVI, NGRDI,
VEG, ExG and ExGR showed obvious seasonal changes, that is,
they first decreased and then increased, while CIVE, DGCI and
ExR showed obvious anti-seasonal changes. In generally,
vegetation grew well from April to October, but relatively
poorly in other months.

In this paper, the extreme value was defined as the maximum or
minimum value of increasing change or decreasing change. From
the far view, the vegetation indexes ranges of various RGB images at
Huanjiang Station were the largest throughout the year, and the
seasonal distribution characteristics were the most obvious, followed
by Mashan Station and Pingguo Station. The extreme values mostly
occurred in May-June at Mashan Station, Huanjiang Station, Du’an
Station and Pingguo Station (Figure 5). From the near view, NDYI,
RGBVI, VEG, ExG and ExGR showed significant seasonal
distribution characteristics, and the ranges of vegetation indexes
in Du’an Station were the largest, followed by Pingguo Station and
Mashan Station. The extreme values in Mashan and Huanjiang
occurred from August to September and May to June,
respectively. The monthly values at Du’an Station fluctuated
greatly without a significant trend, while at Pingguo Station,
they showed double-peak or double-valley changes, and the
extreme values appeared in May and August (Figure 6). Overall,
there was significant seasonal distribution of vegetation indexes
in RGB images obtained at various ecological stations, but there
was no significant or regular seasonal distribution of vegetation

FIGURE 3
Annual change of RGB vegetation index of Mashan station from 2018 to 2021 [(A)NDYI, (B) VARI, (C)MGRVI, (D) RGBVI, (E)NGRDI, (F)CIVE, (G) VEG,
(H) DGCI, (I) ExG, (J) ExR, (K) ExGR].

Frontiers in Environmental Science frontiersin.org08

Chen et al. 10.3389/fenvs.2024.1439045

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2024.1439045


indexes from the near view, although there were certain
seasonal distribution characteristics.

3.3 Comparison of monitoring results from
different views and satellite scales

There were significant differences in the correlation between
satellite NDVI and RGB vegetation indexes of ecological stations
from different satellites, ecological stations, and views (Figure 7). By
comparing FY3D NDVI and MODIS NDVI, it found that the
correlation between FY3D NDVI and RGB image vegetation
indexes was weaker than MODIS NDVI. There were significant
correlations between 27.3% and 20.5% of RGB vegetation indexes
and FY3D NDVI from far and near views, respectively (P < 0.05).
For MODIS NDVI, the correlation with RGB vegetation indexes had
a greater difference between far and new views. From a far view,
70.5% of RGB vegetation indexes were significantly correlated with
MODIS NDVI (P < 0.05), but only 15.9% from the near view.

Among the 4 ecological stations, Pingguo Station and Huanjiang
Station showed a good correlation between RGB vegetation indexes

and MODIS NDVI from the far view. For both stations, 81.8% of
RGB vegetation indexes passed the significance test (P < 0.05),
followed by Du’an Station (63.6%), and Mashan Station (54.5%) was
relatively poor. Meanwhile, the correlation between RGB vegetation
indexes and FY3D NDVI at the four stations from the far view was
slightly poorer than that of MODIS NDVI. The proportions of RGB
vegetation indexes passing the significance test were in the following
order: Du’an Station (54.5%), Huanjiang Station (45.5%) and
Mashan Station (9.1%), while all the indexes at Pingguo Station
failed the significance test. From a near view, only 63.6% of RGB
vegetation indexes at Mashan Station were significantly correlated
with MODIS NDVI (P < 0.05). Meanwhile, only 63.6% of the RGB
vegetation indexes at Mashan Station and 18.2% at Du’an Station
were significantly correlated with FY3D NDVI (P < 0.05), while
other stations failed the significance test.

The comparison results showed that the correlation betweenmost
RGB vegetation indexes and the 2 kinds of satellite NDVI was better
from the far view than from the near view, but such situation was not
absolute. For example, at Mashan Station, the correlation between
RGB vegetation indexes from the close view and satellite NDVI was
better than that from the far view. In addition, there were significant

FIGURE 4
Annual change of RGB vegetation index of Mashan station from 2020 to 2021 [(A)NDYI, (B) VARI, (C)MGRVI, (D) RGBVI, (E)NGRDI, (F)CIVE, (G) VEG,
(H) DGCI, (I) ExG, (J) ExR, (K) ExGR].
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differences in the RGB indexes that had the highest correlation with
the 2 kinds of satellite NDVI from both the far and near views. From
the far view, the highest correlation between vegetation indexes of
RGB images and FY3D NDVI at the 4 ecological stations was ranked
as follows: Mashan (DGCI, R = 0.640) > Huanjiang (NDYI, R =
0.468) > Du’an (GMRVI, R = 0.465) > Pingguo (DGCI, R = 0.251),
and the corresponding MODIS NDVI was in the order of Huanjiang
Station (CIVE, R = 0.892) > Mashan Station (ExR, R = 0.836) >
Pingguo Station (ExGR, R = 0.830) > Du’an Station (ExG, R = 0.598).
From the near view, the corresponding ranking of FY3DNDVIwas in
the order of Du’an Station (DGCI, R = 0.786) > Mashan Station
(ExGR, R = 0.576)> Pingguo Station (RGBVI, R = 0.250)>Huanjiang
Station (NDYI, R = 0.135), while the corresponding order of MODIS
NDVI was Mashan Station (RGBVI, R = 0.904) > Pingguo Station
(ExGR, R = 0.740) > Du’an Station (DGCI, R = 0.622) > Huanjiang
Station (CIVE, R = 0.551). Such situation showed that there were
great differences in the coincidence degree and verification ability
of the RGB image vegetation data from different views of ecological
stations to the vegetation monitoring results of satellite remote
sensing scale.

The linear fitting between satellite NDVI and RGB vegetation
indexes of ecological stations showed significant differences under

different satellites, ecological stations, and views (Figures 8–11).
The results showed that compared with FY3D NDVI and MODIS
NDVI, MODIS NDVI and RGB vegetation indexes of ecological
station had better fitting performance, and the determination
coefficient R2 of MODIS NDVI and RGB vegetation index was
better than that of FY3D NDVI for more than 80%. Moreover, the
indexes of near view and far view had better coefficient of
determination with 40.91% and 43.18%, respectively. FY3D
NDVI generally showed a poor fit of RGB vegetation indexes,
and most of the R2 values were lower than 0.1.

Among the 4 ecological stations, the R-squared between the
RGB vegetation indexes andMODIS NDVI was higher in the far and
near views of Masan Station, and the far views of Huanjiang Station
and Pingguo Station. The R2 of the RGB vegetation indexes of the
3 stations were 50.0%, 31.8% and 27.3%, respectively, and the R2 of
Du’an Station was higher than 0.5. From the far view perspective, the
goodness of fit between the RGB vegetation indexes and FY3D
NDVI of the 4 stations was significantly poorer than that of the
MODIS NDVI. The fitting R2 of the near-view RGB vegetation
indexes of all stations was lower than 0.3, while the fitting R2 of the
partial RGB vegetation indexes and FY3D NDVI of Du’an Station
was higher than 0.6 (9.1%). None of the other stations exceeded 0.2.

FIGURE 5
Monthly variation of RGB vegetation index of far view in 2021 [(A) NDYI, (B) VARI, (C) MGRVI, (D) RGBVI, (E) NGRDI, (F) CIVE, (G) VEG, (H) DGCI, (I)
ExG, (J) ExR, (K) ExGR].
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The comparison of near and far view showed that in most
cases, the goodness of fit between the RGB vegetation indexes of
the far view and the 2 types of satellite NDVI was better than that
of the near view, except for Masan Station, whose R2 of the near
view was generally better than that of the far view. In addition,
there was a significant difference between the RGB indexes with
the highest fit between the far and near views and the 2 kinds of
satellite NDVI. From the far view perspective, the goodness of fit
between the RGB image vegetation indexes of the 4 ecological
stations and FY3D NDVI from high to low was in the order
as follows: Huanjiang (NDYI, R2 = 0.219) > Du’an (GMRVI,
R2 = 0.217) > Mashan (DGCI, R2 = 0.130) > Pingguo (DGCI,
R2 = 0.063). The MODIS NDVI was ranked as follows: Huanjiang
(CIVE, R2 = 0.795) >Masan (ExR, R2 = 0.700) > Pingguo (ExGR,
R2 = 0.690) > Du’ an (GMRVI, R2 = 0.361). From the near view
perspective, the corresponding order of FY3D NDVI was Du’an
Station (DGCI, R = 0.619) >Mashan Station (VARI, R = 0.123) >
Pingguo Station (RGBVI, R = 0.062) > Huanjiang Station
(NDVI, R = 0.018), and the corresponding order of MODIS
NDVI was as follows: Masan Station (RGBVI, R = 0.817) >
Pingguo Station (ExGR, R = 0.547) > Du’an Station (DGCI,
R = 0.386) > Huanjiang Station (CIVE and ExG, R = 0.304). The

variation pattern of this result was similar to the correlation
between ecological station and satellite NDVI.

4 Discussion

4.1 RGB image segmentation

Under natural conditions, vegetation images are not only
affected by illumination changes, but also by mutual occlusion
between vegetation groups, which affects image segmentation and
recognition. In general, the plants are segmented from the
background by finding the optimal color space, and there are
usually significant differences between the vegetation and
background of channels S and a in HSV and Lab color spaces,
which are often used as the input values of Otsu algorithm (Purcell,
2000). The principle is to realize automatic segmentation by using
the double-peak characteristic of the histogram distribution of
vegetation and background. Moreover, nonlinear combinations
through color channels such as ExG and ExG-ExR are widely
used because of simple calculation and high efficiency. In order
to further prove the superiority of machine learning algorithm in

FIGURE 6
Monthly variation of RGB vegetation index of near view in 2021 [(A) NDYI, (B) VARI, (C)MGRVI, (D) RGBVI, (E) NGRDI, (F) CIVE, (G) VEG, (H) DGCI, (I)
ExG, (J) ExR, (K) ExGR].
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multi-view image extraction, the effects of vegetation segmentation
of several algorithms were compared based on color channels
(Figure 12). The results showed that part of the surface soil
background was mistakenly divided into vegetation in the images
subjected to threshold segmentation using channel S, and channel a
and ExG methods had better foreground vegetation segmentation
effects than channel S, but some green mountain peaks in the
distance were wrongly segmented into soil and stone background.

When the lighting mainly came from scattered light (early
morning and dusk), the threshold processing methods of various
color channels (a, ExG, ExG-ExR) all could achieve good calculation

results. However, the external illumination changed constantly
throughout the day. When the direct light was strong, the large
number of highlights and shadows in the images posed great
challenges to vegetation image segmentation, especially in the
karst landform environment, where there were a lot of rocks,
soil, man-made debris and soil residues in the vegetation, which
further increased the difficulty of automatic segmentation. Through
comparison, it was found that the method based on machine
learning had the best effect, and the accuracy was over 80% in
both sunny and cloudy days. The threshold segmentation method
based on channel a (Lab) performed well in weak light, but the effect

FIGURE 7
Correlation Matrix of RGB vegetation index and NDVI from satellite remote sensing [(A) far view, (B) near view].

FIGURE 8
Linear fitting of RGB image of Pingguo Ecological Station and satellite remote sensing NDVI.
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FIGURE 9
Linear fitting of RGB image of Du’an Ecological Station and satellite remote sensing NDVI.

FIGURE 10
Linear fitting of RGB image of Huanjiang Ecological Station and satellite remote sensing NDVI.
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decreased in strong light. The effect of the ExG channel-based
segmentation method was generally stable, while the effect of
channel S method was not good, but its evaluation parameter
values were still over 70% (Figure 13). The accuracy of these
4 methods improved after filtering, because the contours of
foreground images segmented by image processing methods were
generally smaller than those obtained by manual methods, and
filtering removed noise from the images while preserving the leaf
edge areas in the contours of foreground images, ultimately
improving accuracy. Thus, machine learning algorithm was used
as a tool for batch segmentation of multi-view images and
calculation of vegetation indexes.

Segmentation based on color space is simple and efficient, but it
also has some limitations. According to the image segmentation results,
most green vegetation (grass and shrubs) was accurately identified and
segmented, while a small number of vegetation, such as brightly
colored flowers, was wrongly classified as background information
instead of vegetation. The reason may be that the segmentation
algorithm was more inclined to identify green ground objects as
vegetation in image segmentation, while other ground objects with
other colors were more easily identified as background. Thus, image
texture parameters are introduced to further optimize the
segmentation algorithm in the following research.

4.2 Differences of multi-view vegetation
growth monitoring

Various vegetation indexes of RGB images were quite different
in reflecting the interannual and intra-annual differences of

vegetation. NDYI and RGBVI not only showed good consistency
in vegetation changes from different views, but also better
represented the interannual differences in vegetation changes.
The comparison on the threshold ranges of different indexes
showed that the threshold ranges of these 2 indexes were
obviously larger than other indexes, which was related to their
index algorithms. On the other hand, the possible reason was
that the weights of green light in the 2 indexes were relatively larger.

The study results showed that the seasonal characteristics of
vegetation were more obvious from the far view, while from the near
view, only certain seasonal characteristics were presented, and the
regularity of the change curves was poor, which was related to the
great variation of vegetation indexes extracted from RGB images. On the
one hand,most karst ecological stations are located inmountainous areas,
and vegetation forms and positions captured by cameras are greatly
affected by the differences in wind speed and direction. On the other
hand, the difference of light conditions canmake the automatic exposure
time different, which can also lead to the difference in vegetation image
quality (Wang et al., 2016). These factors have a more serious impact on
images from a near view. In further research, the variation of RGB image
indexes will be reduced by ground investigation, setting camera
parameters and improving image correction methods.

The multi-view monitoring of ecological stations showed that
vegetation growth in karst areas reached the peaks mostly in May-
June, and only Pingguo Station showed a bimodal distribution with
peaks appearing in May and August, which was quite different from
the results of satellite remote sensing monitoring. The monitoring
results of MODIS 250 m NDVI showed that the best period of
vegetation growth in karst areas was from mid-September to mid-
October, but the periods of poor growth monitored by the 2 remote

FIGURE 11
Linear fitting of RGB image of Mashan Ecological Station and satellite remote sensing NDVI.
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sensing scales were similar, mostly from January to February (Chen
et al., 2015). The growth time monitored by satellite remote sensing
was obviously later than that by multi-view images of ecological
stations. On the one hand, it was due to the influence of mixed pixels.
Satellite data, which was restricted by spatial resolution, reflected
common information of vegetation and various backgrounds. On the
other hand, ecological stations had a short time limit for capturing
vegetation information, and the monthly synthetic data was based on
continuous daily data. However, there were frequent cloudy and rainy
weather in the south of China, and satellite images were affected by
weather, resulting in certain lag in monitored vegetation information.

4.3 Possible reasons for the difference from
satellite monitoring

MODIS NDVI and FY3D NDVI showed quite different
correlation and linear fitting with RGB of ecological stations, which
was related to the response functions of the two spectra,
atmospheric water vapor, radiation calibration, observation
angle, etc. (Ge et al., 2017). Although they had the same
histogram trend, there were still differences in different
ground features, and with the decrease of vegetation coverage,
the linear consistency between the 2 became poorer (Feng et al.,
2010), and there were multiple level differences in mean and
minimum values between them (Wang et al., 2022).

From the far view, 50% of RGB vegetation indexes were
significantly correlated with MODIS NDVI at all 4 stations,
including Pingguo Station and Huanjiang Station, for which the

proportions were over 80%. Although the correlation with FY3D
NDVI was weak, the proportions of RGB vegetation indexes were
larger than 45% at Du’an Station and Huanjiang Stations. The
R-squared between RGB vegetation indexes and MODIS NDVI was
generally good. Most stations had 1/3 of the RGB vegetation indexes
withR2> 0.6, includingMashan Station, for which the proportions were
over 50%, while the R2 between the ecological station and FY3D NDVI
was lower than 0.3. However, from the near view, only Mashan Station
showed significant correlation with proportion of RGB vegetation
indexes exceeding 60%, and at Du’an Station, the result was less
than 20% of RGB vegetation indexes, about 60% of the RGB
vegetation indexes of Mashan Station had a fitting R2 of more than
0.6, and only about 10% of the RGB vegetation indexes of Du’an
Station. The results showed that most of the RGB vegetation indexes in
the far view had good correlation and R-squared with the 2 kinds of
satellite NDVI, which may be because the color distribution of
vegetation in the far view was relatively uniform, and the shadows
caused by the overlapping of vegetation leaves were not obvious.
Furthermore, those interference information could not be
recognized by images with distant and wide viewing angles, which
was closer to the shooting mode of satellite obtaining vegetation
information from high altitude. However, the ground objects
captured by the near-view camera images contained more detailed
interference information, which could not be completely eliminated by
segmentation technology, so the correlation and goodness of fit with
satellite NDVI were lower. Through comparison, it was found that the
correlation with NDVI of the 2 satellites was good at Huanjiang Station
from a far view, which might be caused by the single vegetation in the
viewing range of the station.

FIGURE 12
Threshold segmentation effect of different color channels [(A) Channel S, (B) Chanel a, (C) Channel ExG, (D) Channel S segmentation, (E) Channel a
segmentation, (G) Channel ExG segmentation].
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Ground-based multi-view remote sensing monitoring is an
effective supplement to satellite remote sensing monitoring, which
can provide high-throughput high-definition live monitoring data,
which can be used for evaluating the impact of meteorological
disasters and pests on vegetation in near real time and verifying
the evaluation results of satellite remote sensing, which is also one of
the main purposes of setting up multi-view cameras in ecological
stations. However, at present, there was no standard to follow in site
selection and camera view angle for karst eco-meteorological stations.
The results of this study showed that there were significant differences
in the explanatory power of vegetation indexes of RGB images from
different views on satellite remote sensing monitoring results at
different ecological stations, so the monitoring angle and viewing
width of camera view should be fully considered when building
ecological stations. Meanwhile, it is also a problem worthy of in-
depth exploration to improve the verification ability of acquired
images to satellite monitoring results by determining the site
selection of ground-based ecological stations through satellite
remote sensing images of different scales.

5 Conclusion

The multi-view RGB images obtained by real-scene shooting at
ecological meteorological observation stations are an effective
supplement to satellite remote sensing. In this study, comparison
has been made to the vegetation monitoring effect of multi-view
images and its difference from satellite remote sensing monitoring,
proving that machine learning algorithm is suitable for green
vegetation segmentation of ground-based multi-view RGB images
obtained at ecological meteorological stations, and it has been found
that the quality of images obtained under weak light conditions is
higher. Different RGB vegetation indexes show great differences in
vegetation change trends. For karst areas, NDYI and RGBVI show
good consistency in vegetation changes from far and near views, and
can also better show the annual differences of vegetation. The
vegetation indexes of RGB images from a far view show more
obvious seasonal changes and interannual differences than from
a near view, and the vegetation growth monitoring results are better
consistent with the satellite-scale monitoring results.

FIGURE 13
Precision statistics. Note: (A) Qseg value; (B) Sr value; (C) D-value before and after filtering.
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