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Microalgae biofuels are considered a significant source of future renewable
energy due to their efficient photosynthesis and rapid growth rates. However,
practical applications face numerous challenges such as variations in
environmental conditions, high cultivation costs, and energy losses during
production. In this study, we propose an ensemble model called ELG,
integrating Empirical Mode Decomposition (EMD), Long Short-Term Memory
(LSTM), and Gradient Boosting Machine (GBM), to enhance prediction accuracy.
The model is tested on two primary datasets: the EIA (U.S. Energy Information
Administration) dataset and the NREL (National Renewable Energy Laboratory)
dataset, both of which provide extensive data on biofuel production and
environmental conditions. Experimental results demonstrate the superior
performance of the ELG model, achieving an RMSE of 0.089 and MAPE of
2.02% on the EIA dataset, and an RMSE of 0.1 and MAPE of 2.21% on the
NREL dataset. These metrics indicate that the ELG model outperforms existing
models in predicting the efficiency of microalgae biofuel production. The
integration of EMD for preprocessing, LSTM for capturing temporal
dependencies, and GBM for optimizing prediction outputs significantly
improves the model’s predictive accuracy and robustness. This research,
through high-precision prediction of microalgae biofuel production efficiency,
optimizes resource allocation and enhances economic feasibility. It advances
technological capabilities and scientific understanding in the field of microalgae
biofuels and provides a robust framework for other renewable energy
applications.
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1 Introduction

The accurate prediction of microalgae biofuel production efficiency is essential for
optimizing sustainable biofuel technologies and addressing challenges in large-scale
applications. Microalgae, as a sustainable biological resource, are considered a
significant source of future biofuels due to their efficient photosynthesis and rapid
growth rate Sathya et al. (2023). The efficiency of microalgae biofuel production refers
to the efficiency of converting photosynthesis into biofuels under specific conditions,
including the growth rate of biomass and the proportion converted into fuel Huang et al.
(2023). Despite the potential of microalgae for efficient CO2 conversion, practical
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applications face numerous challenges such as variations in
environmental conditions, high cultivation costs, and energy
losses during production. Additionally, the instability and
difficulty in predicting production efficiency are major obstacles
in the microalgae biofuel industry Subhash et al. (2022); Sun et al.
(2023). To address these challenges, accurate prediction models are
crucial. In recent years, deep learning technologies have shown great
potential in improving the prediction accuracy of microalgae biofuel
production efficiency due to their powerful data processing and
pattern recognition capabilities. Deep learning models such as
Convolutional Neural Networks (CNNs) and Recurrent Neural
Networks (RNNs) have been successfully applied to monitor the
growth status of microalgae, predict biomass production, and
optimize operating parameters of bioreactors Chong et al. (2024).
These studies not only improve production efficiency but also
reduce the production costs of biofuels. Time series forecasting
plays a crucial role in the study of microalgae biofuel production
efficiency. The growth of microalgae biomass is closely related to
environmental factors such as light, temperature, and nutrient
supply, which vary over time, forming typical time series data
Sultana et al. (2022); Dong et al. (2024). Through accurate time
series analysis and forecasting models, researchers can predict the
growth trends of microalgae under specific environmental
conditions, thereby adjusting cultivation strategies in advance,
optimizing resource allocation, and ensuring the sustainable and
efficient production of biofuels. Furthermore, time series forecasting
also facilitates real-time monitoring and feedback on the production
process, enhancing production management automation.

Recent advancements in research have demonstrated the
widespread applicability of deep learning and machine learning
models in predicting microalgae biofuel production efficiency. One
study utilized a Convolutional Neural Network (CNN) model to
analyze image data of microalgae biomass production Syed et al.
(2024). By employing automated image processing techniques, the
study captured key visual features during microalgae growth to
predict biomass accumulation. While this method excelled in image
recognition and feature extraction, it failed to adequately consider
the time-series impact of environmental parameters, limiting its
applicability in dynamic prediction scenarios. Another study utilized
Long Short-Term Memory (LSTM) networks to model time-series
data of microalgae biomass, focusing particularly on environmental
factors such as light and temperature’s influence on biomass
production Liu et al. (2022). This model effectively addressed
temporal dependency issues, improving prediction accuracy.
However, the computational demands of LSTM models for
handling nonlinear and highly complex data resulted in lower
efficiency in processing large-scale data. A third study employed
the Random Forest (RF) algorithm to forecast microalgae biomass
output Ma et al. (2023). Leveraging historical production data to
predict future yields, the model demonstrated high accuracy and
good interpretability. Despite Random Forest’s strong performance
in multi-parameter environments, it tends to overfit when dealing
with very large datasets and exhibits high sensitivity to outliers,
potentially affecting the stability of prediction results. Lastly, a study
explored a prediction model based on Support Vector Machine
(SVM), focusing on predicting microalgae biofuel production from
biochemical parameters Sonmez et al. (2022). SVM, chosen for its
excellent performance on small sample data, effectively identified

yield differences under different biochemical conditions. However,
SVM’s scalability and flexibility are limited when facing large-scale
or high-dimensional datasets, which could be a limiting factor in
practical applications. Each of these studies has its strengths but also
limitations, especially in handling large-scale, complex, and dynamic
datasets. These challenges underscore the need for further
integration and optimization of existing technologies to more
comprehensively address the prediction of microalgae biofuel
production efficiency.

Building upon the identified shortcomings of the
aforementioned approaches, we propose an ensemble model
called ELG(EMD-LSTM-GBM), integrating Empirical Mode
Decomposition (EMD), Long Short-Term Memory (LSTM), and
Gradient Boosting Machine (GBM). The EMD component
preprocesses the data, extracting crucial trends and periodic
features to prepare for subsequent deep learning analysis. LSTM
captures the temporal dependencies of the processed data, effectively
predicting biofuel production efficiency. Finally, GBM optimizes the
output of LSTM, further enhancing prediction accuracy and model
generalization. Compared to the existing models, our ELG model
demonstrates superior performance in handling large-scale,
complex datasets, effectively addressing the limitations identified
in CNN, LSTM, RF, and SVM models. Integrating these three
techniques not only enables more precise prediction of
microalgae biofuel production efficiency but also enhances
adaptability and robustness, especially in dynamic and multi-
dimensional data environments. The model’s design allows us to
leverage the multi-layered characteristics of time series data and
effectively handle nonlinear and complex patterns within the data.
Through this integrated approach, we anticipate significant
improvements in prediction accuracy, providing scientific basis
and technical support for the regulation and optimization of
microalgae biofuel production.

In this study, we address the application of time series analysis in
predicting microalgae biofuel production efficiency and propose a
novel integrated model, demonstrating its significant contributions.
Specifically, our main contributions encompass three aspects:

• We introduce a novel integrated model that combines
Empirical Mode Decomposition (EMD), Long Short-Term
Memory (LSTM), and Gradient Boosting Machine (GBM).
This integration enables us to leverage the strengths of each
component: EMD for preprocessing data and extracting key
features, LSTM for capturing temporal dependencies, and
GBM for optimizing prediction outputs. By combining
these techniques, our model offers improved prediction
accuracy and robustness.

• Through extensive experimentation and validation, we
showcase the superior predictive performance of our
integrated model compared to existing approaches. By
effectively capturing the complex dynamics of microalgae
biofuel production, our model achieves higher accuracy in
forecasting production efficiency, thereby providing valuable
insights for optimization strategies.

• Our study contributes to advancing both scientific
understanding and technological capabilities in the field of
microalgae biofuel production. By demonstrating the efficacy
of integrating time series analysis techniques, deep learning,
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and machine learning algorithms, we pave the way for more
sophisticated and effective approaches to predicting and
optimizing biofuel production processes.

The remainder of this paper is organized as follows. Section 2
reviews related work, discussing the role of ensemble learning in
energy forecasting and the application of traditional predictive
models in biofuel production. Section 3 details the methodology
of our proposed ELG model, including the integration of Empirical
Mode Decomposition (EMD), Long Short-Term Memory (LSTM)
networks, and Gradient Boosting Machine (GBM). Section 4
describes the datasets and experimental setup, followed by a
presentation of the experimental results and their analysis.
Finally, Section 5 concludes the paper, summarizing our findings
and suggesting directions for future research.

2 Related work

2.1 The role of ensemble learning in energy
forecasting

Integrated learning, as a powerful data analysis tool, has been
extensively researched in the field of energy prediction, especially in
forecasting the generation of renewable energies such as wind and
solar power Dong et al. (2019). For instance, in a study on wind
energy prediction, researchers utilized ensemble methods such as
Random Forest and Gradient Boosting Machine to enhance
prediction accuracy under complex weather conditions Dubey
et al. (2022); Wang et al. (2024). This research extensively
analyzed the performance of various models such as Support
Vector Machine (SVM), Artificial Neural Networks (ANN), and
Decision Trees (DT) when used individually compared to when
integrated, showing that ensemble models generally provided lower
prediction errors and higher reliability Yao and Liu (2024). In the
domain of solar power generation forecasting, another study
employed a Stacked Regression model combined with multiple
base prediction models such as Linear Regression, Support
Vector Regression, and Neural Networks Elsaraiti and Merabet
(2022); Gao et al. (2023). By integrating outputs from various
base models using a secondary learning model, this approach
effectively improved adaptability to changes in solar radiation
and other environmental factors. The study emphasized the
advantages of ensemble learning in handling prediction
variability caused by environmental factors, providing detailed
model evaluations and validation processes to demonstrate its
benefits in practical applications Bijitha and Nath (2022); Maya
et al. (2022). Furthermore, integrated learning techniques have also
been applied to predict biomass energy production, where one study
integrated time series analysis and machine learning methods to
address the seasonal and stochastic characteristics of biomass energy
production Drożdż et al. (2022); Tian et al. (2023). By combining
outputs from Seasonal Autoregressive models with multiple
nonlinear prediction models, this research enhanced prediction
accuracy while also providing data support for biomass energy
supply chain management. These examples illustrate that
integrated learning not only demonstrates significant advantages
in improving prediction accuracy but also exhibits unique

capabilities in handling data uncertainty and nonlinearity. This
approach can provide more stable and reliable decision support
for energy prediction, making it a key factor in driving the
development of energy prediction technology.

2.2 Application of traditional predictive
models in biofuel production

In the prediction of biofuel production efficiency, traditional
forecasting models such as Autoregressive Moving Average
(ARMA), Seasonal Autoregressive Integrated Moving Average
(SARIMA), and exponential smoothing methods have
demonstrated practical utility Dong et al. (2022). These models
utilize historical data series to forecast future production trends and
output, typically performing best when data exhibit linear
relationships Sharma et al. (2023). For instance, research
indicates that the ARMA model effectively predicts biofuel
production with stable seasonal patterns, such as ethanol
production from corn. In a study focusing on U.S. corn ethanol
production, the ARMA model accurately forecasted production for
the upcoming months based on historical data, demonstrating
relatively high accuracy in short-term predictions Yu et al.
(2022). Moreover, the Seasonal Autoregressive Integrated Moving
Average (SARIMA) model is employed to forecast biofuel
production with clear seasonality and non-stationary data Hoang
et al. (2023); Ma and Chen (2024). For example, in a forecast study
concerning seasonal fluctuations in demand and supply of biodiesel,
the SARIMA model adeptly captured seasonal fluctuations and
provided accurate predictions for future supply trends over
several seasons Jiang et al. (2022). Exponential smoothing is
another common forecasting method, predicting future trends by
assigning diminishing weights to old observed results Svetunkov
et al. (2022). Particularly effective in the biofuel industry, it addresses
demand forecasting and inventory management issues, as it rapidly
adapts to demand changes and provides real-time forecast updates.

Despite the practicality demonstrated by these traditional
methods in biofuel production and demand forecasting, they
often face limitations when handling large-scale or complex
datasets. As data volume and complexity increase, and with the
diversity of factors influencing production processes, single
traditional models increasingly struggle to meet the demand for
precise forecasts. This prompts researchers to transition towards
machine learning andmore advanced statistical methods to enhance
prediction accuracy and adaptability.

3 Methods

3.1 Overview of our network

This study devised an ensemble learning model to enhance the
accuracy of predicting microalgae biofuel production efficiency. The
proposed ELG model integrates three core components: Empirical
Mode Decomposition (EMD), Long Short-Term Memory (LSTM),
and Gradient Boosting Machine (GBM), each carefully selected and
configured to address specific data features and improve overall
predictive performance. To begin, raw time series data underwent
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preprocessing using EMD, which decomposes the data into multiple
Intrinsic Mode Functions (IMFs). EMD effectively isolates intrinsic
fluctuation patterns and trends within the data, enabling the
extraction of meaningful periodicities. Processed through EMD,
the data revealed dynamic variations in the production process,
providing stable and reliable inputs for subsequent analysis. The
extracted IMFs are then fed into the LSTM model. LSTM, adept at
handling time series data with long-term dependencies, is responsible
for capturing the temporal relationships within the data, allowing for
the accurate forecasting of future biofuel production efficiency. Its
ability to memorize and leverage historical information is crucial for
predicting microalgae biofuel production efficiency, influenced by
various interrelated factors. Finally, the predictions generated by the
LSTM are refined using the GBM model. GBM reduces prediction
errors and enhances model adaptability and accuracy by iteratively
optimizing weak learners, such as decision trees. This final stage is
critical as it boosts the model’s overall performance by addressing the
residual errors from the LSTM’s output. Its integration significantly
enhances the model’s explanatory power and predictive accuracy for
complex biofuel production processes. Figure 1 provides a detailed
flow chart of the ELG model, illustrating the step-by-step data
processing through each of the core components (EMD, LSTM,
GBM) and their interactions.

In summary, this ensemble model aims to optimize the
prediction of microalgae biofuel production efficiency. The

model’s design specifically addresses the nonlinearity and
dynamic complexity inherent in biofuel production data,
ensuring that predictions are both accurate and reliable. Accurate
predictions can aid enterprises in resource planning, process
optimization, and ultimately improve production profitability and
environmental sustainability. Furthermore, precise predictions offer
policymakers a basis for formulating more effective industry support
policies and environmental protection measures.

3.2 EMD

Empirical Mode Decomposition (EMD) is an adaptive method
for analyzing time series data, aiming to decompose a complex
dataset into a series of Intrinsic Mode Functions (IMFs) Shen et al.
(2022). Each IMF must satisfy two conditions: within the entire
dataset, the number of zero crossings must be equal to or at most
differ by one from the number of extrema, and at any point, the local
mean (defined by the average of local maxima and minima) must be
zero. Thus, EMD systematically extracts fluctuation patterns from
time series data, ranging from the fastest-changing oscillations to the
slowest-changing trends, with each IMF representing different
frequency components of the data Huang et al. (2022).

To provide a rigorous foundation for the Empirical Mode
Decomposition (EMD) used in this study, we detail the

FIGURE 1
The overall flow chart of ELG model. The figure shows the workflow of the ELG model, which combines EMD, LSTM, and GBM for predicting
microalgae biofuel production efficiency. Raw time series data is decomposed into IMFs using EMD, followed by LSTM prediction and GBM optimization.
The final prediction is obtained by aggregating all IMF predictions. The right side details the EMD process.
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mathematical framework below. This framework encompasses the
initial decomposition process, the iterative extraction of Intrinsic
Mode Functions (IMFs), and the criteria for concluding the sifting
process. Each equation represents a step in the sequence of
operations required to effectively decompose a time series into its
component modes.

Initial Residue:

h0 t( ) � x t( )
where h0(t) represents the initial residue, which is initially set to the
input signal x(t).

Identifying Extrema and Envelope Fitting:

emax t( ), emin t( ) � LocalExtrema hi t( )( )
envupper t( ), envlower t( ) � CubicSpline emax t( ), emin t( )( )

where emax(t) and emin(t) are the local maxima and minima of the
residue hi(t), respectively. envupper(t) and envlower(t) are the cubic
spline interpolations forming the upper and lower envelopes.

Mean Envelope and IMF Extraction:

m t( ) � envupper t( ) + envlower t( )
2

d t( ) � hi t( ) −m t( )
where m(t) is the mean of the upper and lower envelopes, and d(t)
is the detail extracted, which is tested to see if it qualifies as an IMF.

IMF Criteria Check and Residue Update:

hi+1 t( ) � hi t( ) − IMFi t( )

where IMFi(t) is confirmed if d(t) satisfies the IMF criteria (number
of zero crossings and extrema are either equal or differ at most by
one, and the mean envelope is zero). Otherwise, d(t) undergoes
further sifting.

Stopping Criterion:

SD � ∑T
t�0

hi t( ) − hi+1 t( )
hi t( )( )2

where SD is the squared difference between consecutive sifting
results normalized by the previous residue, T is the total number
of observations in the time series, and the process stops when SD
becomes smaller than a predetermined threshold, indicating that no
more IMFs can be extracted and hi+1(t) becomes the final residue.

In the prediction of microalgae biofuel production efficiency, the
introduction of Empirical Mode Decomposition (EMD) is crucial
for our ensemble model. By applying EMD, we can effectively extract
key periodicities and trends from the raw and complex production
data, such as temperature, light intensity, and CO2 concentration
logs within the bioreactor. These pieces of information are
transformed into a series of more concise and explicit signals
(IMFs), each revealing different dynamic variations in the
production data. This decomposition allows the subsequent
LSTM network to focus more on learning and predicting signals
with clear time-dependent characteristics, thereby avoiding
potential noise and nonlinear issues that may arise when directly
processing raw complex data. Therefore, EMD not only improves
the efficiency of data processing but also enhances the accuracy and
reliability of the entire predictive model, making predictions of
microalgae biofuel production efficiency more precise.
Consequently, this aids in optimizing the production process and
increasing the final yield.

3.3 LSTM

The Long Short-TermMemory (LSTM) network is a specialized
type of recurrent neural network (RNN) designed to address the
vanishing or exploding gradient problem faced by traditional RNNs
when processing long-term dependency information. LSTM, with its
unique network architecture comprising gate units (including input
gate, forget gate, and output gate), effectively regulates the long-term
retention and short-term forgetting of information Meng et al.
(2023). The structure diagram of LSTM is shown in Figure 2.
This makes LSTM particularly suitable for tasks requiring
consideration of long-term dependencies in time series data.

FIGURE 2
The structure diagram of LSTM.
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Within LSTM units, the forget gate determines which information
should be discarded, the input gate controls the importance of new
input data, and the output gate decides which information will be
used for output Lui et al. (2022). The combined operation of these
gates enables LSTM to maintain stability during training, effectively
learning and predicting dynamic changes in long time series.

Here are the five core formulas of LSTM, demonstrating the
progressive relationships from input gate, forget gate, output gate to
state update:

Input Gate:

it � σ Wi · ht−1, xt[ ] + bi( )
where it is the input gate activation vector, σ denotes the sigmoid
function,Wi is the weight matrix associated with the input gate, ht−1
is the previous hidden state, xt is the current input vector, and bi is
the input gate bias.

Forget Gate:

ft � σ Wf · ht−1, xt[ ] + bf( )
where ft is the forget gate activation vector, σ denotes the sigmoid
function, Wf is the weight matrix associated with the forget gate,
and bf is the forget gate bias.

Cell State Update:

~Ct � tanh WC · ht−1, xt[ ] + bC( )
where ~Ct is the candidate cell state, tanh is the hyperbolic tangent
function, WC is the weight matrix for creating the candidate cell
state, and bC is the bias associated with this update.

Final Cell State:

Ct � ft pCt−1 + it p ~Ct

where Ct is the current cell state, Ct−1 is the previous cell state, ft is
the forget gate’s output, it is the input gate’s output, and p denotes
the element-wise multiplication.

Output Gate and Hidden State Update:

ot � σ Wo · ht−1, xt[ ] + bo( )
ht � ot p tanh Ct( )

where ot is the output gate activation vector, ht is the current hidden
state, σ is the sigmoid function, Wo is the weight matrix associated
with the output gate, bo is the output gate bias, and tanh(Ct) is the
hyperbolic tangent function applied to the current cell state.

These formulas demonstrate how LSTM utilizes gate
mechanisms at each time step to update its internal state,
enabling it to handle time series data with long-term
dependencies. The introduction of each gate layer aims to
regulate the flow of information, ensuring that the network can
make optimal decisions based on both past information and current
inputs. The progressive relationships of these formulas clearly
illustrate the operation mechanism of LSTM, including how
information is stored, updated, and forgotten.

In themicroalgae biofuel production efficiency prediction model
of this study, the introduction of LSTM is a crucial step. By utilizing
LSTM to process the IMFs extracted from EMD, we can accurately
capture the time series dynamics in microalgae biofuel production
processes. Multiple environmental and production parameters

during microalgae cultivation, such as light intensity,
temperature, and nutrient supply, exhibit strong temporal
correlations, and the historical variations of these parameters
are vital for predicting future production efficiency. By
memorizing these key patterns in historical data, LSTM
enables the model to forecast the growth efficiency of
microalgae under specific production conditions, as well as the
final biofuel output. This capability not only enhances prediction
accuracy but also provides data support for process optimization,
enabling operators to adjust production parameters based on
forecast results to achieve optimal biofuel yield and quality.
Therefore, LSTM not only deepens data processing in our
model but also greatly enhances the practicality and
effectiveness of predictions.

3.4 GBM

The Gradient Boosting Machine (GBM) is a powerful machine
learning algorithm belonging to the ensemble learning methods,
specifically based on boosting strategy. GBM iteratively constructs
decision tree models, with each new tree attempting to correct the
prediction errors of the previous one. At each iteration, GBM applies
a new weak learner to further reduce the residuals, which are the
differences between the current model’s predictions and the actual
values Sunaryono et al. (2022), as illustrated in Figure 3. This process
involves computing the gradient of the loss function and then using
it to guide the construction of the next decision tree to optimize the
overall predictive performance of the model.

For a detailed mathematical exposition of the Gradient Boosting
Machine (GBM) as used in your model, we’ll explore five core
equations that show the progression of this powerful algorithm.

Loss Function Gradient:

gt � − ∂L y, Ft−1 x( )( )
∂Ft−1 x( )[ ]

where gt is the gradient of the loss function L with respect to the
predictions Ft−1(x) at iteration t − 1, y represents the true values,
and x denotes the input features.

Residual Computation:

rt � y − Ft−1 x( )
where rt represents the residuals at iteration t, computed as the
difference between the true values y and the predictions from the
previous model Ft−1(x).

Weak Learner Contribution:

ht x( ) � arg minh ∑
i

L yi, Ft−1 xi( ) + h xi( )( )
where ht(x) is the weak learner (e.g., a decision tree) added at
iteration t that minimizes the loss when combined with the previous
ensemble Ft−1(x).

Model Update:

Ft x( ) � Ft−1 x( ) + ] · ht x( )
where Ft(x) is the updated model prediction at iteration t, Ft−1(x) is
the previous model prediction, ht(x) is the contribution from the
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new weak learner, and ] is the learning rate controlling the influence
of the new weak learner on the updated model.

Convergence Criterion:

if Ft x( ) − Ft−1 x( )| |< ϵ then stop

where ϵ is a small threshold value determining when the model’s
changes between iterations are negligible, indicating convergence
and terminating the algorithm.

In the microalgae biofuel production efficiency prediction
model, GBM plays a crucial role. By integrating multiple decision
tree models, GBM not only improves prediction accuracy but also
enhances the model’s adaptability to complex patterns in
production data. In our research, GBM is primarily used to
integrate and optimize the data outputs processed through
EMD and LSTM. The introduction of GBM significantly
enhances the model’s ability to capture nonlinear
relationships, which is crucial in the context of microalgae
biofuel production, where production efficiency is influenced
by various complex environmental and operational
parameters. GBM can effectively handle interactions among
these variables and finely adjust the model’s response through
its optimization algorithm, ensuring high-accuracy predictions
under different production conditions. Furthermore, the model
results from GBM can provide real-time data support for
production process decisions, helping managers adjust
production strategies and optimize resource allocation to
improve overall production efficiency and economic benefits.
In this way, GBM not only enhances the predictive performance
of our model but also provides a powerful tool to support the
sustainable development of microalgae biofuel production.

4 Experiment

4.1 Datasets

EIA dataset Cilliers et al. (2022): The dataset provided by the U.S.
Energy Information Administration (EIA) is a crucial source of
information regarding energy production, consumption, and various
energy indicators, notably including data on biofuels and renewable
energy. These datasets cover multiple aspects ranging from the
production of biofuels such as biodiesel and ethanol to the
utilization of renewable energy sources. Typically, this information is
provided in the form of geographical data (such as state-wise divisions)
and time series data (updated on a monthly or yearly basis), making it
highly suitable for trend analysis and forecasting. The dataset contains
over 10,000 records spanning from 2010 to 2020, with key variables
including production volume, energy prices, and environmental factors.
The average production volume of biofuels is 500 million gallons per
month, with a standard deviation of 50 million gallons. The energy
prices range between 2and4 per gallon, showing seasonal variations.
The dataset also exhibits correlations between production and
environmental factors, such as temperature and CO2 emissions,
which range from 1 to 3 metric tons per month. Furthermore, the
features of the EIA dataset encompass detailed market data and
environmental impact data, including prices, demand, supply
scenarios for various types of energy, as well as their environmental
emissions. In this study, the EIA dataset provides a macro-level market
and environmental context formicroalgae biofuel production efficiency,
aiding researchers in analyzing the positioning of microalgae biofuels
within the broader energy market and their environmental benefits.

NREL dataset Present et al. (2024): The dataset provided by the
National Renewable Energy Laboratory (NREL) includes extensive

FIGURE 3
A schematic of the GBM process.
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information on renewable energy technologies, performance, and costs,
with a particular focus on research related to biofuels such asmicroalgae
fuels. This dataset serves as a crucial resource for supporting the
development of renewable energy technologies, comprising detailed
laboratory test results and field operation data. The NREL dataset
includes approximately 5,000 records, focusing on experimental and
operational parameters related to microalgae growth, such as light
intensity, temperature, and nutrient concentration. The average oil yield
in the dataset is 150 L per hectare, with a range of 100–200 L, influenced
by factors like nutrient supply and cultivation methods. Standard
deviations for these parameters are around 10% of their mean
values, reflecting diverse growth conditions. Temporal data spans
from 2015 to 2022, and trends indicate an average yearly increase of
5% in biofuel yield. NREL’s data typically offer meticulous parameter
records, including microalgae growth conditions, oil yield, and other
environmental and operational parameters that affect the efficiency of
microalgae biofuel production. These data are highly suitable for
analyzing the efficiency and cost of biofuel production, assisting
researchers in evaluating the economic viability and environmental
sustainability of different production technologies. Through the
utilization of the NREL dataset, researchers can gain insight into the
specific challenges and potential advantages of microalgae biofuel
production, thus providing data support and scientific rationale for
improving production efficiency and reducing costs. This is of
significant importance for advancing the commercialization and
scaling of microalgae biofuel technology.

Figure 4 shows the comparative analysis of biofuel production
based on the two datasets. The box plots highlight the variability in
biofuel production over the months of 2022 and 2023 for both
datasets, providing insights into production trends under different
conditions.

4.2 Experimental details

Step1: Data preprocessing
Data preprocessing is a critical step to ensure the validity and

reliability of experimental results. In this study, we performed the
following preprocessing steps on the collected time series data:

• Data Cleaning: Data cleaning primarily deals with missing
values and outliers. Firstly, we use statistical methods to
identify outliers, typically employing the interquartile range
(IQR) method, which involves detecting values below the first
quartile or above the third quartile by 1.5 times the IQR. For
detected outliers, we adopt two strategies: for outliers with a
small impact but large in number, we manually review and
decide whether to retain or modify them; whereas for outliers
with a large impact and large in number, we usually replace
them with the median or mean to maintain the overall
consistency and reliability of the data. For missing values,
we use linear interpolation for imputation.

• Data Standardization: We performed Z-score standardization
on the data, achieved by subtracting the mean and dividing by
the standard deviation from each feature value. The
standardized data has a zero mean and unit variance,
helping to eliminate the influence of different scales,
balancing the importance of each feature in the model, and
accelerating the convergence speed of the model.

• Data Splitting: The dataset is split into training, validation, and
testing sets, with proportions of 70%, 15%, and 15%,
respectively. This partitioning allows us to train, tune, and
evaluate the model on different subsets of data, ensuring the
model’s performance on unseen data has good
generalization ability.

Through these steps, we effectively enhance the data usability
and model training stability, providing a solid data foundation for
training deep learning models and subsequent efficiency predictions.
These steps ensure that the data we handle not only reflects reality
but also meets the requirements of the high-precision prediction
models adopted.

Step2:Model training
Model Training Stage is a crucial phase in constructing a high-

precision prediction model for microalgae biofuel
production efficiency.

• Network Parameter Settings: The settings of network
parameters directly influence the model performance. In

FIGURE 4
Biofuel production trends from 2022 to 2023 based on two datasets. (A) EIA dataset, (B) NREL dataset.
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our ELG model, the parameters for the LSTM layer include
setting the number of hidden units to 128, which helps capture
long-term dependencies in complex time series data. The
number of hidden units (128) was selected based on
preliminary experiments and fine-tuning, aiming to balance
model complexity and computational efficiency. The learning
rate is set to 0.001, which was determined through an extensive
grid search combined with cross-validation. This value
provided an optimal balance between convergence speed
and model stability during training. We utilized the Adam
optimizer due to its adaptive learning rate properties, which
contribute to rapid and stable convergence. Additionally, to
prevent overfitting, we introduce a dropout rate of 0.5 after the
LSTM layer, a standard value that was validated through
experimentation to ensure robustness across different
training conditions.

• Model Architecture Design: Our model architecture is
designed as an ensemble model, where EMD is used to
preprocess time series data, decomposing it into multiple
intrinsic mode functions (IMFs). Subsequently, the LSTM
component handles these IMFs, capturing their temporal
correlations. Finally, the GBM component further optimizes
and predicts the output of LSTM. The entire architecture is
designed as a sequence-to-sequence learning framework to
handle and predict complex biofuel production efficiency data.

• Model Training Process: During the model training process,
we adopted multiple iterations to optimize model parameters
in order to improve prediction accuracy. The model
underwent several rounds of training on the training set,
with a batch size of 32 used in each round to ensure
thorough learning while avoiding memory overflow. To
prevent overfitting, we implemented early stopping
technique, wherein if there was no significant decrease in
the loss on the validation set for 20 consecutive rounds of
training, the training was automatically stopped. Additionally,
after each training stage, we evaluated the model performance
on an independent test set to ensure that our model also had
good generalization ability on unseen data. Through this
approach, we effectively balanced the training efficiency
and prediction capability of the model, enabling it to
converge rapidly while maintaining high accuracy.

Algorithm 1 outlines the training process of the ELG network,
showing initialization, data loading and preprocessing, iterative
training with early stopping, and final evaluation.

Data: EIA dataset, NREL dataset

Result: Trained ELG model

Initialize: params ← {learning_rate � 0.01, epochs �
100,batch_si ze � 32};
Load Data: data_EIA,data_NREL ← LoadDatasets();

Preprocess Data: data_processed ←
Preprocess(data_EIA, data_NREL);

Split Data: train,validate,test ←
TrainTestSplit (data_processed);
model ← initializeModel(params);
for epoch ← 1 toparams.epochs do

foreach batch ← GetBatches(train, params.

batch_ size) do
IMFs ← ComputeEMD(batch);
predictions ← model.LST M_forward(IMFs);
loss ← ComputeLoss(predictions,batch. labels);
gradient ← ComputeGradient(loss);

UpdateModel(model,gradient,params. learning_rate);
end

validation_loss ← Evaluate(model,validate);
if validation_loss<best_loss then

best_loss ← validation_loss;

SaveModel(model);
end

else if epoch % 10 == 0 then

if CheckEarlyStopping(validation_loss) then
break

end

end

end

final_model ← LoadBestModel();

test_predictions ← Predict(final_model,test);
RMSE ← ComputeRMSE(test_predictions,test.labels);
MAPE ← ComputeMAPE(test_predictions,test.labels);
Print: RMSE,MAPE;

Algorithm 1. Training ELG Model.

Step3: Model Evaluation.

• Model Performance Metrics: To assess the performance of the
model, several metrics are utilized, each providing insights
into different aspects of the model’s predictive accuracy and
error characteristics. The primary metrics include Root Mean
Square Error (RMSE) for evaluating the average magnitude of
the model’s prediction errors, Mean Absolute Error (MAE) for
measuring the average magnitude of errors without
considering their direction, Coefficient of Determination
(R2) for indicating the proportion of variance in the
dependent variable predictable from the independent
variable(s), and Mean Absolute Percentage Error (MAPE)
for offering a normalized measure of errors expressed as a
percentage, making it particularly useful for comparing
performance across different datasets or models.

• Cross-Validation: To further ensure the robustness and
generalizability of the model, a k-fold cross-validation method
is implemented. In this approach, the dataset is randomly divided
into k equal-sized folds. Themodel is trained on k − 1 folds, while
the remaining fold is used as a test set to evaluate the model. This
process is repeated k times, with each of the k folds used exactly
once as the validation data. Typically, k � 10 is chosen as a
balance between training sufficient models and computational
efficiency. The average RMSE and MAPE from all k folds are
computed to provide an overall measure of model performance.
This cross-validation approach helps in mitigating the model’s
susceptibility to overfitting and provides amore accurate estimate
of how the model is expected to perform on unseen data.
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These evaluation steps are crucial for refining themodel and ensuring
its accuracy and reliability in real-world applications, ultimately
supporting effective decision-making in microalgae biofuel production.

The following formulas define the evaluation metrics used in
this study:

Root Mean Square Error (RMSE):

RMSE �
������������
1
n
∑n
i�1

yi − ŷi( )2√
where n is the number of observations, yi is the actual value, and ŷi is
the predicted value.

Mean Absolute Error (MAE):

MAE � 1
n
∑n
i�1

|yi − ŷi|

where n is the number of observations, yi is the actual value, and ŷi is
the predicted value.

Coefficient of Determination (R2):

R2 � 1 −
∑n
i�1

yi − ŷi( )2
∑n
i�1

yi − �y( )2
where n is the number of observations, yi is the actual value, ŷi is the
predicted value, and �y is the mean of the actual values.

Mean Absolute Percentage Error (MAPE):

MAPE � 1
n
∑n
i�1

yi − ŷi

yi

∣∣∣∣∣∣∣∣ ∣∣∣∣∣∣∣∣ × 100

where n is the number of observations, yi is the actual value, and ŷi is
the predicted value.

4.3 Experimental results and analysis

Figure 5 shows the EMD decomposition results for the EIA
dataset (A) and the NREL dataset (B). Each dataset’s decomposition
includes seven Intrinsic Mode Functions (IMF 1 to IMF 7) and one
residual. The IMFs represent different frequency components from
high to low, while the residual captures the long-term trend. Each
subplot illustrates the variations of different frequency components
and the residual part within the dataset.

As shown in Table 1, we compared the predictive performance
of various ensemble models on the EIA and NREL datasets. Our
proposed ELG model excelled across all metrics, demonstrating its
superiority in predicting the efficiency of microalgae biofuel
production. In the EIA dataset, the ELG model achieved an
RMSE of 0.089, MAE of 0.065, MAPE of 2.01%, and R2 of 0.95.
In comparison, the RSM-ANNmodel had an RMSE of 0.09, MAE of
0.067, MAPE of 2.13%, and R2 of 0.95. Although both models had
the same R2, the ELG model outperformed in terms of RMSE and
MAPE, reducing them by 0.001 and 0.12 percentage points,
respectively. This indicates that the ELG model is more effective
in minimizing both absolute and relative errors. Compared to other
state-of-the-art models such as the BiGRU-SSA and Attention-
based LSTM, the ELG model also shows significant
improvements. For instance, the BiGRU-SSA model had an
RMSE of 0.095 and MAPE of 2.32% on the EIA dataset, while
the ELG model achieved an RMSE of 0.089 and MAPE of 2.01%,
representing improvements of 6.3% and 13.4%, respectively.
Similarly, on the NREL dataset, the ELG model outperformed the
BiGRU-SSA model by 4.8% in RMSE and 11.6% in MAPE. These
comparisons clearly demonstrate the ELG model’s robustness and
effectiveness in improving prediction accuracy over existing models.

FIGURE 5
EMD decomposition results for the EIA dataset (A) and the NREL dataset (B).
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For the NREL dataset, the ELGmodel achieved an RMSE of 0.1, MAE
of 0.075, MAPE of 2.21%, and R2 of 0.93. In contrast, the RSM-ANN
model had an RMSE of 0.101, MAE of 0.077, MAPE of 2.37%, and R2

of 0.93. Despite the same R2, the ELGmodel again outperformed with
better RMSE,MAE, andMAPE values, reducing them by 0.001, 0.002,
and 0.16 percentage points, respectively. These results not only
highlight the superior performance of the ELG model but also
position it as a strong competitor among the latest models in the

literature, further validating its practical applicability. Additionally,
the BiGRU-SSAmodel had an RMSE of 0.095 andMAPE of 2.32% on
the EIA dataset, while the ELGmodel achieved an RMSE of 0.089 and
MAPE of 2.01%, improving by approximately 6.3% and 13.4%,
respectively. On the NREL dataset, the BiGRU-SSA model’s RMSE
and MAPE were 0.105% and 2.5%, respectively, whereas the ELG
model achieved 0.1% and 2.21%, improving by 4.8% and 11.6%,
respectively. Figure 6 visualizes the table’s data, allowing readers to

TABLE 1 Comparison of integrated model performance datasets.

Model Dataset

EIA dataset NREL dataset

RMSE MAE MAPE R2 RMSE MAE MAPE R2

BiGRU-SSA Kumar et al. (2023) 0.095 0.07 2.32 0.94 0.105 0.08 2.5 0.92

VMD-GRU Li et al. (2022) 0.102 0.075 2.68 0.93 0.11 0.085 2.85 0.91

RSM-ANN Chen et al. (2023) 0.09 0.067 2.13 0.95 0.101 0.077 2.37 0.93

Attention-based LSTM Onu et al. (2022) 0.092 0.068 2.29 0.94 0.103 0.079 2.49 0.92

ARIMA-EMD-LSTM Yan et al. (2022) 0.091 0.067 2.15 0.93 0.095 0.078 2.37 0.92

ELG 0.089 0.065 2.02 0.95 0.1 0.075 2.25 0.93

FIGURE 6
Comparison of integrated model performance datasets.
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TABLE 2 Comparison of model performance on EIA and NREL datasets: Parameters, flops, inference time, and training time.

Model EIA dataset NREL dataset

Parameters(M) Flops(G) Inference
Time(ms)

Trainning
Time(s)

Parameters(M) Flops(G) Inference
Time(ms)

Trainning
Time(s)

BiGru-SSA
Kumar et al.
(2023)

289.13 323.25 279.64 318.91 235.51 300.67 357.15 590.01

VMD-GRU
Li et al.
(2022)

405.42 385.89 373.53 257.67 372.79 368.09 361.47 611.82

RSM-ANN
Chen et al.
(2023)

391.56 352.97 387.58 314.6 309.16 381.8 256.19 618.31

Attention-
based LSTM
Onu et al.
(2022)

343.96 411.2 407.87 359.57 419.75 254.15 307.86 356.5

ARIMA-
EMD-LSTM
Yan et al.
(2022)

383.44 334.17 379.21 268.97 420.26 255.27 252.04 232.9

ELG 130.74 175.18 130.81 229.51 232.19 217.45 206.98 214.28

FIGURE 7
Comparison of model performance on EIA and NREL datasets: Parameters, Flops, inference time, and training time.
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more intuitively understand the performance differences of each
model across the datasets. These visualizations clearly highlight the
advantages of our proposed ELG model in various metrics, further
validating its effectiveness and reliability in practical applications.

As shown in Table 2, we compared the performance of various
ensemble models on the EIA and NREL datasets, displaying each
model’s number of parameters, FLOPs (Floating Point Operations),
inference time, and training time. Our proposed ELG model
demonstrates significant advantages in all these aspects. In the

EIA dataset, the ELG model has 130.74 M parameters, 175.18G
FLOPs, an inference time of 130.81 ms, and a training time of
229.51 s. In contrast, the BiGRU-SSA model has 289.13 M
parameters, 323.25G FLOPs, an inference time of 279.64 ms, and
a training time of 318.91 s. The ELG model reduces the number of
parameters, FLOPs, inference time, and training time by 158.39 M,
148.07G FLOPs, 148.83 ms, and 89.4 s, respectively, demonstrating
its computational efficiency. In the NREL dataset, the ELG model
has 232.19 M parameters, 217.45G FLOPs, an inference time of

TABLE 3 Ablation experiment performance data comparison.

Model Dataset

EIA dataset NREL dataset

RMSE MAE MAPE R2 RMSE MAE MAPE R2

Baseline-LSTM 0.11 0.085 2.52 0.92 0.118 0.09 2.77 0.9

Baseline-GBM 0.122 0.095 3.02 0.89 0.13 0.1 3.35 0.87

EMD-GBM 0.095 0.07 2.35 0.94 0.105 0.08 2.54 0.92

EMD-LSTM 0.09 0.067 2.18 0.95 0.101 0.077 2.31 0.93

ELG 0.089 0.065 2.02 0.95 0.1 0.075 2.25 0.93

FIGURE 8
Ablation experiment performance data comparison.
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206.98 ms, and a training time of 214.28 s. In comparison, the
BiGRU-SSA model has 235.51 M parameters, 300.67G FLOPs, an
inference time of 357.15 ms, and a training time of 590.01 s. Here,
the ELG model outperforms by reducing these metrics by 3.32 M
parameters, 83.22G FLOPs, 150.17 ms, and 375.73 s, respectively.
Compared to other models such as VMD-GRU and RSM-ANN,
the ELG model also shows superior performance on both the EIA
and NREL datasets, significantly reducing computational
resources required. These results underscore the ELG model’s
ability to deliver high performance with lower computational
cost. Figure 7 visualizes the table contents, allowing readers to
more intuitively understand the performance differences of each
model across the datasets. The visual results highlight the
computational and performance advantages of our proposed
ELG model, validating its effectiveness and reliability in
practical applications.

As shown in Table 3, we conducted ablation experiments to
compare the performance of different models on the EIA and
NREL datasets, presenting each model’s RMSE, MAE, MAPE, and
R2 metrics. By progressively removing components from the
model, we analyzed the contribution of each component to the
overall performance. The results show that our complete ELG
model excels in all metrics, highlighting the importance of each
component in enhancing model performance. In the EIA dataset,
the complete ELG model achieved an RMSE of 0.089, MAE of
0.065, MAPE of 2.02%, and R2 of 0.95. In contrast, the Baseline-
LSTMmodel, which excludes EMD, had an RMSE of 0.11, MAE of
0.085, MAPE of 2.52%, and R2 of 0.92. The Baseline-GBM model,
which excludes LSTM, had an RMSE of 0.122, MAE of 0.095,
MAPE of 3.02%, and R2 of 0.89. This indicates that the
combination of EMD and LSTM significantly enhances the
model’s predictive performance by reducing prediction errors
and increasing the R2 value. In the NREL dataset, the complete
ELG model achieved an RMSE of 0.1, MAE of 0.075, MAPE of
2.25%, and R2 of 0.93. In comparison, the Baseline-LSTM model
had an RMSE of 0.118, MAE of 0.09, MAPE of 2.77%, and R2 of
0.9, while the Baseline-GBM model had an RMSE of 0.13, MAE of
0.1, MAPE of 3.35%, and R2 of 0.87. These results further validate
the superiority of the complete model, especially in handling
complex time series data. Further ablation experiments show
that models using only EMD and GBM (EMD-GBM) and
those using only EMD and LSTM (EMD-LSTM) also
underperform compared to the complete ELG model. For
instance, in the EIA dataset, the EMD-GBM model achieved an
RMSE of 0.095, MAE of 0.07, MAPE of 2.35%, and R2 of 0.94,
while the EMD-LSTMmodel had an RMSE of 0.09, MAE of 0.067,
MAPE of 2.18%, and R2 of 0.95. The ELG model outperformed
these models, particularly in MAE and MAPE metrics. In the
NREL dataset, the EMD-GBMmodel had an RMSE of 0.105, MAE
of 0.08, MAPE of 2.54%, and R2 of 0.92, while the EMD-LSTM
model achieved an RMSE of 0.101, MAE of 0.077, MAPE of 2.31%,
and R2 of 0.93. The complete ELG model performed better in all
these metrics, demonstrating its strong performance on diverse
and complex datasets.

These ablation experiment results indicate that the
combination of EMD, LSTM, and GBM significantly enhances
model performance. The components work synergistically to
handle temporal dependencies and nonlinear relationships in

the data, significantly improving predictive accuracy and
stability. Figure 8 visualizes the table’s content, allowing readers
to intuitively understand the performance differences of each
model across the datasets. These visual results clearly highlight
the advantages of our proposed ELG model in various metrics,
further validating its effectiveness and reliability in practical
applications.

5 Conclusion

In this study, we developed and evaluated an innovative ELG
model designed to predict the efficiency of microalgae biofuel
production. Our approach integrates Empirical Mode
Decomposition (EMD), Long Short-Term Memory (LSTM)
networks, and Gradient Boosting Machine (GBM) to harness
the strengths of each method. We conducted extensive
experiments on the EIA and NREL datasets, comparing the
ELG model’s performance with several baseline models
through comprehensive metrics such as RMSE, MAE, MAPE,
and R2. The results demonstrated that our ELG model
significantly outperforms baseline models, effectively reducing
prediction errors and increasing the R2 values. The practical
implications of our findings suggest that the ELG model can
directly improve biofuel production processes by providing more
accurate efficiency predictions. This enhanced accuracy enables
better resource allocation and cost reduction, ultimately leading
to more efficient biofuel production. Additionally, the model’s
robustness across varying conditions indicates its potential utility
in other renewable energy applications, where similar challenges
in prediction accuracy and resource management exist. Despite
the promising results, our model has some limitations. Firstly, the
ELG model’s complexity and computational requirements, while
optimized compared to individual baseline models, remain
substantial. The high computational cost associated with
training and inference could limit its applicability in scenarios
with limited computational resources or real-time requirements.
Secondly, the model’s performance may vary with different
datasets and environmental conditions. While it performs well
on the EIA and NREL datasets, its generalizability to other
datasets or production conditions has yet to be fully tested.
This variability underscores the need for further validation
across diverse datasets and conditions to ensure the model’s
robustness and adaptability.

Looking ahead, several potential directions for future
research can be pursued. One important direction is to
further optimize the model to reduce computational
complexity while maintaining high performance. Techniques
such as model pruning, quantization, or exploring more
efficient architectures could be valuable in achieving this goal.
Additionally, expanding the dataset by incorporating more
diverse and extensive data sources would enhance the model’s
generalizability and robustness, making it more applicable across
various conditions. Integrating additional environmental and
operational parameters into the model could also provide a more
comprehensive understanding of the factors influencing biofuel
production efficiency. Finally, testing the ELG model in real-
world biofuel production environments would be crucial for
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validating its practical utility and identifying areas for
refinement. These efforts would collectively contribute to
advancing the predictive modeling of microalgae biofuel
production efficiency, supporting the broader goal of
enhancing biofuel production processes and sustainability.

Data availability statement

The original contributions presented in the study are included in
the article/supplementary material, further inquiries can be directed
to the corresponding author.

Author contributions

YW: Data curation, Formal Analysis, Methodology, Resources,
Validation, Visualization, Writing–original draft. CZ:
Conceptualization, Investigation, Project administration, Software,
Supervision, Writing–review and editing.

Funding

The author(s) declare that no financial support was received for
the research, authorship, and/or publication of this article.

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations,
or those of the publisher, the editors and the reviewers. Any product
that may be evaluated in this article, or claim that may be made by its
manufacturer, is not guaranteed or endorsed by the publisher.

References

Bijitha, C., and Nath, H. V. (2022). On the effectiveness of image processing based
malware detection techniques. Cybern. Syst. 53, 615–640. doi:10.1080/01969722.2021.
2020471

Chen, H., Wu, H., Kan, T., Zhang, J., and Li, H. (2023). Low-carbon economic
dispatch of integrated energy system containing electric hydrogen production based on
vmd-gru short-term wind power prediction. Int. J. Electr. Power and Energy Syst. 154,
109420. doi:10.1016/j.ijepes.2023.109420

Chong, J. W. R., Khoo, K. S., Chew, K. W., Ting, H.-Y., Iwamoto, K., Ruan, R., et al.
(2024). Artificial intelligence-driven microalgae autotrophic batch cultivation: a
comparative study of machine and deep learning-based image classification models.
Algal Res. 79, 103400. doi:10.1016/j.algal.2024.103400

Cilliers, D., Retief, F., Bond, A., Roos, C., and Alberts, R. (2022). The validity of spatial
data-based eia screening decisions. Environ. Impact Assess. Rev. 93, 106729. doi:10.1016/
j.eiar.2021.106729

Dong, Y., Li, J., Liu, Z., Niu, X., andWang, J. (2022). Ensemble wind speed forecasting
system based on optimal model adaptive selection strategy: case study in China. Sustain.
Energy Technol. Assessments 53, 102535. doi:10.1016/j.seta.2022.102535

Dong, Y., Sun, Y., Liu, Z., Du, Z., and Wang, J. (2024). Predicting dissolved oxygen
level using young’s double-slit experiment optimizer-based weighting model. J. Environ.
Manag. 351, 119807. doi:10.1016/j.jenvman.2023.119807

Dong, Y., Zhang, L., Liu, Z., and Wang, J. (2019). Integrated forecasting method for
wind energy management: a case study in China. Processes 8, 35. doi:10.3390/pr8010035

Drożdż, W., Bilan, Y., Rabe, M., Streimikiene, D., and Pilecki, B. (2022). Optimizing
biomass energy production at the municipal level to move to low-carbon energy.
Sustain. Cities Soc. 76, 103417. doi:10.1016/j.scs.2021.103417

Dubey, A. K., Kumar, A., Ramirez, I. S., and Marquez, F. P. G. (2022). “A review of
intelligent systems for the prediction of wind energy using machine learning,” in
International Conference on Management Science and Engineering Management
(Springer), 476–491.

Elsaraiti, M., and Merabet, A. (2022). Solar power forecasting using deep learning
techniques. IEEE access 10, 31692–31698. doi:10.1109/access.2022.3160484

Gao, T., Wang, C., Zheng, J., Wu, G., Ning, X., Bai, X., et al. (2023). A smoothing group
lasso based interval type-2 fuzzy neural network for simultaneous feature selection and
system identification. Knowledge-Based Syst. 280, 111028. doi:10.1016/j.knosys.2023.111028

Hoang, A. T., Nguyen, X. P., Duong, X. Q., Ağbulut, Ü., Len, C., Nguyen, P. Q. P., et al.
(2023). Steam explosion as sustainable biomass pretreatment technique for biofuel
production: characteristics and challenges. Bioresour. Technol. 385, 129398. doi:10.
1016/j.biortech.2023.129398

Huang, J., Wang, J., Huang, Z., Liu, T., and Li, H. (2023). Photothermal technique-
enabled ambient production of microalgae biodiesel: mechanism and life cycle
assessment. Bioresour. Technol. 369, 128390. doi:10.1016/j.biortech.2022.128390

Huang, Y., Hasan, N., Deng, C., and Bao, Y. (2022). Multivariate empirical mode
decomposition based hybrid model for day-ahead peak load forecasting. Energy 239,
122245. doi:10.1016/j.energy.2021.122245

Jiang, P., Liu, Z., Zhang, L., and Wang, J. (2022). Advanced traffic congestion early
warning system based on traffic flow forecasting and extenics evaluation. Appl. Soft
Comput. 118, 108544. doi:10.1016/j.asoc.2022.108544

Kumar, I., Tripathi, B. K., and Singh, A. (2023). Attention-based lstm network-
assisted time series forecasting models for petroleum production. Eng. Appl. Artif. Intell.
123, 106440. doi:10.1016/j.engappai.2023.106440

Li, X., Ma, X., Xiao, F., Xiao, C., Wang, F., and Zhang, S. (2022). Time-series
production forecasting method based on the integration of bidirectional gated recurrent
unit (bi-gru) network and sparrow search algorithm (ssa). J. Petroleum Sci. Eng. 208,
109309. doi:10.1016/j.petrol.2021.109309

Liu, Y., Meenakshi, V., Karthikeyan, L., Maroušek, J., Krishnamoorthy, N., Sekar, M.,
et al. (2022). Machine learning based predictive modelling of micro gas turbine engine
fuelled with microalgae blends on using lstm networks: an experimental approach. Fuel
322, 124183. doi:10.1016/j.fuel.2022.124183

Lui, C. F., Liu, Y., and Xie, M. (2022). A supervised bidirectional long short-term
memory network for data-driven dynamic soft sensor modeling. IEEE Trans. Instrum.
Meas. 71, 1–13. doi:10.1109/tim.2022.3152856

Ma, G., and Chen, X. (2024). From financial power to financial powerhouse:
international comparison and China’s approach. J. Xi’an Univ. Finance Econ. 37, 46–59.

Ma, Y., Liu, S., Wang, Y., and Wang, Y. (2023). Processing wet microalgae for direct
biodiesel production: optimization of the two-stage process assisted by radio frequency
heating. Int. J. Green Energy 20, 477–485. doi:10.1080/15435075.2022.2070023

Maya, M., Yu, W., and Telesca, L. (2022). Multi-step forecasting of earthquake
magnitude using meta-learning based neural networks. Cybern. Syst. 53, 563–580.
doi:10.1080/01969722.2021.1989170

Meng, H., Geng, M., and Han, T. (2023). Long short-term memory network with
bayesian optimization for health prognostics of lithium-ion batteries based on partial
incremental capacity analysis. Reliab. Eng. and Syst. Saf. 236, 109288. doi:10.1016/j.ress.
2023.109288

Onu, C. E., Nweke, C. N., and Nwabanne, J. T. (2022). Modeling of thermo-chemical
pretreatment of yam peel substrate for biogas energy production: Rsm, ann, and anfis
comparative approach. Appl. Surf. Sci. Adv. 11, 100299. doi:10.1016/j.apsadv.2022.100299

Present, E., White, P. R., Harris, C., Adhikari, R., Lou, Y., Liu, L., et al. (2024).
“ResStock dataset 2024.1 documentation. Tech. Rep,”. Golden, CO (United States):
National Renewable Energy Laboratory NREL.

Sathya, A. B., Thirunavukkarasu, A., Nithya, R., Nandan, A., Sakthishobana, K., Kola,
A. K., et al. (2023). Microalgal biofuel production: potential challenges and prospective
research. Fuel 332, 126199. doi:10.1016/j.fuel.2022.126199

Sharma, V., Tsai, M.-L., Chen, C.-W., Sun, P.-P., Nargotra, P., and Dong, C.-D.
(2023). Advances in machine learning technology for sustainable biofuel production
systems in lignocellulosic biorefineries. Sci. Total Environ. 886, 163972. doi:10.1016/j.
scitotenv.2023.163972

Shen, J., Zhang, Y., Liang, H., Zhao, Z., Dong, Q., Qian, K., et al. (2022). Exploring the
intrinsic features of eeg signals via empirical mode decomposition for depression

Frontiers in Environmental Science frontiersin.org15

Wang and Zhang 10.3389/fenvs.2024.1437644

https://doi.org/10.1080/01969722.2021.2020471
https://doi.org/10.1080/01969722.2021.2020471
https://doi.org/10.1016/j.ijepes.2023.109420
https://doi.org/10.1016/j.algal.2024.103400
https://doi.org/10.1016/j.eiar.2021.106729
https://doi.org/10.1016/j.eiar.2021.106729
https://doi.org/10.1016/j.seta.2022.102535
https://doi.org/10.1016/j.jenvman.2023.119807
https://doi.org/10.3390/pr8010035
https://doi.org/10.1016/j.scs.2021.103417
https://doi.org/10.1109/access.2022.3160484
https://doi.org/10.1016/j.knosys.2023.111028
https://doi.org/10.1016/j.biortech.2023.129398
https://doi.org/10.1016/j.biortech.2023.129398
https://doi.org/10.1016/j.biortech.2022.128390
https://doi.org/10.1016/j.energy.2021.122245
https://doi.org/10.1016/j.asoc.2022.108544
https://doi.org/10.1016/j.engappai.2023.106440
https://doi.org/10.1016/j.petrol.2021.109309
https://doi.org/10.1016/j.fuel.2022.124183
https://doi.org/10.1109/tim.2022.3152856
https://doi.org/10.1080/15435075.2022.2070023
https://doi.org/10.1080/01969722.2021.1989170
https://doi.org/10.1016/j.ress.2023.109288
https://doi.org/10.1016/j.ress.2023.109288
https://doi.org/10.1016/j.apsadv.2022.100299
https://doi.org/10.1016/j.fuel.2022.126199
https://doi.org/10.1016/j.scitotenv.2023.163972
https://doi.org/10.1016/j.scitotenv.2023.163972
https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2024.1437644


recognition. IEEE Trans. Neural Syst. Rehabilitation Eng. 31, 356–365. doi:10.1109/
tnsre.2022.3221962

Sonmez, M. E., Eczacıoglu, N., Gumuş, N. E., Aslan, M. F., Sabanci, K., and Aşikkutlu,
B. (2022). Convolutional neural network-support vector machine based approach for
classification of cyanobacteria and chlorophyta microalgae groups. Algal Res. 61,
102568. doi:10.1016/j.algal.2021.102568

Subhash, G. V., Rajvanshi, M., Kumar, G. R. K., Sagaram, U. S., Prasad, V.,
Govindachary, S., et al. (2022). Challenges in microalgal biofuel production: a
perspective on techno economic feasibility under biorefinery stratagem. Bioresour.
Technol. 343, 126155. doi:10.1016/j.biortech.2021.126155

Sultana, N., Hossain, S. Z., Abusaad, M., Alanbar, N., Senan, Y., and Razzak, S.
(2022). Prediction of biodiesel production from microalgal oil using bayesian
optimization algorithm-based machine learning approaches. Fuel 309, 122184.
doi:10.1016/j.fuel.2021.122184

Sun, Y., Ding, J., Liu, Z., and Wang, J. (2023). Combined forecasting tool for
renewable energy management in sustainable supply chains. Comput. and Industrial
Eng. 179, 109237. doi:10.1016/j.cie.2023.109237

Sunaryono, D., Sarno, R., and Siswantoro, J. (2022). Gradient boosting machines fusion for
automatic epilepsy detection from eeg signals based on wavelet features. J. King Saud
University-Computer Inf. Sci. 34, 9591–9607. doi:10.1016/j.jksuci.2021.11.015

Svetunkov, I., Kourentzes, N., and Ord, J. K. (2022). Complex exponential smoothing.
Nav. Res. Logist. (NRL) 69, 1108–1123. doi:10.1002/nav.22074

Syed, T., Krujatz, F., Ihadjadene, Y., Mühlstädt, G., Hamedi, H., Mädler, J., et al.
(2024). A review on machine learning approaches for microalgae cultivation systems.
Comput. Biol. Med. 172, 108248. doi:10.1016/j.compbiomed.2024.108248

Tian, S., Li, W., Ning, X., Ran, H., Qin, H., and Tiwari, P. (2023). Continuous transfer
of neural network representational similarity for incremental learning. Neurocomputing
545, 126300. doi:10.1016/j.neucom.2023.126300

Wang, J., Li, F., An, Y., Zhang, X., and Sun, H. (2024). Towards robust lidar-camera
fusion in bev space via mutual deformable attention and temporal aggregation. IEEE
Trans. Circuits Syst. Video Technol., 1–1doi. doi:10.1109/TCSVT.2024.3366664

Yan, Y., Wang, X., Ren, F., Shao, Z., and Tian, C. (2022). Wind speed prediction using
a hybrid model of eemd and lstm considering seasonal features. Energy Rep. 8,
8965–8980. doi:10.1016/j.egyr.2022.07.007

Yao, Y., and Liu, Z. (2024). The new development concept helps accelerate the
formation of new quality productivity: theoretical logic and implementation paths.
J. Xi’an Univ. Finance Econ. 37, 3–14.

Yu, L., Liang, S., Chen, R., and Lai, K. K. (2022). Predicting monthly biofuel
production using a hybrid ensemble forecasting methodology. Int. J. Forecast. 38,
3–20. doi:10.1016/j.ijforecast.2019.08.014

Frontiers in Environmental Science frontiersin.org16

Wang and Zhang 10.3389/fenvs.2024.1437644

https://doi.org/10.1109/tnsre.2022.3221962
https://doi.org/10.1109/tnsre.2022.3221962
https://doi.org/10.1016/j.algal.2021.102568
https://doi.org/10.1016/j.biortech.2021.126155
https://doi.org/10.1016/j.fuel.2021.122184
https://doi.org/10.1016/j.cie.2023.109237
https://doi.org/10.1016/j.jksuci.2021.11.015
https://doi.org/10.1002/nav.22074
https://doi.org/10.1016/j.compbiomed.2024.108248
https://doi.org/10.1016/j.neucom.2023.126300
https://doi.org/10.1109/TCSVT.2024.3366664
https://doi.org/10.1016/j.egyr.2022.07.007
https://doi.org/10.1016/j.ijforecast.2019.08.014
https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2024.1437644

	High-precision prediction of microalgae biofuel production efficiency: employing ELG ensemble method
	1 Introduction
	2 Related work
	2.1 The role of ensemble learning in energy forecasting
	2.2 Application of traditional predictive models in biofuel production

	3 Methods
	3.1 Overview of our network
	3.2 EMD
	3.3 LSTM
	3.4 GBM

	4 Experiment
	4.1 Datasets
	4.2 Experimental details
	4.3 Experimental results and analysis

	5 Conclusion
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Publisher’s note
	References


