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Introduction:On intensive grassland dairy farms in high rainfall areas with poorly
drained soils, networks of open drainage channels linked to in-field drainage
systems are needed to enable farm operations. Nitrogen and phosphorus point
and diffuse sources may be connected to this open drainage channel network
along surface and subsurface pathways, with negative impacts upon delivery to
the downstream aquatic system.

Methods: This study developed a semi-quantitative risk assessment model by: (1)
selecting parameters (categorical or continuous) representing the nutrient
transfer continuum and (2) scoring (relative magnitude and impact) the risk of
nutrient source connectivity and delivery for every open drainage channel section
across seven dairy farms.

Results and Discussion: A Risk Index Classification System consisting of low,
medium, high, or very high-risk class was developed, with high or above requiring
a mitigation plan. Results showed that 23%, 68%, 9% and 0% of all open drainage
channels on study farms were identified as low, moderate, high and very high-
risk, respectively. A range from 2% to 25% per farm of the open drainage channels
was classified as high-risk that potentially needed mitigation, although none was
identified as very high-risk. Two-thirds of the high-risk open drainage channels
were connected to the farmyards, with potential for high nutrient loss from point
sources. A combined approach of source management and targeted breaking of
the pathway (e.g., in-channel filters, water diversion bars) may help minimise
nutrient losses from high risk open drainage channels on poorly draining soils.
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1 Introduction

Agricultural landscapes in areas of high annual precipitation and heavy textured soils
are characterised by high densities of open drainage channels, which provide outfalls for in-
field drainage systems (Shore et al., 2015; Tuohy et al., 2018). Open drainage channels,
comprising drainage ditches and smaller streams, are networked to collect and drain away
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excess water from different parts of a farm to larger water courses
(Kröger et al., 2007). Within the open drainage channel network,
streams exist as intermittent or perennial natural channels, whereas
drainage ditches exist as man-made channels that may be
intermittent or perennial, depending on their landscape position
and their interplay with subsurface water and groundwater. These
open drainage channels perform many functions (Daly et al., 2017;
Ezzati et al., 2020) including storage and release of nutrients by
sediments, transportation and interception of farm surface and
subsurface runoff which may carry nutrients to the larger
water courses.

It is important to minimise the source of nutrients and intercept
instantaneous and legacy nutrients from farms in high rainfall areas
(Fenton et al., 2021; Peyton et al., 2016; Valbuena-Parralejo et al.,
2019). In these areas, open drainage channels form an integral part
of the source, mobilisation, pathway, and receptor (S-M-P-R)
component of the nutrient transfer continuum (Haygarth et al.,
2005) (defined as the framework that captures the nutrient-loss
influencing factors from source to receptor). Water drained in both
natural andman-made open drainage channels may be nutrient-rich
from different nutrient sources that are mobilised through point
(e.g., farmyard (Martínez-Suller et al., 2010; Vero et al., 2020), farm
roadway (Fenton et al., 2021; Rice et al., 2022) and diffuse (Daly
et al., 2017; Roberts et al., 2017)) sources. Where hydrological
connectivity exists with the surrounding environment, nutrients
from these sources travel through different pathways (Wall et al.,
2011) to enter open drainage channels. The nutrients are either
transformed or remain unchanged along the pathway to the open
drainage channel, before being transported to the adjoining
waterways (Clagnan et al., 2018). Aside from nutrient
transformation, these nutrients can be buffered and/or retained
to prevent connectivity losses as they go through the processes
and pathways (Deelstra et al., 2014). Understanding the nutrient
dynamics and loss risks occurring within an open drainage channel
system is critical to assessing, managing and mitigating nutrient
losses from farms (Collins et al., 2016; Herzon and Helenius, 2008).

Moloney et al. (2020) ranked connectivity risk for phosphorus
(P) loss along man-made open drainage channels and showed that
varying levels of connectivity to nutrient source, depending on their
geographical position, exist between man-made open drainage
channels and surface waters. The highest to lowest connectivity
for P loss was as follows: farmyard connection ditch, outlet (a ditch
that connects the drainage network to a surface water body), outflow
(a ditch that carries drainage water across the farm boundary
through neighbouring land), secondary, or disconnected ditch.
Opoku et al. (2024) further developed this concept by creating an
integrated (i.e., P and nitrogen (N)) ranked connectivity risk
incorporating nutrient loss from sources within open drainage
channels. That study showed that other factors, i.e., farm
management practices, landscape characteristics, and surface and
subsurface hydrological connectivity of directly connecting areas,
described the risk of P and N loss in categories of man-made open
drainage channels. These factors vary spatially and temporally
(Harrison et al., 2019; Mellander et al., 2017; Withers and Lord,
2002), even in a very small distance (Adams et al., 2022), and
therefore may vary in the nutrient loss risk they pose for individual
open drainage channels at different geographic locations on farm.
Characterising these factors for individual open drainage channels is

essential to assess the risk of connectivity for nutrient losses from an
open drainage channel network, but is not well studied. In previous
nutrient loss risk studies, open drainage channels were risk assessed
largely as a (transport) pathway factor for nutrient loss based on
either their presence, density, connectivity to high-risk fields or
sloping conditions (Buczko and Kuchenbuch, 2007; Magette et al.,
2007; Roberts et al., 2017; Schoumans and Chardon, 2003), thereby
limiting a holistic assessment (Granger et al., 2010). Furthermore, in
studies where these factors have been used in assessing farm nutrient
loss connectivity (Deelstra et al., 2014; Gramlich et al., 2018), their
influences on connectivity to open drainage channels under their
respective nutrient transfer continuum sections to enable complete
understanding of their nutrient loss risks (Haygarth et al., 2005;
Murphy et al., 2015) and improve regulations (Wall et al., 2011) have
not been evaluated. Such an evaluation could be achieved by
exploring a risk assessment of the factors under the nutrient
transfer continuum of open drainage channels and may allow
mitigation efforts to be optimised to prevent nutrient losses to
open drainage channels and transfer to adjoining water bodies.

Risk assessment provides an overall appraisal of the connectivity
components for each element (S-M-P-R) of the nutrient transfer
continuum to inform their combined implications and relationships
for nutrient loss to open drainage channels on farms (Jordan et al.,
2005). Risk can be assessed quantitatively (where data are sufficient;
Adkin et al., 2014), qualitatively (where data are insufficient; Nag
et al., 2020), and semi-quantitatively (a blend of the two, e.g., Rice
et al., 2022)). Subjective expert judgment may be used to
approximate risk values to inform decision-making (Redmill,
2002; Rice et al., 2022). Different assessment approaches to
identify and characterise landscape hotspots for nutrient losses
have been documented. These include direct nutrient
concentration measurements in open drainage channels (Ezzati
et al., 2020; Mattila and Ezzati, 2022), a combination of some
nutrient transfer continuum parameters (Alder et al., 2015; Hayes
et al., 2023; Fenton et al., 2022), or predictive models (Radcliffe et al.,
2015; Vadas et al., 2007; Vadas et al., 2015). A risk assessment to
identify open drainage channel sections associated with high-risk
nutrient runoff connectivity using all possible field management
data, and landscape and hydrological connectivity data across the
nutrient transfer continuum for heavy textured farms has not been
developed to date. Undertaking an appraisal incorporating these
elements will help identify and rank high-risk areas (also known as
critical source areas; McDowell et al., 2024) on the open drainage
channel network for heavy textured grassland dairy farms for
targeted mitigation.

The objective of this study was to develop a semi-quantitative
risk model for heavy textured grassland dairy farms that identifies
open drainage channel network sections that pose a risk of
contributing nutrients to the adjoining aquatic water courses and
which require mitigation. Instead of considering only nutrient
source connectivity to classify open drainage channel risks for
nutrient losses (as in Opoku et al. (2024)), the current study
builds on this theory and captures all relevant S-M-P-R factors
under the open drainage network nutrient transfer continuum to
rank the nutrient loss risk in the open drainage channel network on a
farm. To conduct this research, data were collected during field and
desk-based studies across seven heavy textured grassland farms in
Ireland. These farms are considered representative of heavy
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textured, poorly draining soils in Ireland, all receive high rainfall and
were subjected to high-resolution data collection on a vast range of
static and dynamic variables related to farm management.

2 Materials and methods

2.1 Nutrient transfer continuum framework

A semi-quantitative risk assessment model was developed based
on seven intensive grassland heavy textured dairy farms. Using
expert opinion and the literature, various parameters that best

describe the nutrient transfer continuum between a source and
an open drainage channel network (Dollinger et al., 2015; Kleinman
et al., 2011; Needelman et al., 2007) were collated and categorised
into S-M-P-R components as in Table 1.

2.1.1 Justification to S-M-P-R parameters
2.1.1.1 Source

In a nutrient loss risk assessment, identifying potential sources
and their characteristics is critical (Carton et al., 2008; McDowell
et al., 2024). Farmyards are largely associated with potential nutrient
sources, and connection to them imposes high-risk of direct or
indirect discharges of point source nutrients into the open drainage

TABLE 1 Nutrient transfer continuum element, parameter description, units, type, relative magnitude score, relative impact score, and denotation.

Nutrient transfer
continuum
element

Parameter
Description

Parameter unit Parameter
type

Relative
magnitude (M)
scorea

Denotation Relative
impact (I)
scoreb

Source (Point) Connection to
farmyard

Categorical 0
3

No
Yes (e.g., pipe discharge,
seepage from leaking
tanks)

10

Source (Diffuse) Soil P mg/L Categorical 1
3

Adequate (<8.0 m/L)
Excessive (≥8.0 mg/L)

5

Source (Diffuse) N Fertiliser (kg) applied kg N ha-1 Continuous Weighted to 0–3 8

Source (Diffuse) P Fertiliser (kg) applied kg P ha-1 Continuous Weighted to 0–3 8

Source (Diffuse) Nutrient deposition
associated with grazing
(e.g., urine, dung pats)

Grazed or non-grazed
field × grazing
frequency

Continuous Weighted to 0–3
(Based on grazing field
(1 = not grazed, 3 =
grazed) × grazing
frequency)

6

Source (Diffuse) Fertiliser application
count

# per field Continuous Weighted to 0–3 3

Mobilisation Rainfall mm Continuous 1
2
3

Low (<1,000 mm)
Moderate
(1,000–1,300 mm)
High (>1,300 mm)

10

Pathway Farm roadway runoff Categorical 0
1
2
3

Noc

Yes – flat slope
Yes - moderate slope
Yes – steep slope

4

Pathway Farmyard surface
runoff

Categorical 0
1
2
3

Noc

Yes – flat slope
Yes - moderate slope
Yes – steep slope

3

Pathway Field surface runoff Categorical 0
1
2
3

Noc

Yes – flat slope
Yes - moderate slope
Yes – steep slope

6

Pathway Subsurface connection
from infield drains

Categorical 0
3

No
Yes (e.g., low flow
discharge from pipes)

4

Pathway Groundwater
connection to ditch

Categorical 0
3

No
Yes (e.g., springs,
upwelling and seepage)

3

Receptor Connection to
watercourse

Categorical 0
3

No
Yes

7

aRelative Magnitude score (M) = the relative magnitude of contributing nutrients to an open drainage channel network.
bRelative Impact score (I) = subjective evaluation of relative relevance (on a 1–10 scale) for nutrient contribution to an open drainage channel network.
cA barrier, e.g., buffer prevents connectivity of this runoff according to EPA (2020) and USDA (2001) with the surface water (man-made or natural) body.
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channel network (Moloney et al., 2020; Opoku et al., 2024; Vero
et al., 2020). Soil P status of fields directly connected to open
drainage channels offers a potential source contribution of soil
nutrients that can be readily lost, and dictates the amount of P
that can be applied in a mineral or organic soil (Moloney et al.,
2020), and is therefore essential as a source parameter. The organic
matter proportion in mineral and organic soils determines the
adsorption or repulsion of dissolved nutrients unto soil particles
(Roberts et al., 2017; Tejada and Gonzalez, 2008) and therefore
influences the soil P status. Soil P Indices of 1, 2 and 3 are defined as
low risk, while index 4 is defined as high-risk, with all organic soils
categorised as index 4 by default (Daly, 2005; Wall and Plunkett,
2016). The amount of P and N fertiliser (kg) applied is one of the
major nutrient sources that influences surface and subsurface
nutrient losses in open drainage channels (Hart et al., 2004;
Ibrahim et al., 2013; Richards et al., 2015; Watson and Foy,
2001). The rate of fertiliser application increases soluble reactive
P (SRP) and total P (TP) concentrations in overland flow and
drainage water (Watson et al., 2007). On these connecting fields,
fertiliser application count is another source parameter that
contributes nutrient loss to open drainage channels and may
increase nutrient losses especially under wet soil conditions. The
grazing status of a field connecting to open drainage channel
specifies the risk of another major nutrient source that
determines probability of livestock wastes (faeces and urine)
being deposited near an open drainage channel (Bilotta et al.,
2007; Gary et al., 1983; Hubbard et al., 2004) and damage to
soils (that may be high nutrient rich) by trafficking and poaching
to runoff into open drainage channels (Cassidy et al., 2017; Doody
et al., 2014; Pietola et al., 2005). Its impact varies with grazing
frequency (the number of times a grazing field is accessed by animals
for grazing), with frequently grazed fields more susceptible to
increase nutrient losses (Cassidy et al., 2017; Doody et al., 2014;
Hubbard et al., 2004).

2.1.1.2 Mobilisation
Rainfall is the prime mobilising parameter that controls the

transfer of nutrients within and around the open drainage channel
(Pérez-Gutiérrez et al., 2020; Vadas et al., 2011; Yao et al., 2021).

2.1.1.3 Pathway
Farm roadways that are connected to open drainage channels

under the nutrient transfer continuum acts as pathway by which
runoff, carrying nutrients, is transferred into the open drain (Maher
et al., 2023; Rice et al., 2022). Along the farm roadway network,
nutrients may be contributed from the road surface (Davison et al.,
2008; Edwards andWithers, 2008; Fenton et al., 2022). The farmyard
is another pathway, which comprises hard standing areas that collect
rainfall that becomes runoff to the adjacent open drainage channels
(Edwards et al., 2008; Vero et al., 2020). The field surface influences
runoff to connecting open drainage channels. Field surface is
dependent of the soil drainage class (well, moderate, imperfect,
and poorly-draining soils) and this dictates the runoff pathway
between surface and subsurface pathways (Houlbrooke and
Monaghan, 2009). There is high P loss risk from overland flow
in poorly drained soils, moderate P loss risk from imperfectly
drained soils, low P loss risk from both moderate and well-
drained soils (Magette et al., 2007). The subsurface in-field drain

pathway influences soil drainage capacity and subsequently the
surface and subsurface pathways (Houlbrooke and Monaghan,
2009). Subsurface in-field drains enhance infiltration and other
processes in soils (Opoku et al., 2024). Groundwater upwelling or
seeping pathways introduces nitrate (NO3-N) and P into open
drainage channels, but depends on many factors such as
landscape position and soil type (Opoku et al., 2024).
Groundwater composition may be high in nitrate concentrations,
especially if the soil processes are modified by drainage (Edwards
and Withers, 2008).

2.1.1.4 Receptor
The receptor is associated with the final direct impact on a

watercourse (Wall et al., 2011). Watercourse in this regard is defined
as any natural river, stream, or lake (but not a man-made drainage
channel) (Department of Agriculture Food and the Marine, 2018)
identifiable on an Ordnance Survey Ireland 6-inch map (www.osi.
ie). In this study, all natural open drainage channels were assumed to
have a final connection to a watercourse, with or without any
proximity observed during the ground survey.

2.2 Scoring continuous and categorical
parameters

The parameters were assigned individual risk scores that were
scored arithmetically in a magnitude-impact matrix (Teunis and
Schijven, 2019). For each open drainage channel, the risk score for
every parameter was calculated by multiplying the score for
magnitude (M) for contributing nutrients to an open drainage
channel by the score for its relative impact (I) (Table 1) (after
Shariff and Zaini, 2013).

Within the risk assessment, data for some parameters were
measured quantitatively as continuous data (e.g., N fertiliser (kg)
rate applied; Table 1), while others were assessed qualitatively as
categorical data during field observation (e.g., connection to a
farmyard; Table 1). As such, the M value for each parameter
differed depending on the parameter type.

For continuous parameters, the M value was weighted between
0 and 3 using the formula (Equation 1):

Xi − Xmin( ) × 3 / Xmax − Xmin( ) (1)
where Xi is the on-farm observed data value; Xmin and Xmax are the
minimum and maximum values observed across all farms.

For categorical parameters, the value was based on literature
and/or expert judgement. Either “0” or “1” was scored as the
“lowest” and “3” as the “highest” values (Table 1). For each open
drainage channel, a total risk score was calculated by summing up all
the risk scores for each continuous and/or categorical nutrient
transfer continuum parameter for that open drainage channel. A
total risk score represents the degree of risk (i.e., the scale of
likelihood or propensity at which an open drainage channel
contributes nutrients to a watercourse) associated with the blend
of complex parameters (Table 1) for nutrient loss across all the open
drainage channels on a given farm. Although the risk assessment
takes into account the influence of the contributing area to an open
drainage channel, the approach of weighting the contributions over
the area rather than adding their impacts ensured an unbiased
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assessment where a larger area of fields surrounding the stretch of an
open drainage channel could have led to high-risk. The risk
assessment is simple to use, relying on easily accessible farm
data, and can be used to assess the relative risk agricultural open
drainage channels pose to water quality, without quantifying the
nutrient loss.

2.3 Fieldwork to collect nutrient transfer
continuum parameter data

Seven farms, dominated by heavy textured soils of a wide variety
of bio-physical settings, were selected. These farms represented
varying open drainage channel network density and connectivity
risk compositions. During winter (November 2021 to March 2022),
a field survey was conducted in which all open drainage channel
networks were mapped as per Opoku et al. (2024) andMoloney et al.
(2020). Open drainage channel network features such as connection
to the farmyard, field slope, the proximity to water bodies, and
connectivity pathways for nutrients into the open drainage channel
network from in-field drains, farm roadways, groundwater springs,
seepage and upwelling throughout the open drainage channel
network, were noted on each farm. All the information
characterising the open drainage channel network was recorded
using an electronic device with ESRI ArcGIS Field Maps mobile
software (version 21.4.0) (ESRI, 2024) during the field survey. This
information was transferred to ‘geographic information system’

(GIS) mapping software, ArcMap GIS software (version 10.5).
Data on other parameters for the nutrient transfer continuum
elements was obtained from previous studies (Corbett et al.,
2022a; Corbett et al., 2022b; Tuohy et al., 2021) and ongoing
data collection by participating farmers and field agents. The data
were downloaded and collated with data from the field survey, and
the parameters in Table 1 were assigned an M score for every open
drainage channel network across the farms.

In applying nutrient loss risk magnitude to areas that have never
been calibrated, errors may prevail due to the unknowns in parameter
settings and adjustments, and reliance on experts’ opinions to set model
parameters without calibration (Sharpley et al., 2017). However, the
adoption of systems that are assessed and approved (as suggested by
Bhandari et al. (2017); Nelson et al. (2017)) enhanced the robust
calibration of the parameters for the risk assessment.

2.4 Formation of risk classification system

Total risk score values for every open drainage channel for all seven
farms were split into four categories of equal intervals to produce four
potential risk classes (i.e., low risk, moderate risk, high-risk, and very
high-risk). The range was determined by the possible highest and lowest
score that could occur as per the risk assessment scoring system
developed. The risk classes were developed by Equation 2:

TRShigh–TRSlow( ) / 4 � Ie (2)
where TRShigh and TRSlow are the highest and lowest total risk score
values recorded across the seven farms, and I.e., is the interval
between the four risk classes. These were colour-coded as green,
yellow, orange, and red, respectively, on farm maps. Such maps

provide information on the open drainage channels that are
potential critical hotspots for nutrient losses on heavy-textured
dairy farms. Risk classes in high and very high-risk ranges are
identified as hotspots that may require mitigation measures.

2.5 Synoptic water sampling across
dairy farms

Water quality parameters change over time, depending on the
local climatic conditions and farming practices (Huebsch et al.,
2013). At 105 sampling points throughout the drainage network
across all farms, a total of 210 water samples (a pair of filtered and
unfiltered at each sampling point) were collected during each season
(sampling event) for 4 seasons (Spring (March) 2022 to Winter
(January) 2023). The sampling was carried out across all 4 seasons to
capture hydrological fluctuations and conditions, including surface
and subsurface connectivity as per Opoku et al. (2024). As this study
aimed to assess the risk of the open drainage channels, the water N
and P chemistry only validated the potential nutrient losses from the
open drainage channel network surroundings and did not aim to
elucidate the load or impact of this connection. Except for
disconnected ditches (which were mostly dry), all man-made
open drainage channels (farmyard connection, outlet, outflow,
and secondary ditches; Moloney et al., 2020) and natural open
drainage channels were sampled. At each water sample location, two
50 mL samples (filtered on-site using 0.45 μm filter paper and
unfiltered) were collected for dissolved and total P analyses,
respectively. All water samples were kept in an ice box during
sampling and transportation, and then tested within 1 day of
sample collection.

Filtered water samples were analysed for dissolved reactive
phosphorus (DRP) and total dissolved phosphorus (TDP) using a
Gallery discrete analyser (Gallery reference manual, 2016) and a
Hach Ganimede P analyser, respectively. Total dissolved phosphorus
(TDP) was measured by acid persulphate oxidation, under high
temperature and pressure. The unfiltered water samples were
analysed for nitrite (NO2-N), NH4-N, total oxidised nitrogen (TON),
and total reactive phosphorus (TRP) using a Gallery analyser. Total
phosphorus was analysed using the Ganimede P analyser. Phosphorus
was measured colourimetrically by the ascorbic acid reduction method
(Askew and Smith, 2005), where the 12-molybdophosphoric acid
complex is formed by the reaction of orthophosphate ion with
ammonium molybdate and antimony potassium tartrate (catalyst)
and reduced ascorbic acid. All samples, reagent blanks, and check
standards were analysed following the Standard Methods (APHA,
2005). All quality control (QC) samples/check standards are made
from certified stock standards from a different source than
calibration standards. Quality control samples were analysed at the
beginning and end of every batch, and every 10 samples within a batch,
and if the QC fell outside limits, samples were repeated back to the last
correct QC. Blanks were included in every batch and approximately 10%
of samples were repeated. Tolerances range up to a maximum of ±7.5%
of nominal value. All instruments used were calibrated in line with
manufacturers’ recommendations. Nitrate-N was calculated by
subtracting NO2-N from TON, particulate phosphorus (PP) was the
difference between TP and TDP, and dissolved unreactive phosphorus
(DUP) was the difference between TDP and DRP.
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3 Results and discussion

3.1 Open drainage channel characteristics

The total length and the number of open drainage channels in
the farms are shown in Table 2. The length of an open drainage
channel characterised the field area of contribution influencing the
connectivity and potential risk of nutrient loss to an open drainage
channel. Opoku et al. (2024) reported that multiple connectivity
pathways may exist on a single open drainage channel. Although the
relationship between the presence of connectivity pathways in open
drainage channels and the length of the open drainage channels was
not assessed in that study, longer open drainage channel lengths may
have high connectivity, resulting in a potentially higher risk of
nutrient loss. However, other parameters such as soil chemistry
(Daly et al., 2017; Ezzati et al., 2020), slope, design (Hodaj et al.,
2017), and vegetation (Soana et al., 2017) may also influence
nutrient loss.

3.2 Risk classification system

Table 3 presents the risk classification system ranges based on
the minimum and maximum possible total risk score from the risk
assessment scoring system. These risk classification ranges were the
basis on which risk class output maps for open drainage channel
networks on each farm were developed (Figure 1).

Although the possible lowest and highest total risk score are
14.0 and 201.0 according to the risk assessment scoring system

(Table 3), the actual lowest and highest total risk scores recorded for
the open drainage channels for the farms studied were 35.9 (Farm 4)
and 144.4 (Farm 4), respectively. This indicates the highest total risk
score across the farms reached only about 72% of the potential
maximum total risk score. Of the 171 open drainage channels on all
seven farms, 23%, 68%, 9%, and 0% were ranked as low, moderate,
high, and very high-risk classes, respectively (Figure 2). Data from
individual farms were similar to the overall trend (Figure 2), except
for Farm 6, where the majority (57%) of the open drainage channels
ranked as low-risk.

Across the high-risk open drainage channels, the total risk score
varied, with 144.4 being the highest recorded (a farmyard
connection ditch) on Farm 4 and 109.9 being the lowest (a
farmyard connection ditch) on Farm 7. The 9% high-risk open
drainage channels across the study farms were mostly on farmyard
connection and outlet ditches (Table 4). This result is similar to
Opoku et al. (2024) and Moloney et al. (2020), who found that
farmyard connection ditches were potentially the riskiest.

Agricultural pressures on waterbodies in Ireland are associated
with excess nutrients, mainly present as NO3-N or DRP (EPA,
2023a). Phosphorus dominates in poorly drained soils, such as those
included in this study, while N loss is more likely to vary depending
on other specific site conditions (EPA, 2023a). In Ireland, the EPA
considers good water in rivers to have NO3-N concentrations of less
than 1.8 mg L-1 and DRP concentrations of less than 0.035 mg P L-1

(EPA, 2023b). While open drainage channels assessed in these study
farms are different water bodies from rivers as defined on national
ordnance survey maps (6-inch maps) (www.osi.ie), comparisons of
NO3-N andDRP concentrations on the open drainage channels with
the water quality standards for rivers act as a guide to show if a water
sample is high or low.

The annual mean DRP concentrations in the open drainage
channels, which ranged from 0.09 mg L-1 in moderate-risk class to
0.40 mg L-1 in high-risk class (Figure 3), were higher than the surface
water standard of 0.035 mg L-1. The annual mean NO3-N
concentrations on the open drainage channels were lower across
the risk classes, with ranges of 0.59 mg L-1 in low-risk class to
1.18 mg L-1 in moderate-risk class (Figure 3) relative to the standard
of 1.8 mg NO3-N L-1. This is consistent with the poorly draining
conceptual model of the EPA in Ireland, as P losses dominate
nutrients relative to N losses. While this may be beyond the

TABLE 2 The characteristics (length (m) and number) of open drainage channels per farm.

Farm # Number of open
drainage channels per
farm

Average
length

Length of all open drainage channels per farm (m)

Total
length

Natural open drainage
channel average length

Man-made open drainage
channel average length

1 25 291.50 7,290 n/a 203

2 9 271.38 3,799 382 188

3 40 509.23 25,971 1898 170

4 16 397.44 14,308 716 142

5 19 372.71 14,163 1,030 197

6 49 134.95 10,526 322 122

7 13 204.27 4,494 860 139

TABLE 3 Risk classification system (risk class and score ranges) for risk
assessment model for open drainage channels on heavy textured dairy
farms.

Risk class Risk score classification
ranges

Low 14.0 60.7

Moderate 60.8 107.5

High 107.6 154.3

Very high 154.4 201.0
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scope of the present study, 32% of sampling locations had high NO3-
N concentrations, indicating the N connectivity pathways that may
be introducing NO3-N into these open drainage channels (Opoku
et al., 2024). Average P and N concentrations per risk class increased
as the risk of the open drainage channels increased, except for
average P concentrations for the moderate-risk class (Figure 3). This
could be due to the anthropogenic and natural characteristics that
create hydrochemical variation in the farm landscapes that
contribute nutrients to the open drainage channels. With this
caveat, this showed that the water quality seasonal grab samples
validated the total risk score.

3.3 Assessment of the nutrient transfer
continuum elements on the open
drainage channels

The contribution of the source to the average total risk score of
open drainage channels per farm ranged from 44.2% (Farm 2) to
63.5% (Farm 5) (Figure 4). Similarly, the contribution of the source
to the total risk score of each of the high-risk open drainage channels
ranged from 40.3%–70.2% (Figure 5).

The high proportion for source total risk score indicates that the
multiple sources of nutrients, either from connection to farmyard,

FIGURE 1
A map of a heavy textured grassland dairy farm (Farm #1 from Table 2) showing the risk classes of the open drainage channel network.
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legacy soil P, fertiliser application, and grazing input parameters,
primarily influenced the risk of nutrient losses (Cassidy et al., 2017;
Moloney et al., 2020) to these open drainage channels. While most
(62.5%) of the high-risk open drainage channels connect farmyards,
the high-risk open drainage channel with the highest source
contribution to a total risk score recorded (70.2%)
(i.e., secondary ditch on Figure 5) had no farmyard connection.
This could be attributed to the open drainage channel’s connectivity
with high soil P-status fields, which received high fertiliser
application for the duration of this study. This, together with
surface and subsurface sources, may have led to the high total
risk score on the other 37.5% of the whole high-risk open
drainage channels with no connection to farmyards.

Along a connected pathway to the open drainage channel, the
mobilisation of nutrients from the source was integral in most of the
open drainage channels. The percentage of mobilisation

contribution to the average total risk score of the open drainage
channels per farm ranged from 10.2% to 31.5% (Figure 4). Rainfall is
the primary factor by which mobilisation occurs for nutrient losses
(Wang et al., 2020). Rainfall characteristics, including the intensity,
duration and frequency, may influence the hydrological conditions
that are critical to the surface and subsurface nutrient movement
(Pérez-Gutiérrez et al., 2020). This necessitates the need to break the
pathway to prevent the mobilised nutrient from the source to
the receptor.

Nutrients enter the open drainage channels through multiple
(surface, shallow subsurface and groundwater) pathways. The
pathway contribution to the average total risk score per farm
ranged from 10.5% to 18.4% (Figure 4). Heavy textured farms
have multiple subsurface and surface connectivity pathways
through which nutrients are lost (Clagnan et al., 2019; Granger
et al., 2010; Opoku et al., 2024), and these may have contributed to

FIGURE 2
Percentages of risk classes for open drainage channels across all farms and within farms (inset).

TABLE 4 Number of high-risk channels (indicated by a ‘X’) by open drainage channel category.

Farm # Natural open
drainage channel

Farmyard
connection ditch

Outlet
ditch

Outflow
ditch

Secondary
ditch

Disconnected
ditch

1 X

2

3 X XXX X

4 X XX X

5 XXX

6 X

7 XX
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the high-risk open drainage channels. Eighteen-point-six percent
and 18.6% of the high-risk open drainage channels received risk
scores from roadway and farmyard runoff surface connectivity
pathways to the total risk score, respectively, while 87.5% and
31.3% of the high-risk open drainage channels received risk
scores from in-field drains and groundwater subsurface
connectivity pathways, respectively. Although the pathway
percentage contribution to the total risk score of the high-risk

open drainage channels ranged from 10.1%–22.6%, the highest
pathway contribution to total risk score for an open drainage
channel was 44.9% which was a moderate-risk open drainage
channel on Farm 6.

The connection to the receptor was not present on all high-risk
open drainage channels. However, contributions from 14.5% to
18.6% of the total risk score of high-risk open drainage channels
with connection to receptor for the study farms (Figure 5). This

FIGURE 3
(A)Nitrogen and (B) phosphorus mean plus standard error concentrations from seasonal water sampling fromwithin open drainage channels as per
the risk classes across the case study farms.

FIGURE 4
Percentages of averaged risk scores per farm across nutrient transfer continuum elements.
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informs the importance of considering the delivery of the final
nutrient loss through the open drainage channels and may inform
the mitigation type.

3.4 Mitigation of the high-risk open
drainage channels

In Ireland, the EU Nitrates Directive is implemented through the
Nitrates Action Plan (NAP), which applies to all farms in the country.
This programme of measures outlines best farming practices to
achieve good water quality outcomes for different farm enterprises.
The EPA in Ireland identifies “breaking the pathway” on poorly
draining soils, such as those in the present study, as an effective way to
break the connectivity of surface or near-surface runoff between
sources and waters. Opoku et al. (2024) classified the open
drainage channel network into different ditch categories. Building
on this work, the present study identifies open drainage channel
sections within these large networks to be of higher risk and which
may needmitigation. A combination of targetedmeasures is therefore
necessary to improve water quality. This may include (1) source
management (2) breaking the pathway (stopping runoff or near-
runoff being delivered to waters), and (3) installation of in-channel
filters (to slow the flow and attenuate a proportion of nutrients in
dissolved and particulate forms from discharging through that open

drainage channel section). On poorly draining soils this combined
treatment train (Bourke et al., 2022) may prevent high nutrient-
content water discharging from high-risk open drainage channel
sections to the broader aquatic environment. Scrutiny of individual
high-risk total risk score for different open drainage channel sections
enables an advisor and farmer to identify specific sources, pathways,
and in-channel actions as required. These may differ due to site-
specific factors and cannot therefore be generic. Farmers are more
inclined to accept less costly measures (van den Berg et al., 2023), and
therefore these should be considered during the selection ofmitigation
measures (McDowell et al., 2024; King et al., 2015).

Opoku et al. (2024) and Fenton et al. (2021) detailed potential
mitigation measures and costs available in terms of “break the
pathway” mitigation options and costs. A few examples include:
re-directing runoff away from internal roadways and the farmyard
to collection or buffer areas with low-cost diversion bars or water
bars (Fenton et al., 2021); installation of riparian (spatially targeted
and linear) buffers along natural streams (Stutter et al., 2021) to
control nutrient losses from the upslope field and connected internal
farm roadways (Palmer, 2012; Yuan et al., 2009); targeted
engineered mitigation measures including low-grade weirs (Faust
et al., 2018), bunded drains, filter cells (Teagasc, 2022); and
management of in-channel sediments through maintenance or
characterisation of soil/sub-soil layer chemistry (Shore et al.,
2015), which is both a sink and source of nutrients (Daly et al., 2017).

FIGURE 5
Risk score percentages of nutrient transfer continuum elements for farms with high-risk open drainage channels, excluding Farm 2 which had no
high-risk open drainage channels.
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4 Conclusion

Assessments of nutrient loss from open drainage channels on
poorly draining (heavy textured) soils are largely associated with
predictions of surface runoff from critical hotspots. The risk
assessment developed in this study combines potential water
quality impacts from surface, subsurface, and groundwater
characteristics of connecting fields to produce a colour-coded
model of different potential water quality risk levels by which
open drainage channels can be risk assessed. This risk assessment
enables the production of risk maps that identify potential high- or
very-high risk open drainage channels on dairy farms with heavy
textured soils and assesses the nutrient transfer continuum elements
to inform mitigation. Unlike previous open drainage channel risk
assessment studies of Moloney et al. (2020) and Opoku et al. (2024),
this study critically assesses all the source-mobilisation-pathway-
receptor multi-parameters of the open drainage channel nutrient
transfer continuum framework, provides in-depth information
regarding high-risk open drainage channels to elucidate which
parameters require attention during mitigation. The findings of
this study apply to dairy farms on heavy textured soils in high
rainfall areas, and may (or may not) differ in other geographic areas
with different soils, climates and agricultural practices. However, it
should be noted that the same methodology can be applied
anywhere to develop a semi-quantitative risk assessment that will
inform mitigation management. Future work incorporating varying
risks encountered over time across wider farm characteristics will
improve the risk scoring system to produce a more robust model
that can be applied more generally on farms.
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