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Indoor environments, considered sanctuaries from external pollutants, are
increasingly recognized as reservoirs for microplastics (MP). This research
employed a comprehensive approach, combining dust sampling from diverse
indoor spaces, density separation method, and microscopic observation to
quantify and characterize microplastic particles. This is the first initial study
worldwide that incorporated MP identification in indoor dust from different
indoor environments along with factor analysis, health, and ecological risk
assessment. The average MP concentration in the indoor environment was
4333.18 ± 353.85 MP/g. The MP distribution pattern was in institutional
areas < residential areas < industrial areas < and commercial areas. Black
color, fiber, <0.5 mm size was the dominant color, morphology, and size,
respectively, among the detected MP from the studied samples. In addition,
the polymer types of the MPwere detected by Fourier Transform-Infrared (FT-IR)
spectroscopy, and ten types of polymers were detected while PET was in high
abundance. Population number, architectural features of habitat, human
activities, urban topography, and particle residence time were determined as
responsible factors for MP abundance in indoor areas. The estimated daily intake
(EDI) value via ingestion was higher than the inhalation of MP. Infants are highly
susceptible to MP exposures. According to Polymer Hazard Index (PLI) and
Polymer Hazard Index (PHI) values, the exposure risk was in the minor and
extreme risk categories.
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1 Introduction

In recent years, the pervasive use and disposal of plastic materials have given rise to a
burgeoning environmental concern–the ubiquitous presence of microplastics (MP). The
history of MP pollution began with the study of Thompson’s team in 2004 at Plymouth
University (Thompson et al., 2004). MP is generally the tiny part of plastic components
whose size does not exceed 5 mm long (Rana et al., 2023). MP pollution is the product of
plastic pollution. The use of plastic started after the innovation of plastic material by Leo
Baekland in 1907 (Jahandari, 2023; Wagner, 2011). The durability, weight, flexibility, easy
production process, and low-cost features make it popular among the general masses. These
features increased the production and use of plastic material. According to estimates, the
global production of plastics witnessed a rise from 330 million metric tons in 2016 (Sharma
et al., 2023), to 368 million metric tons in 2019 (Prapanchan et al., 2023), 390.7 million
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tonnes globally in 2021 (Yin et al., 2023), and projected that the
quantity will increase to 500 million tonnes by the year 2025 (Sutkar
et al., 2023). According to Plastic Pollution 2019, with 30% of the
global plastic produced, China is the world leader in plastic
production (Jahandari, 2023). The majority of plastics are
released into the environment as waste plastic through a variety
of channels, with only a small amount being recycled. Since certain
types of plastics may withstand years in an aquatic environment
without decomposing, they are regarded as non-biodegradable
(Sutkar et al., 2023).

Microplastic is found in various color such as white, red, blue,
black, transparent, yellow, pink, brown (Afrin et al., 2020; Paray
et al., 2024); size such as category 1 was less than 0.5 mm, category
2 was 0.5 mm–1 mm, and category 3 was 1 mm–5 mm (Haque et al.,
2023); morphological such as fiber, fragment, granule, film, pellet,
foam (Haque et al., 2023; Rana et al., 2023), and chemical
composition such as Acrylonitrile butadiene styrene (ABS),
Cellulose acetate (CA), Ethylene vinyl acetate (EVA), High-
density polyethylene (HDPE), Latex, Nylon, Polypropylene (PP),
Polystyrene (PS), Polyurethane (PU), and Polyvinyl chloride (PVC)
(Asensio et al., 2009; Tanaka and Takada, 2016). These microplastics
are not only present in the environmental components but also in
the human food chain and the human body. MP are already detected
in human stool (Schwabl et al., 2019; Yan et al., 2022), breast milk,
blood (Leslie et al., 2022). This MP from indoor dust may be inhaled
by humans and causes several health effects such as respiratory
disease, chronic disease, lung problems, and respiratory cell damage
(Lee et al., 2023). MP may also be deposited into human food and
ingested by humans as food. In this way, it may also disrupt
endocrine, cytotoxicity, inflammatory, metabolism effect,
neurotoxicity, and immune system dysfunction (MacHado et al.,
2018; Leifheit et al., 2021; Leslie et al., 2022; Yuan et al., 2022).

The MP has also previously been detected in different
environmental components, such as sediment (Ding et al., 2019;
Huang J. et al., 2021; Osorio et al., 2021), water (Alam et al., 2023;
Hossain et al., 2024; Kirstein et al., 2021), human food (Hossain
et al., 2019; Khan and Setu, 2022; Oliveri Conti et al., 2020) and road
dust (Patchaiyappan et al., 2021; Soltani et al., 2022; Su et al., 2020).
While the environmental implications of microplastics in outdoor
matrices have been extensively studied, the exploration of their
presence and potential consequences within indoor environments
remains in its infancy. Indoor spaces serve as primary arenas for
human activity, where individuals spend a significant portion of
their time and are intricate ecosystems that can serve as reservoirs
for various pollutants, including microplastics (Van Tran
et al., 2020).

Indoor environments, comprising homes, workplaces, and
recreational spaces, function as complex ecosystems with distinct
characteristics influencing the behavior and fate of pollutants
(Hosgood and Lan, 2011). The indoor milieu represents an
amalgamation of outdoor emissions, human activities, and the
materials used in constructing and furnishing these spaces.
Within this intricate web of interactions, indoor dust emerges as
a reservoir for diverse particulate matter, including microplastics
(Hosgood and Lan, 2011; Van Tran et al., 2020). The composition of
indoor dust is complex, featuring a blend of organic and inorganic
particles originating from both indoor and outdoor sources.
Understanding the presence and dynamics of microplastics

within indoor dust is integral to comprehending the full extent of
human exposure to these pervasive contaminants.

This study aims to bridge the existing knowledge gap by
systematically investigating the occurrence, sources, and
characteristics of microplastics in indoor dust. Employing a
multidisciplinary approach that combines environmental science,
analytical chemistry, and public health perspectives. This research
endeavors to elucidate the presence of MP in indoor dust,
quantification, characterization, source, and pathways through
which microplastics enter indoor spaces with factors and assess
their human health risk along with ecological risk. By shedding light
on the intricate interplay between microplastics and indoor
environments, this study aspires to contribute to a more
comprehensive understanding of the implications of microplastic
pollution on human wellbeing and environmental sustainability.

2 Methodology

2.1 Study area

This total study was conducted in Dhaka city, which is the
capital of Bangladesh (Supplementary Figure S1). It ranks seventh in
terms of population density and is the ninth-largest city in the world
(Dhakatribune, 2023). It is a developing country, and different types
of industries, construction sites, and vehicles are common in this
city. This industry, transportation system, and construction sites are
the main contributors of pollutants in the urban air (IQAir, 2023).
The Air Quality Index of Dhaka city ranked Dhaka as the 2nd most
populated city in the world (AQI, 2023).

For this study, Dhaka was broadly divided into four areas:
industrial, commercial, institutional, and residential. A total of
40 samples were collected from these major types of areas.
Among them, S.1‒S.10 were collected from residential areas,
S.11‒S.20 from institutional areas, S.21‒S.30 from commercial
areas, and S.31‒S.40 from industrial areas. A detailed description
of the study area is given in Supplementary Table S1.

2.2 Sample collection

All samples were collected from air conditioners that were installed
onwalls. The air conditioners were average in height, at 7–10 feet. Every
AC had its filter cleaned a month before the time of the sampling. At
first, the AC filter was opened with the help of a scrow driver. Then, the
dust sample was collected from this filter by using brushes that were
made of jute fiber andwood. Initially, a 5 g dust particle was collected on
a piece of aluminum foil paper and placed inside a Pyrex bottle. After
proper labeling, all of the samples were taken to the Laboratory of
Environmental Health and Ecotoxicology, Department of
Environmental Sciences, Jahangirnagar University, Dhaka 1,342,
Bangladesh, for further analysis.

2.3 Microplastic extraction

Total dust particles were first sieved with a 2 mm sieve. Then, 1 gm
of each sample was taken in a glass beaker, and 15 mL (30% w/v)
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hydrogen peroxide (H2O2) (Merck, Germany) was added to the beaker
to decompose organic matter (Haque et al., 2023). This glass beaker is
kept in a dark place for 3 days. After 3 days, it went through the density
separation method with NaCl (1.2 g cm−3) (Haque et al., 2023; Rana
et al., 2023). At first, 40mLNaCl (Merck, Germany) solutionwas added
to the glass beaker and shaken with glass rood for 30 min. Then, it is
allowed to settle down for 2 days. After that, the supernatant was
transferred to a test tube, and then it went through a centrifugation
process at 2000 rpm for 10 min to completely separate the fine dust
from the supernatant solution (v). Then, the supernatant solution was
filtered by using Whatman Microfiber glass filter paper, and the pore
size was 0.45 μm.The solid part of the dust sample (that remained in the
first phase of the sedimentation process) was again going through a
density separation process with ZnCl2 (d = 1.70 g/mL) to ensure higher
accuracy. As no salt shows higher efficiency for every type of polymer
extraction (Duong et al., 2022; Mattsson et al., 2022; Quinn et al., 2017).
For that purpose, at first, 40 mL ZnCl2 (d = 1.70 g/mL) (Merck,
Germany) solution was added to the glass beaker and shaken with glass
rood for 30min. Then, it is again allowed to settle down for 2 days. After
that, the supernatant was transferred to a test tube, and then it again
went through a centrifugation process at 2000 rpm for 10 min to
completely separate the fine dust from the supernatant solution (v). But
nothing settled down in that process. For that reason, the entire solution
was filtered by using Whatman Microfiber glass filter paper, and the
pore size was 0.45 μm. After that, two filter papers were preserved for
microscopic observation in a glass Petri dish (Haque et al., 2023; Rana
et al., 2023). This method was also validated for two types of polymers,
PP and PET. The recovery rate was (71–75) %. Details were in
Supplementary Table S2.

2.4 Visual inspection by stereo microscope

Microplastic from the filter paper was inspected by a stereo
microscope (Leica® EZ4 HD with a Built-in Digital Camera range of
magnification 8x-35x) (Haque et al., 2023). Picture of these
microplastic particles was also captured by the help of it.
Microplastic particle size was measured with ImageJ software
(version 2022), as the stereo microscope had no built-in facility
for microplastic particle measurement. From the visual
identification, microplastic particles were divided according to
their morphology, size, and color. According to size, it was
divided into three categories. Category 1: less than 0.5 mm,
Category 2: 0.5–1 mm, and Category 3: 1–5 mm (Haque et al.,
2023). According to color, it is divided into six categories: green,
blue, black, red, white, and pink. In the case of morphology, it was
divided into five categories: fiber, fragment, pellet, film, and foam.
Furthermore, microplastic particles were also counted carefully in
that part (Haque et al., 2023; Rana et al., 2023).

2.5 FTIR analysis

Fourier Transformed-Infrared (FT-IR) spectroscopy was
conducted to ensure the microplastic type by using wavelength.
IR Prestisize-21 was used for that purpose. A representative number
of samples (25%) was taken for FTIR analysis (Haque et al., 2023;
Parvin et al., 2021). At first, microplastic particles were mixed with

KBr salt. Then KBr pellet is created. After that, KBr pellet went
through the FTIR analysis method. The wavelength measurement
used in that method was 400–4,000 cm−1 (Tanaka and Takada,
2016). Each of the polymer types was confirmed by comparing it
with existing literature, Hummel Polymer and Additives, HR
Spectra IR Demo, and Aldrich Vapor Phase Sample Library
(Haque et al., 2023).

2.6 Microscopic observation by SEM

The scanning electron microscope (SEM), which creates high-
resolution images of the materials, is typically utilized for any form
of morphological study. For the sample preparation and better
resolution of the image, gold coating was used. In this
investigation, a high vacuum SEM (EVO18, Carl Zeiss AG,
United Kingdom) was used to examine the surface morphology
of the detected MP at 1 and × 5 magnification (Haque et al., 2023;
Rana et al., 2023).

2.7 Risk assessment of indoor dust MP

Following Equations 1, 2, Estimated daily intake (EDI) (MP/
kg bw/day via ingression and inhalation was calculated (Zhu
et al., 2022).

EDIfor ingession � Cp × f × IR

W
(1)

Here, Cp is the MP concentration (measured in MP/g) found
in indoor dust samples; f indicates the total fraction of exposure in
the indoor environment (i.e., hours spent by individuals in the
indoor environment in a particular day) that is for infants
(0.5–1 years) 0.79, toddlers (1–6 years) 0.79, children
(6–21 years) 0.79, and adults (≥21 years) 0.88 (Johnson-
Restrepo and Kannan, 2009); IR is the indoor dust intake rate
for humans, and that is for infants 0.04, toddlers 0.03, children
0.02, and adults 0.02 g/day (US EPA, 2023); and W stands for the
body weight of infants, toddlers, children, and adults 5 kg, 16 kg,
29 kg, and 75 kg, respectively (Saygin et al., 2023).

EDIfor inhallation � Cp × f × IR × 1
PEF

W
(2)

Here, Cp is the MP concentration (measured in MP/g) found in
indoor dust samples; f indicates the total fraction of exposure in the
indoor environment (i.e., hours spent by individuals in the indoor
environment in a particular day) that is for infants (0.5–1 years)
0.79, toddlers (1–6 years) 0.79, children (6–21 years) 0.79, and adults
(≥21 years) 0.88 (Johnson-Restrepo and Kannan, 2009); IR is the
indoor dust inhalation rate (m3/day) for humans, and that is 5.4,
10.1, 15.2, and 16 for infants, toddlers, children, and adults,
respectively; PEF indicates particulate emission factor (m3/kg)
1.20E + 09 (Saygin et al., 2023); and W stands for the body
weight of infants, toddlers, children, and adults 5 kg, 16 kg,
29 kg, and 75 kg, respectively (Saygin et al., 2023).

Both the total concentration of MP and the polymer type of
indoor dust MP have been taken into consideration in order to
calculate the possible dangers associated with plastic debris in settled
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house dust (Ranjani et al., 2021). A polymer hazard index (PHI) and
integrated pollution load index (PLI) were used to assess the level of
plastic debris pollution in settled house dust. The following
Equations 3–5 were used to assess the environmental health risk.

CFi � Ci/Coi (3)
PLI � ����

CFi

√
(4)

PHI � ∑Pn × Sn (5)

Where, Coi indicates the background value that is the lowest
concentration of MP found in indoor house dust, Ci indicates
the concentration of MP, and CFi indicates indoor dust MP
quotient. Pn indicates the percentage of a given polymer type and
Sn indicates the polymer type’s hazard score in the PHI
computation.

2.8 Statistical and graphical analysis

All of the statistical analysis was conducted in Microsoft Excel
2020. Bar charts with errors, stacked columns, pie charts, and FT-
IR data plotting graphs were created with the help of Origin
Pro-2022.

2.9 Quality control

The samples were carefully collected using a facemask, hand gloves,
and brushes. This brush was made of organic jute fiber and wood. All
apparatus used in that process were made of either glass or Pyrex. To

avoid any contamination, all of the samples were locked in a Pyrex
sampling bottle immediately. After that, samples were carefully
analyzed in the Laboratory of Environmental Health and
Ecotoxicology, Department of Environmental Sciences,
Jahangirnagar University, Dhaka 1,342. The laboratory window was
closed during the experiment, and the scientist doing it wore white
gloves free of polymers and lab coats. Before using any apparatus, it was
rinsed three times with distilled water and dried to ensure it was
contamination-free. The distilled water was also the first filtered with a
Whatman filter paper (0.45 μm). Three replicas of each sample were
analyzed for every sample. Moreover, the blank sample was also
examined to ensure the quality of the analysis. Blank filter paper
was also observed during microscopic observation to avoid
contamination in each case. Only in a few cases was the blank filter
paper detected with MP, which was reduced in the quantification
process. In addition, FTIR and SEM were also conducted carefully to
avoid any kind of contamination. In this process, all of the apparatus
was rinsed with ethanol solution to avoid any kind of contamination.

3 Result and discussion

3.1 Abundance of MP in air dust

Indoor dust was highly contaminated with MP (Figure 1).
However, it varied from place to place and circumstance to
circumstance. The highest amount of MP was found in the
commercial area (6,081 ± 396.3 MP/g), and the lowest amount of
MP was found in the institutional area (2,069.4 ± 252.7 MP/g). The
variation of MP in indoor dust was followed by institutional area
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(2,069.4 ± 252.7 MP/g), residential area (3,115 ± 345.5 MP/g),
industrial area (6,067.3 ± 420.9 MP/g), and commercial area
(6,081 ± 396.3 MP/g). The highest and lowest values of MP in
residential, institutional, commercial, and industrial indoor dust was
2,355 ± 355 to 4,600 ± 340 MP/g; 1,782 ± 234 to 2,611 ± 254 MP/g;
4,500 ± 345 to 8,400 ± 234 MP/g; 4,521 ± 234 to 8,971 ± 456 MP/g.

Indoor air dust acts as a sink of MP in an indoor environment
(Peng et al., 2023). However, this is the first study of indoor dust in
Bangladesh. Fluctuation in the abundance of indoor dust in Bangladesh
may be derived from its locational composition factor. The source of
this MP in the air also varies from place to place, which may be another
reason for this fluctuation. MP abundance in indoor dust was
comparatively lower than in China and Iran (Kashfi et al., 2022);
and higher than inMelbourn city (Kashfi et al., 2022). The source of this
MP in the atmosphere may have come from different indoor and
outdoor sources. Indoor sources may be textile products such as cloths,
backpacks, and luggage; architectural features such as habitat
composition, habitat structures, decoration, and finishing products

used in habitat. Outdoor sources may include industrial emissions,
textile products, littering, transportation systems, riverine microplastic,
construction sectors, population settings, agricultural sources, sediment,
and water sources. According to theWorld Bank, 39.71% of people live
in cities in Bangladesh (Statista, 2022), and according to the United
Nations, 55% of the world’s population lives in cities, and this will
increase to 68% by 2022 (UnitedNations, 2023). Further research by the
EPA revealed that Americans spend around 90% of their time indoors,
with 65% of that time being spent at home (Jahandari, 2023). In this
long time, a man can be easily affected by MP by inhalation, ingestion
and dermal contact. Inhalation is considered the main pathway for MP
entry pathway in the human body (Rahman et al., 2021). MP causes
cardiovascular and respiratory disease in the human body depending on
the exposure limit and susceptibility of the human body. It can cause
oxidative stress that results in lung symptoms such as coughing,
sneezing, and dyspnea because of inflammation and injury, as well
as exhaustion and lightheadedness because of low blood oxygen levels
(Lee et al., 2023). According to a recent study, human respiratory cells’

FIGURE 1
Microplastic (MP) abundance (Mp/g) in indoor dust of Dhaka City. At the top are the MP picture of studied samples. (A) Residential area (B) Institutional
area (C) Commercial area (D) Industrial area. Error bar indicates mean ± SD (n = 3).
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mitochondrial damage was linked to nanoscale plastics (Lin et al., 2022).
In that way, MP poses a threat to our existence.

3.2 Characteristics of MP in indoor air dust

3.2.1 MP characterization according to color
MP in the indoor air dust showed a lot of variety in color

composition (Supplementary Figure S2). A total of six colors, red,
green, blue, black, brown, and transparent, were found in the indoor
dust. Among them, black (45%) color MP was the most abundant MP,
and transparent (3%) was the least abundant MP. The distribution
pattern of MP color was followed by transparent (3%), brown (5%),
green (6%), red (11%), blue (30%), and black (45%).

Color derives in MP from the color of plastic materials. A variety of
color plastic is used worldwide. This property of plastic makes it
attractive to use. For that reason, varieties of color were also detected

in several studies of indoor dust (Kashfi et al., 2022; Nematollahi et al.,
2022; Zhu et al., 2022). Zhu et al. (2022) reported similar findings in their
study. In another study, Nematollahi et al. (2022) reported white and
transparent color was the highest. There is no previous study on the
microplastic color effects on the human body. However, several studies
reported that several aquatic organisms, such as fishes, crabs, snails, frogs,
and soil biotas, are attracted by MP. The bright color of MP misleads
them and mistakenly ingest it (Haque et al., 2023; Rana et al., 2023).

3.2.2 MP characterization according to size
MP in the indoor air dust also varies according to their size

(Supplementary Figure S3). According to size, it was categorized
into three large groups: category 1 was less than 0.5 mm,
category 2 was 0.5 mm–1 mm, and category 3 was
1 mm–5 mm. Among them, the category with less than
0.5 mm (75%) in size was the most dominant group, and the
1 mm–5 mm category (7%) was the least dominant. The

FIGURE 2
MP polymer characterization with Fourier Transform-Infrared spectroscopy (FTIR). (A) Polyethylene Terephthalate (PET), (B) Cellulose acetate (CA),
(C) Ethylene vinyl acetate (EVA), (D) High-density polyethene (HDPE), (E) Latex, (F) Nylon, (G) Polypropylene (PP), (H) Polystyrene (PS), (I) Polyurethane
(PU), and (J) Polyvinyl chloride (PVC).
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distribution pattern was followed by less than 0.5 mm (75%),
0.5 mm–1 mm (18%), and 1 mm–5 mm (7%).

MP has been divided into different categories in different studies
(Kashfi et al., 2022; Nematollahi et al., 2022; Zhu et al., 2022). Among
them, most of the studies reported that the lower size of MP was in
higher abundance. The reason behindMP in a large size lower in indoor
dust may be that lower size MP has a higher residence time in the
atmosphere, and higher size MP is deposited early in the ground due to
gravitational forces (Prata et al., 2020). MP effect on the human body
may vary according to size. Large-size MP may easily coagulate the
respiratory tract and Lungs. Nematollahi et al. (2022) reported that
Children are highly affected by large-size MP rather than smaller size.
This may be because of their organ properties.

3.2.3 MP characterization according to
morphology

MP in indoor air dust was mostly fiber. However, fragment, film,
pellet, and foam are also found (Supplementary Figure S4). Among the
fiber (82%) was the most dominant group, while film and pellet (1%)
were the least dominant group. The distribution pattern was followed
by pellet (1%), film (1%), foam (6%), fragment (10%) and fiber (82%).

Fiber and fragment types of MP are mostly detected in several
studies of microplastic in dust samples (Abbasi et al., 2022; Chen
et al., 2022; Jahandari, 2023). This may be because synthetic fiber can
be readily ripped and removed from possible indoor sources, such as
clothing, toys, packaging products; and other soft furnishings like
curtains, carpets, sofas, and chairs.

3.3 Chemical composition of MP by FTIR

Fourier Transform-Infrared (FT-IR) spectroscopy was used to
examine the chemical components of various plastics. A
representative number of dust samples was selected for FT-IR
analysis. In the representative sample, FT-IR analysis revealed the
presence of the following substances: Polyethylene Terephthalate
(PET), Cellulose acetate (CA), Ethylene vinyl acetate (EVA), High-

density polyethylene (HDPE), Latex, Nylon, Polypropylene (PP),
Polystyrene (PS), Polyurethane (PU), and Polyvinyl chloride (PVC)
(Figure 2). Among them, PET (38%)was dominated and the distribution
pattern followed by PET (38%), Nylon (18%), PP (10.8%), PU (10.5%),
EVA (6.5%), PS (5.6%), PVC (5.2%), HDPE (2.9%), CA (2.5%).

Figure 2 describes the FT-IR spectra of the detected MP in the
samples. The distinctive characteristic peaks were found at wavenumbers
1,710, 1,241, 1,094, and 720 cm−1. These wavenumbers demonstrate the
existence of C-O stretching, C = O stretching, C = O stretching, and
aromaticCHout of the planned band, respectively (Haque et al., 2023). In
CA (Figure 2B), four distinct peaks are found at wavenumber 1,743,
1,375, 913, and 600 cm−1. These wavenumbers demonstrate the C = O
stretch, CH3 bend, Aromatic ring stretch or CH bend, and O-H bend,
respectively (Haque et al., 2023; Verleye et al., 2001). In EVA (Figure 2C),
characteristic peaks at wavenumbers 2,918, 2,848, 1,748, 1,469, 1,245,
1,020, and 730 cm−1 were detected. These wavenumbers demonstrate the
existence of C-H asymmetric and symmetric stretching vibration, C = O
stretching bend, CH2 bend, C (=O) O stretching, C-O stretch, and CH2

rock, respectively (Asensio et al., 2009). In HDPE (Figure 2D), seven
distinct peaks at wavenumbers 2,915, 2,845, 1,471, 1,462, 730, and
710 cm−1 were detected. These wavenumbers demonstrate C-H two
stretching peaks, CH2 bending, and CH2 two rock peaks, respectively
(Asensio et al., 2009). In latex (Figure 2E), seven distinct peaks at
wavenumber 2960, 2,922, 2,850, 1,455, 1,469, 1,375, and 1,196 cm−1

were detected. These wavenumbers demonstrate the C-H stretch three
peaks, C-C stretch, CH2 bend, and CH3 bend, respectively (Guidelli et al.,
2011). In Nylon (Figure 2F), characteristic peaks at wavenumbers 3,296,
2,930, 2,858, 1,634, 1,535, 1,464, 1,372, 1,224, 1,199, and 687 cm−1 were
detected. These wavenumbers demonstrate N-H stretching, C-H
stretching two peaks, C = O stretching bend, NH bend, CH2 two
bends, N-H bends, CH2 bend, and C = O stretching, respectively
(Noda et al., 2007; Verleye et al., 2001). In PP (Figure 2G),
characteristic peaks at wavenumbers 2,950, 2,915, 2,848, 1,455, 1,377,
1,165, 997, 838, and 798 cm−1 were detected. These wavenumbers
demonstrate C-H stretch three peaks, CH2 bend, CH3 bend, CH
bend, CH3 rock, and CH2 two rock, respectively (Asensio et al., 2009;
Noda et al., 2007). In PS (Figure 2H), characteristic peaks at

FIGURE 3
MP surface inspection by Scanning Electron Microscopy (SEM).
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wavenumbers 3,024, 2,848, 1,601, 1492,1458, 1,027, 691, and 535 cm−1

were detected. These wavenumbers demonstrate the C-H stretching, C-H
stretching, aromatic ring stretching, aromatic ring stretching, CH2 bend,
aromatic CH bend, and aromatic CH out of the plane two bends,
respectively (Asensio et al., 2009; Verleye et al., 2001). In PU (Figure 2I),
characteristic peaks at wavenumbers 2,865, 1,735, 1,531, 1,452, and
1,235 cm−1 were detected. These wavenumbers demonstrate C-H
stretch, C = O stretch, C-N stretch, CH2 bend, and C (=O) O stretch,
respectively (Noda et al., 2007; Verleye et al., 2001). In PVC (Figure 2J),
characteristic peaks at wavenumbers 1,427, 1,331, 1,255, 1,099, 966, and
616 cm−1 were detected. Thesewavenumbers demonstrate CH2 bend, CH
two bends, C-C stretch, CH2 rock, and C-Cl stretch, respectively (Noda
et al., 2007; Verleye et al., 2001). It is challenging to accurately predict the
most frequent polymer groups in MP by investigating only a small
number of samples. There is a good chance of finding additional
polymers in indoor air dust samples.

Plastic polymers typically have a particular use. Different types of
plastic polymers are used for different purposes. Polyvinyl chloride is
largely employed as an engineering plastic. Meanwhile, textiles (nylon)
are the primary application of PA in indoor spaces (Plastics Europe,
2019). In addition, indoor spaces use plastic products made of these
polymers, like synthetic fiber fabrics (made of PET, PP, PU, and PA),
plastic containers made of PET, PP, and PE, and packaging materials
made of PP and PE (Chen et al., 2022; Peng et al., 2023). All of these are
particular sources of this polymer. PET andNylon are themost abundant
polymer types in this study. According to Statista (2021b), the global
yearly production of raw PA in 2021 was 7.80 Mt, of which 5.87 Mt was
utilized to make nylon fiber. It will be increased to 10.4 Mt by 2027
(Research and Markets, 2023). On the other hand, PET polymer is used
extensively in the manufacturing of polyester fiber (60.5 Mt worldwide
annually) (Statista, 2021a). It is also used extensively in the production of
packaging materials like plastic bags, films, bottles, and food containers
(Shankar and Jaiswal, 2024). These packaging materials are potential
sources of MPs because they are commonly used indoors.

3.4 Surface morphology of MP by SEM

SEM is frequently used to describe or identify MP because it
produces a high-resolution image that amply reveals its surface. A
representative number (15%) of MP-like particles were taken to
conduct SEM analysis. Figure 3 shows SEM for representative MP.
However, it can be quite challenging to recognize the MP surface. The
SEM results showed that the MP fiber contained flake, crack, linear
fracture, crescentic fracture, protrusions, and scratches (Figure 3)
(Haque et al., 2023; Parvin et al., 2021; Wang et al., 2019).
Furthermore, the SEM image clearly shows that the MP has
adequately changed into nano plastic, which presents another
challenge for us. This will undoubtedly have a disastrous impact on
human health and the environment.

3.5 Comparison of indoor dust MP with
different study

The average concentration of MP in this study is comparatively
lower from China (97.51 times), Iran (20.95 times), and Denmark
(1.72 times); while higher from USA (13.5 times) and Paris (5.4t
times) (Table 1). The most abundant size and shape are quite similar
in all studies. However, a lot of varieties in the chemical properties of
MP are observed in this study. This may be due to the geological
setting, environmental setting, population behavior, and lifestyle
of that area.

3.6 Factors affecting MP distribution in air

MP may alter its abundance due to several factors, such as
population number, architectural features of habitat, human
activities, urban topography, and particle residence time.

TABLE 1 Microplastic characteristics of indoor dust in different countries.

Location Abundance Abundant
morphology

Abundant
size

Abundant
chemical
composition

Possible source Reference

This study 4333.18 ± 353.85 MP/g Or
5.4 MP/m3

Fiber Less than 0.5 mm PET and NYLON Indoor and Outdoor
sources

China 69,100–776,000 items/g Fiber PET, PA, polypropylene Textile sources Peng et al.
(2023)

California,
United States

0.4 ± 20.6 n/m3 Fiber, Fragment 641–810.7 μm PS, PET, PE,Textiles Food packaging,
construction materials

Gaston et al.
(2020)

China 1.47–21.4 × 102 items/cm2 Fiber - Polyester Textile product

Paris, France 1 ± 60 n/m3 Fiber 50–3,250 μm PP Carpets, Sofas, Chairs Dris et al. (2017)

Iran 90.8 and 80.8 items/mg Fiber >1,000 μm PE Furniture, Furnishing,
Clothing, and Household

Kashfi et al.
(2022)

Aarhus,
Denmark

9.3 ± 5.8 n/m3 Fiber, Fragment 11–370 μm Polyester Carpets, sofas, chairs Vianello et al.
(2019)

Punjab, Pakistan 100–350 items/m2 Microfibers - - Textile products, by-
products of plastic-based
products

Alam et al.
(2023)
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3.6.1 Number of population
MP abundance in the indoor dust was largely varied with the

number of people living in those habitats. This study shows a lower
amount of MP in indoor dust of residential and institutional areas,
while commercial and industrial indoor dust was highly
contaminated with MP. The average MP concentration of this
area is 2.34 times higher in industrial and commercial areas than
in institutional and residential areas. This may be because the
number of people staying in institutional and residential areas is
much lower than the number of people staying or working in
commercial and industrial areas. It may also be because people
in populated areas use more plastic products than in lower-density
(Wright et al., 2020). Jahandari, (2023) reported in his study the
similar things. However, this study also indicated that this situation
may also be altered by other factors such as human activity, age, food
habitat and other things.

3.6.2 Human activity
Human activity, as determined in this study, is another crucial

factor that influencesMP abundance in indoor dust. The number ofMP
in the indoor dust increases its number where human activity increases.
In this study, the highest amount of MP was detected in industrial and

commercial areas where human activity is higher. On the other hand,
lower amounts of MP were detected in residential and institutional
areas because of lower human activity. However, the activity in the
institutional area was greater than in residential areas, as the number of
people involved in the institutional area was greater than in the
residential area. But MP was detected in higher amounts in
residential areas. This may be because the amount of time spent in
residential areas ismuch higher than in institutional areas. EPA revealed
that Americans spend around 90% of their time indoors, with 65% of
that time being spent at home (Jahandari, 2023).

3.6.3 Building materials, furniture, and appliances
Building materials, furniture, and appliances gradually increased

from residential to industrial and commercial areas. This furniture,
building materials, and appliances are potential sources of MP in
indoor dust. For that reason, the MP in industrial and commercial
areas may be much higher than in residential and commercial areas.

3.6.4 Urban topography
Urban topographymeans the number of buildings or infrastructure

present in certain areas. Generally, industrial and commercial areas are
more congested than residential and institutional areas. The buildings

FIGURE 4
Source and distribution of indoor dust MP along with its health impact.
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are larger than residential areas. Urban canyons, formed by narrow
streets or towering buildings, trap pollutants and stop them from
diffusing into the atmosphere (Huang Y. et al., 2021; Ollander et al.,
2020). That may increase the outdoor source of MP in indoor dust. The
dispersion of particles in the air like MP in urban areas can also be
influenced by wind modulation, which is defined as variations in wind
patterns brought on by urban topography (Ollander et al., 2020; Prata
et al., 2020). Actually, wind in urban settings can create turbulence and
eddies when it passes over densely populated buildings, which can trap
or spread airborne pollutants in various ways (Kurppa et al., 2018;
Wright et al., 2020). Furthermore, a downdraft on the leeward side of
structures caused by strong winds blowing over high-rise buildings may
result in a greater dispersion of air pollutants (Wang and Benson, 2021).

3.6.5 Particles residence time
Particle residence time means the time MP spends in the

atmosphere. This may vary with the density and weight of the
MP particles. It may also vary from other physical, chemical, and
environmental factors. This may be another reason behind the MP
abundance difference in different residential, institutional,
industrial, and commercial areas (Prata et al., 2020; Wang and
Benson, 2021). It also anticipated that density and size are
responsible factors behind the MP residence in the atmosphere.

3.7 Indoor MP sources, probable distribution
pathway, and human effects

MP in indoor dust generally comes from two types ofmajor sources
that are indoor sources and outdoor sources (Figure 4). Indoor sources
include textile sources such as cloths; furniture such as sofas, carpets,
and chairs; plastic tools and equipment such as packaging products of
cosmetics, cosmetics products, toys, and bags; and building materials.
Outdoor sources include industrial emissions, transportation sources,
mostly vehicle tires, road paints, varnish paints, construction paints,

packaging products, littering, population setting, agricultural activity,
sediment, and water sources. Apart from these nearby origins, MP can
also originate from far-off places, which is particularly significant for
isolated regions with minimal human activity. This is because
atmospheric transportation enables MP to travel to locations that
are far from their source. It is evident that the MP are not a local
issue because they have been found in air samples from far-off maritime
regions and even glacial territory (Liu et al., 2019).

This MP from indoor dust may be inhaled by humans and causes
several health effects such as respiratory disease, chronic disease, lung
problems, and respiratory cell damage (Lee et al., 2023). This MP may
also be deposited into human food and drinking water. It can easily be
ingested by humans as food. In this way, it may also disrupt endocrine,
cytotoxicity, inflammatory, metabolism effect, neurotoxicity, and
immune system dysfunction (Leifheit et al., 2021; Leslie et al., 2022;
MacHado et al., 2018; Picó et al., 2022; Yuan et al., 2022). MP, which is
not consumed by humans, may also transfer to another component of
the environment such as soil and water. In soil, it hampers the soil pH,
soil properties, soil water holding capacity, soil nutrient recycling
capacity, soil biota, and groundwater recharge capacity (Rana et al.,
2023). In water, it may alter its properties. As MP are harmful to the
human body, for that reason, MP containing water are unsuitable for
drinking. More than this, MP fromwater is harmful to water biota such
as fish, crab snails, frogs, etc. This aquatic species thought MP as their
food and ingested it (Haque et al., 2023). It may also mix with other
additives, such as heavy metals and other toxic elements. Furthermore,
MP may also degrade into nanoplastic by mechanical abrasion,
photochemical degradation, weathering degradation, and biological
processes (Song et al., 2017; Wang et al., 2021).

3.8 Health risks from MP inhalation

Inhalation, ingestion, and dermal contact are the major ways to be
exposed to a certain pollutant. Among them, inhalation and ingestion

FIGURE 5
Estimated Daily Intake (EDI) (mg/kg-bw/day) for MP in indoor dust.
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are considered potential pathways forMP exposure (Saygin et al., 2023).
Moreover, MP has now been detected in human blood (Leslie et al.,
2022), breast milk (Caba-Flores et al., 2023), and lungs (Cheng et al.,
2022; Ramsperger et al., 2023). In addition, the mean ingestion and
inhalation Estimated daily intake (EDI) values of indoor dust
microplastic were in the ranges of 27.39 ± 2.24, 6.42 ± 0.52, 2.36 ±
0.19, 1.02 ± 0.08 and 3.08E-6 ± 2.52E-7, 1.80E-6 ± 1.47E-7, 1.49E-6 ±
1.22E-7, 6.78E-7 ± 5.54E-8 mg/kg-bw/day for infants, toddlers,
children’s, and adults respectively (Figure 5). Exposure to MP in
humans continuously decreases from infants to adults for both
ingestion and inhalation. This result is consistent with the result of
(Saygin et al., 2023; Zhang et al., 2020a).

According to the Pollution load index (PLI) and Pollution Hazard
Index (PHI), it was in the minor and extreme risk category
(Supplementary Table S3). This PHI category is similar to a previous
study of Turkey (Saygin et al., 2023). Furthermore, depending on the kind
of polymer, plastic materials have the ability to sorb and transfer
infections and pollutants (such as antibiotics, heavy metals, etc.)
(Zhang et al., 2020b). Depending on the kind of polymer, different
organic and inorganic additives are included in plastic materials, and
these additives can pose additional health concerns to people. For
example, the use of plastic additives such as BPA in beverage cans
and food packaging causes liver dysfunction, increases insulin resistance,
complicates pregnancy, and causes issues with the reproductive system
andbrain because phthalates used to improve theflexibility anddurability
of materials can cause reproductive system abnormalities (Muhib et al.,
2023; Salthammer, 2022). Furthermore, due to their abilities as biocides,
antibacterial agents, lubricants, and fame retardants depending on the
type of polymer, metal-based additions are being utilized in plastic
materials more and more; nonetheless, the presence of metals might
result in a number of health problems (Turner and Filella, 2021).

4 Concluding remarks

In summary, the investigation of microplastics in indoor dust
has provided a nuanced understanding of the subtle yet pervasive
contamination within the sanctuary of our homes. The diverse array
of microplastic polymers identified in indoor dust samples reflects
the extensive infiltration of synthetic materials into the very fabric of
our living spaces. This study has not only quantified and
characterized the presence of microplastics but has also unraveled
patterns of distribution influenced by various indoor activities and
usage patterns along with EDI and health risks. This research will
contribute to the evolving field of microplastic studies by refining
methodologies for indoor sampling and analysis. The identified
patterns and factors influencing microplastic distribution within
homes will provide valuable insights for future research and policy
development. In addition, these findings highlight the importance of
interdisciplinary collaboration between environmental scientists,
public health experts, and policymakers. Integrating this
knowledge into broader discussions on indoor air quality and
human health is imperative for formulating effective strategies to
mitigate microplastic pollution at its source and safeguard the
wellbeing of individuals within indoor environments.
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