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Assessing water quality becomes imperative to facilitate informed decision-
making concerning the availability and accessibility of water resources in
Korattur Lake, Chennai, India, which has been adversely affected by human
actions. Although numerous state-of-the-art studies have made significant
advancements in water quality classification, conventional methods for
training machine learning model parameters still require substantial human
and material resources. Hence, this study employs stochastic gradient descent
(SGD), adaptive boosting (AdaBoosting), Perceptron, and artificial neural network
algorithms to classify water quality categories as these well-establishedmethods,
combined with Bayesian optimization for hyperparameter tuning, provide a
robust framework to demonstrate significant performance enhancements in
water quality classification. The input features for model training from 2010 to
2019 comprise water parameters such as pH, phosphate, total dissolved solids
(TDS), turbidity, nitrate, iron, chlorides, sodium, and chemical oxygen demand
(COD). Bayesian optimization is employed to dynamically tune the
hyperparameters of different machine learning algorithms and select the
optimal algorithms with the best performance. Comparing the performance of
different algorithms, AdaBoosting exhibits the highest performance in water
quality level classification, as indicated by its superior accuracy (100%),
precision (100%), recall (100%), and F1 score (100%). The top four important
factors for water quality level classification are COD (0.684), phosphate (0.119),
iron (0.112), and TDS (0.084). Additionally, variations or changes in phosphate
levels are likely to coincide with similar variations in TDS levels.

KEYWORDS

machine learning, water quality level, Bayesian optimization, classification,
environmental protection

1 Introduction

Ensuring water quality is a critical environmental challenge worldwide. The accurate
assessment and management of water quality are essential for safeguarding public health,
preserving ecosystems, and supporting sustainable development (Uddin et al., 2024b).
Traditional methods, such as the water quality index (WQI), provide useful metrics for
assessing water quality but have limitations, including a simplified approach, subjective
parameter selection, and a lack of consideration for specific pollutants and health risks
(Bhateria and Jain, 2016; Shams et al., 2023). Complementary approaches and a broader

OPEN ACCESS

EDITED BY

Francesco Granata,
University of Cassino, Italy

REVIEWED BY

Fabio Di Nunno,
University of Cassino, Italy
Senlin Zhu,
Yangzhou University, China

*CORRESPONDENCE

Lingze Zeng,
1099505245@qq.com

RECEIVED 18 May 2024
ACCEPTED 10 June 2024
PUBLISHED 09 July 2024

CITATION

Zeng L (2024), Estimation of water quality in
Korattur Lake, Chennai, India, using Bayesian
optimization and machine learning.
Front. Environ. Sci. 12:1434703.
doi: 10.3389/fenvs.2024.1434703

COPYRIGHT

© 2024 Zeng. This is an open-access article
distributed under the terms of the Creative
Commons Attribution License (CC BY). The
use, distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in
this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

Frontiers in Environmental Science frontiersin.org01

TYPE Original Research
PUBLISHED 09 July 2024
DOI 10.3389/fenvs.2024.1434703

https://www.frontiersin.org/articles/10.3389/fenvs.2024.1434703/full
https://www.frontiersin.org/articles/10.3389/fenvs.2024.1434703/full
https://www.frontiersin.org/articles/10.3389/fenvs.2024.1434703/full
https://www.frontiersin.org/articles/10.3389/fenvs.2024.1434703/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fenvs.2024.1434703&domain=pdf&date_stamp=2024-07-09
mailto:1099505245@qq.com
mailto:1099505245@qq.com
https://doi.org/10.3389/fenvs.2024.1434703
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org/journals/environmental-science#editorial-board
https://www.frontiersin.org/journals/environmental-science#editorial-board
https://doi.org/10.3389/fenvs.2024.1434703


understanding of water quality are necessary for a comprehensive
and accurate evaluation (Uddin et al., 2023b; Chen et al., 2023;
Ehteram et al., 2024).

In recent years, machine learning has gained significant
attention in the environmental field due to its capacity to extract
underlying patterns from vast amounts of data (Lin et al., 2022a;
Granata et al., 2024). Machine learning techniques have been
introduced to predict various WQI values, leveraging their ability
to address nonlinear regression and classification challenges (Shams
et al., 2023; Yan et al., 2023). Several approaches, such as the
adaptive neuro-fuzzy inference system (ANFIS), radial basis
function neural network (RBF-ANN), and multi-layer perceptron
neural network (MLP-ANN), have been employed to forecast water
quality in different contexts (Najah Ahmed et al., 2019). However,
there is still room for improvement, particularly in terms of
considering additional relevant parameters and optimizing the
model performance (Ahmed et al., 2019).

One significant challenge in machine learning applications is the
efficient tuning of the model parameters. Traditional methods such
as grid search and random search are often resource-intensive (Lin
et al., 2022a). For instance, in the context of water quality prediction,
researchers have applied 16 novel hybrid data-mining algorithms
and conducted a series of experiments to optimize the models (Bui
et al., 2020). Lin et al. also confronted this problem when using
machine learning to estimate the amount of municipal solid waste
(Lin et al., 2021). Fortunately, the method of grid search, random
search, and Bayesian optimization can effectively solve this problem.
Bayesian optimization offers higher efficiency, a better
exploration–exploitation balance, adaptability, and suitability for
high-dimensional parameter spaces compared to grid search and
random search in machine learning parameter optimization
(González and Zavala, 2023; Zhu et al., 2024). In addition,
despite these advancements, the interpretability of machine
learning models remains a significant challenge, especially in
complex environmental applications (Lin et al., 2022a).

Given these considerations, our study addresses the gap by
employing machine learning models optimized through Bayesian
optimization to classify the water quality categories in Korattur Lake,
Chennai. Specifically, stochastic gradient descent (SGD), adaptive
boosting (AdaBoosting), Perceptron, and artificial neural network
(ANN) algorithms are utilized. Water parameters such as pH,
phosphate (P), total dissolved solids (TDS), turbidity, nitrate, iron,
chlorides, sodium, and chemical oxygen demand (COD) were selected
as input features for the model training from 2010 to 2019. The
performance of the models is evaluated using metrics such as
confusion matrix, accuracy, precision, and the F1 score. In addition,
the important features from the best models were visualized to provide
valuable references for the efficient prediction of futurewater quality levels
and preservation of the overall environmental health of Korattur Lake.

Although this study focuses on Korattur Lake in Chennai, India,
the methodology and findings have broader implications. The
integration of Bayesian optimization with machine learning can
be applied to other water bodies worldwide, enhancing water quality
assessment and management practices globally. This approach
provides a robust framework for environmental scientists and
policymakers to develop more effective water management
strategies, ensuring the sustainable use and conservation of vital
water resources.

2 Materials and methods

2.1 Data collection

The dataset was collected from the open-source dataset (https://
github.com/JahnaviSrividya/Korattur-Lake-Water-Quality-Dataset).
This dataset consists of nine pollution indicators, pH, P, TDS,
turbidity, nitrate, iron, chlorides, sodium, and COD, and more
than 5,000 records from 2010 to 2019. Figure 1 shows the
distribution of various indicators.

2.2 Water quality level

The water quality level Qi for the ith parameter can be calculated
using Eq. 2–1:

Qi � Vi-Vi0( )
Si-Vi0( ) × 100, (2–1)

where Vi, Si, and Vi0 represented the estimated value of the nth
parameter, the desirable or permissible range, and the ideal value of
the nth parameter in pure water. All ideal values are taken as zero,
except pH = 7.0.

WQI can be calculated as the following Eq. 2-2:

WQI � ∑ Wi × Qi( )
∑9

i�1Wi

, (2–2)

where Wi is the weight allocated to each parameter; Qi is the
quality index of each parameter, which is calculated using Eq. 2–1.

Based on the WQI, the classes are classified as shown in Table 1.

2.3 Machine learning model

2.3.1 SGD
Taylor discovered that any function can be expressed as a

polynomial in terms of its Nth order derivatives, as the following
Eq. 2-3:

f x( ) � ∑N

n�0
f n( ) a( )

n!
x − a( )n + Rn x( ). (2–3)

Therefore, for any function that is (n + 1)-times differentiable, it
can be approximated near a point (denoted as x0) by the following
Eq. 2-4:

f x( ) � f x0( ) + f′ x0( ) x − x0( ) + f″ x0( )
2!

x − x0( )2 + . . .

+ fn x0( )
n!

x − x0( )n. (2–4)

The Taylor series can be expanded to the first-order as the
following Eq. 2-5:

f x( ) ≈ f x0( ) + f′ x0( ) x − x0( ). (2–5)

In the context of gradient descent, the first-order expansion can
be expressed as follows Eq. 2-6:

J θ( ) ≈ J θ0( ) + f′ θ0( ) θ − θ0( ). (2–6)
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The essence of gradient descent can be summarized that it
approximates the loss function through a first-order Taylor
expansion and then seeks the minimum value of this
approximation (Andrychowicz et al., 2016). The minimum value
is considered the next iteration value for the iterative process.

2.3.2 AdaBoosting
AdaBoost is a prominent ensemble learning method renowned

for its capability to create a robust classifier by effectively combining
multiple weak classifiers (RATSCH et al., 2001; Belghit et al., 2023).
When applied to the task of water quality level classification,

FIGURE 1
Distribution of various pollution indicators in the dataset.

TABLE 1 Quality of water based on WQI.

WQI level Water quality
status

Water quality
category

0–25 Excellent Class 0

25–50 Good Class 1

50–75 Poor Class 2

75–100 Very poor Class 3

>100 Unfit for drinking Class 4
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AdaBoost begins with the preparation of a labeled dataset consisting
of input features and corresponding multi-class labels specifically
encoded for the prediction of water quality levels. In the
initialization phase, equal weights are assigned to all samples
within the training set, setting the foundation for the
subsequent steps.

The AdaBoost iterations commence by training weak classifiers,
evaluating their performance, updating sample weights, and
constructing a weighted combination. This iterative process
continues by training additional weak classifiers, wherein subsequent
classifiers primarily focus on samples that were misclassified or possess
higher weights. The ultimate culmination involves the fusion of these
trained weak classifiers into a potent ensemble classifier utilizing a
weighted voting scheme. The influence of each weak classifier in the
final classification decision is determined by the assigned weights.

The trained AdaBoost model effectively predicts the labels of
new, unseen data by aggregating the predictions of individual weak
classifiers based on their assigned weights. AdaBoost iteratively
enhances classification performance by assigning higher weights
to challenging samples and leveraging the knowledge gained from
errors made by previous weak classifiers. This iterative process
empowers the ensemble model to proficiently tackle complex
multi-class classification tasks by prioritizing the difficult instances.

It is noteworthy that AdaBoost can be deployed alongside
diverse weak classifiers, and the number of iterations and the

weighting scheme can be tailored to suit the characteristics of the
dataset and performance evaluation. The strength of AdaBoost lies
in its ability to harness the strengths of weak classifiers, allowing
them to synergistically form a powerful and accurate classifier.

2.3.3 Perceptron
Figure 2 illustrates the structure of the Perceptron algorithm

utilized for predicting water quality levels based on nine water
quality indicators. It is essential to acknowledge that the
Perceptron algorithm functions as a simple linear binary classifier
and may not directly support multi-class classification (Zhang et al.,
2023). To address this limitation, the one-vs-all strategy is employed,
wherein multiple perceptions are trained for each water quality
level class.

The outlined process involves several key steps. First, the weights
and threshold are initialized to commence the training process.
Next, the input features and corresponding labels are prepared to
create a suitable dataset. Subsequently, training iterations are
initiated, wherein each iteration includes the adjustment of
weights and updating the threshold based on the Perceptron
update rule. These updates are determined by comparing the
predicted output with the expected label and multiplying the
difference by a predefined learning rate.

The training iterations are repeated until the Perceptron achieves
a satisfactory level of accuracy or converges to a solution, indicating an

FIGURE 2
Structure of Perceptron units.
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optimal classificationmodel for water quality levels based on the given
indicators. Once the Perceptron has been trained, predictions on new
water samples can be made by applying the learned weights and
threshold to the input features. The water quality level would be
determined by the Perceptron’s output, which is based on the
activation function (e.g., positive or negative classification).

2.3.4 ANN
ANN is a computational model inspired by the structure and

functioning of biological neural networks in the human brain (Lin
et al., 2022a; Zhu et al., 2023). ANN consists of interconnected
artificial neurons, also known as nodes or units, organized in layers.
The structure of an ANN typically comprises three main types of
layers, namely, the input layer, hidden layer(s), and output layer, as
shown in Figure 3. The nine water quality indicators were used as
input features in the input layer. Hidden layers are intermediate
layers between the input and output layers. They perform complex
computations and transform the input data through a series of
weighted connections. The hidden layers help the network learn and
extract relevant features and patterns from the input data. As for the
output layer, the number of neurons in the output layer was set as
five water quality levels. It is worth noting that each neuron in the
output layer represents the probability of belonging to a
different class.

2.4 Evaluation of the model performance

Accuracy, precision, recall, and F1 score were used to evaluate
the performance of various models (Lin et al., 2023). They can be
calculated as the following Eqs 2-7–2-10:

Accuracy � TP + TN
TP + FN + TN + FP

, (2–7)

Precision � TP
TP + FP

, (2–8)

Recall � TP
TP + FN

, (2–9)

Accuracy � 2 × TP
2 × TP + FN + FP

. (2–10)

Here, TP, TN, FN, and FP are the numbers of true positives, true
negatives, false negatives, and false positives, respectively.

2.5 Bayesian optimization

Bayesian optimization is a sequential model-based optimization
technique that is particularly useful for optimizing black-box
functions that are expensive to evaluate (Khatamsaz et al., 2023).
It combines the principles of Bayesian inference and optimization to
efficiently search for the optimal solution within a given search space
(Eq 2-11).

x* � argmin
x∈X

f x( ), (2–11)

where f(x) is the objective function to be optimized, x is a vector
of input variables in the search space, and X is the search space,
which represents the feasible region for the input variables. As for
Eq. 2-12:

D � xi, yi( ){ }, (2–12)
where xi is a vector of input variables and yi = f(xi) is the
corresponding observed objective value. As for Eq. 2-13,

P y
∣∣∣∣x,D( ) � Fitmodel M,D( ). (2–13)

P is defined a probabilistic surrogate model that captures the
uncertainty of the objective function, while it is assumed that the
model M follows a Gaussian distribution.

A Gaussian process is an extension of multivariate Gaussian
distribution to infinite dimensions. Although Gaussian distribution
represents the distribution of random variables, the Gaussian
process represents the distribution of functions. It can be
characterized by a mean function and a covariance function, as
the following Eq. 2-14:

f x( ) ~ GP m x( ), k x, x′( )( ), (2–14)

where m(x) is the mean function and k(x, x’) is the
kernel function.

After the tth experiment, the joint distribution between any
point on the Gaussian process and the previously observed data
follows a Gaussian distribution. Consequently, the predictive
distribution can be derived as follows Eq. 2-15:

P f t+1|D1: t, xt+1( ) � N ut xt+1( ), σt2 xt+1( )( ). (2–15)

Typically, acquisition functions are defined such that high
acquisition corresponds to potentially high values of the objective
function because the prediction is high, the uncertainty is great, or
both. Therefore, it can be expressed as the following Eq. 2-16:

FIGURE 3
Structure of ANN.
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PI x( ) � P f x( )≥ f x+( ) + ξ( ) � Φ μ x( ) − f x+( ) − ξ

σ x( )( ). (2–16)

In addition, improvement (I) is used to evaluate maximizing the
expected improvement, as follows Eq. 2-17:

EI x( ) � μ x( )-f x+( )-ξ( )Φ Z( ) + σ x( )ϕ Z( )[ ] if σ x( )> 0 else 0.

(2–17)
Bayesian optimization is efficient in handling expensive and noisy

objective functions by iteratively updating the surrogate model, actively
exploring promising regions of the search space, and exploiting areas
with potential high performance. This approach helps in finding
optimal solutions with a minimal number of function evaluations.

3 Results

3.1 Impact of various water quality indicators
on the WQI level

Figure 4 shows the heatmap about various water quality
indicators with the water quality level by the method of Pearson

correlation coefficient. It can be found that phosphate has a positive
relationship with the level of water quality, with an R2 value of 18%.
In the context of water, “phosphate” refers to the phosphate ion
(PO4

3-), which is an important chemical species present in water.
Phosphate is a compound that contains phosphorus and oxygen. It is
commonly found in various forms, including orthophosphate
(H2PO4

− and HPO4
2-), which is the most prevalent form in

natural water bodies (Venkata et al., 2020). Phosphate levels in
water are monitored as part of water quality assessments because
excessive phosphate concentrations can lead to environmental issues
such as eutrophication. Eutrophication occurs when an excess of
nutrients, including phosphates, stimulates the excessive growth of
algae and aquatic plants, leading to oxygen depletion and negative
impacts on aquatic life (Suresh et al., 2023).

Iron and TDS have a negative relationship with the water quality
level, with R2 of −15% and −13%, respectively. Iron exists primarily
in two forms: dissolved iron (Fe2+ and Fe3+) and suspended iron. It is
important to note that the concentration and distribution of iron in
water can be influenced by various factors, including geological
characteristics, soil types, water flow dynamics, and other
environmental factors. Therefore, the predominant forms of iron
may vary in different water bodies (Gao et al., 2023).

FIGURE 4
Heatmap about various water quality indicators with the water quality level.
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3.2 Model optimization by the method of
Bayesian optimization

Figure 5 and Table 2 show the optimized hyper-parameters for
SGD, AdaBoosting, Perceptron, and ANN by the method of
Bayesian optimization. Figure 5A shows the value of the
optimized parameters in terms of learning rate, regularization,
penalty, alpha, and loss for the algorithm of SGD. As for the
learning rate, it determines the step size or the rate at which the
SGD parameters are updated during the optimization process
(Zhang and Zhou, 2023). The result indicated that the optimized
learning rate is 0.0862. Regularization is a technique used to prevent
overfitting. The regularization parameter is set to 0.0161 in this
study. The penalty parameter determines the type of regularization
penalty to apply. The options for this were “huber,” “epsilon
insensitive,” and “squared hinge.” “Huber” is a smooth penalty

that combines the characteristics of both L1 and L2 penalties.
However, the alpha parameter controls the weight of the
regularization term in the loss function. It determines the trade-
off between fitting the training data well and keeping the model
parameters small. The optimized parameter of alpha is set to “l1.” In
addition, the loss function measures the discrepancy between the
predicted values and the actual values. It quantifies how well the
model is performing during training. The value, 0.0112, represents
the loss achieved by the model.

Figure 5B shows the process of various hyper-parameters for the
AdaBoosting algorithm. N estimators represent the number of weak
classifiers or base estimators used in the AdaBoost algorithm. Weak
classifiers are iteratively trained to build a strong classifier. In this
case, the initial range for N estimators is 10–100, and the optimized
result is 83. The learning rate controls the weight scaling of each
weak classifier in the AdaBoost algorithm. It influences the

FIGURE 5
(A) SGD; (B) AdaBoosting; (C) Perceptron; (D) ANN. Note: DTC and PD stands for DecisionTreeClassifier and partial dependence, respectively.
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contribution of each weak classifier. A smaller learning rate
improves the robustness of the model but may require more
weak classifiers to achieve higher performance. In this case, the
initial range for the learning rate is [10−3, 1], and the optimized result
is 0.005. The algorithm specifies the multi-class classification
algorithm used in the AdaBoost algorithm. The options provided
are “SAMME” and “SAMME.R.” “SAMME” is the original discrete
AdaBoost algorithm with weight updates, while “SAMME.R” is a
variant that incorporates class probability estimates. In this case, the
optimized result is “SAMME.R.” As for the random state, this
parameter determines the random seed used by the random
number generator in the algorithm, controlling the randomness
and reproducibility of the results. In this case, the initial range for the
random state is 0–100, and the optimized result is 31. In addition,
the base classifier specifies the base classifier used in the AdaBoost
algorithm. The options provided are decision tree classifiers with
different maximum depths: “DTC (max depth = one),” “DTC (max
depth = two),” and ‘DTC (max depth = three)’. In this case, the
optimized result is a decision tree classifier with a maximum depth
of three.

Figure 5C shows the results of various optimized hyper-
parameters for the Perceptron algorithm. Penalty determines the
type of regularization penalty applied to the Perceptron algorithm.
The options provided are “l2,” “l1,” and “elasticnet.” “L2” refers to
ridge regularization, “l1” refers to lasso regularization, and
“elasticnet” combines both the penalties. In this case, the

optimized result is the “l1” penalty. The alpha parameter controls
the regularization strength in the Perceptron algorithm. It represents
the constant that multiplies the regularization term. The initial range
for alpha is [10−4, 10−1], and the optimized result is 0.0658. Fit
intercept determines whether to calculate the intercept for the
Perceptron algorithm. If set to true, an additional feature with a
constant value 1 is added to the input data. If set to false, no intercept
is calculated. In this case, the optimized result is Fit intercept = False.
The max iteration parameter defines the maximum number of
iterations for the Perceptron algorithm to converge. It represents
the maximum number of passes over the training data. The initial
range for max iteration is [102, 103], and the optimized result is 942.
The “tol” parameter specifies the tolerance for convergence in the
Perceptron algorithm. It determines the criterion for early stopping
when the change in the model’s coefficients is below the tolerance
value. The initial range for tolerance is [10−6, 10−2], and the
optimized result is 0.0028.

The results for the optimized parameters in the ANN model by
the method of Bayesian optimization are shown in Figure 5D. The
hidden layer sizes define the number of neurons in each hidden layer
of the artificial neural network. The range provided is [50, 200]. The
result indicated that the optimal number of neurons in the hidden
layer is 62. The activation parameter specifies the activation function
used in the artificial neural network. The options provided are
“logistic,” “relu,” and “tanh.” “Logistic” refers to the logistic
sigmoid function, “relu” refers to the rectified linear unit

TABLE 2 Optimized hyperparameters for four algorithms by the method of Bayesian optimization.

Model Hyperparameter Optimized hyperparameter

SGD Learning rate: [10−3,1] Learning rate = 0.0862

Regularization: [0, 1] Regularization = 0.0161

Penalty: [“huber,” “epsilon insensitive,” “squared hinge”] Penalty = “huber”

Alpha: [“l1”, “l2”] Alpha = “l1”

Loss: [0,1] Loss = 0.0112

AdaBoosting N estimators: [10, 100] N estimators = 83

Learning rate: [10−3, 1] Learning rate = 0.005

Algorithm: [ “SAMME,” “SAMME.R”] Algorithm = “SAMME.R”

Random state: [0.100] Random state = 31

Base classifier: [ DTC (max depth = 1), DTC (max depth = 2), DTC (max depth = 3)] Base classifier = DTC (max depth = 3)

Perceptron Penalty: [“l2,” “l1,” “elasticnet”] Penalty = “l1”

Alpha: [10−4, 10−1] Alpha = 0.0658

Fit intercept: [True, False] Fit intercept = False

Max iteration: [102,103] Max iteration = 942

Tol: [10−6, 10−2] Tol = 0.0028

ANN Hidden layer sizes: [50, 200] Hidden layer sizes = 62

Activation: [“logistic,” “relu,” “tanh”] Activation = “logistic”

Learning rate = [“constant,” “invscaling,” “adaptive”] Learning rate = “constant”

Alpha: [10−4, 10−1] Alpha = 0.0337

Momentum: [0.1, 1.0] Momentum = 0.1134
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function, and “tanh” refers to the hyperbolic tangent function. In
this case, the logistic sigmoid function is chosen as the activation
function. The learning rate determines the learning rate schedule for
updating the weights of the neural network during training. The
options provided are “constant,” “invscaling,” and “adaptive.”
“Constant” keeps the learning rate constant throughout the
training process, “invscaling” decreases the learning rate
gradually over time, and “adaptive” adjusts the learning rate
automatically based on the validation score. In this case, the
optimized learning rate is constant. The alpha parameter
represents the L2 regularization term’s strength in the neural
network’s cost function. It controls the amount of weight decay
applied to prevent overfitting. The initial range for alpha is [10−4,
10−1], and the optimized result is Alpha = 0.0337. The momentum
parameter is used to accelerate the optimization process by adding a
fraction of the previous weight update to the current update. It helps
the model overcome local minima and converge faster. The initial
range for momentum is [0.1, 1.0], and the value of the optimized
momentum result is 0.1134.

3.3 Comparison of various models for the
performance of the classification of the
water quality level

3.3.1 Confusion matrix
Figure 6A ~ Figure 6D show the confusion matrix on the test

dataset from the algorithm of SGD, AdaBoosting, Perceptron,
and ANN, respectively. A confusion matrix is a table that
summarizes the performance of a classification model on a
test dataset (Lin et al., 2022b). It shows the predicted labels
versus the actual labels and provides valuable insights into the
model’s accuracy and errors. Taking SGD algorithms as the
example in Figure 6A, the confusion matrix for SGD consists
of diagonal values, lower-left values, and upper-right values. As
for the diagonal values, the values on the diagonal represent the
number of correctly classified instances for each class. For
example, 749 points were correctly classified to class 3. In
other words, these values indicate the true positives (TP),
where the predicted class matches the actual class.

FIGURE 6
Confusion matrix on the test dataset: (A) SGD; (B) AdaBoosting; (C) Perceptron; (D) ANN.
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The values in the lower-left portion of the matrix represent the
number of instances that were incorrectly classified as negative
(false negatives, FN). To be accurate, eight points and 153 points
were incorrectly classified as class 3 and class 4, respectively. These
are cases where the model predicted the instance as negative, but it
actually belonged to a positive class (class 2 and class 3,
respectively). Finally, the values in the upper-right portion of
the matrix represent the number of instances that were
incorrectly classified as positive (false positives, FP). For
example, 13 points were wrongly recognized as class 0, which
actually belonged to class 3.

Compared with Figure 6A, Figure 6C, and Figure 6D, the
diagonal values in Figure 6B were higher than that in the others’
confusion matric, which indicated that AdaBoosting may have best
the performance compared to other algorithms for the classification
of the water quality level. To quantitatively evaluate the performance
of various algorithms, indexes like accuracy, precision, recall, and
F1 score were employed.

3.3.2 Accuracy, precision, recall, and F1 score
Figure 7 presents the performance evaluation of various

algorithms on the test dataset, focusing on the accuracy,

precision, recall, and F1 scores. Accuracy quantifies the overall
correctness of model predictions by assessing the ratio of
correctly classified instances to the total number of instances (Lin
et al., 2022c). The results in Figure 7A demonstrate that
AdaBoosting achieves the highest accuracy (100%) among the
models, followed by ANN (78.33%), Perceptron (76.47%), and
SGD (76.37%). The perfect accuracy achieved by AdaBoosting
showcases its exceptional performance on the given dataset.

Precision evaluates a model’s ability to accurately identify
positive instances among those predicted as positive (Lin et al.,
2022c). It emphasizes the quality of positive predictions. As shown
in Figure 7B, AdaBoosting exhibits the highest precision, followed
by ANN, Perceptron, and SGD. Specifically, SGD achieves a
precision of 28.98%, indicating that only 28.98% of instances
predicted as positive by the SGD model are truly positive.
Perceptron displays a slightly higher precision of 29.58%,
outperforming SGD, with 29.58% of instances predicted as
positive being true positives. ANN demonstrates further
improvement, achieving a precision of 40.33%, surpassing both
SGD and Perceptron. Remarkably, AdaBoosting achieves a
perfect precision score of 100%, accurately classifying all positive
instances with no false positives.

FIGURE 7
Performance of various algorithms on the test dataset in terms of (A) accuracy; (B) precision; (C) recall; (D) F1 scores.
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Recall, also known as sensitivity or true positive rate, measures
a model’s ability to correctly identify positive instances out of the
actual positive instances. It focuses on capturing all positive
instances (Lin et al., 2022c). As shown in Figure 7C, Perceptron
achieves a recall of 31.54%, indicating its ability to correctly
identify 31.54% of the actual positive instances in the test
dataset. SGD shows a slightly higher recall of 32.70%,
performing slightly better by correctly identifying approximately
32.70% of the actual positive instances. On the other hand, ANN
exhibits significant improvement with a recall of 37.21%,
outperforming both SGD and Perceptron by correctly
identifying approximately 37.21% of the actual positive
instances. AdaBoosting achieves a perfect recall value of 1,
indicating its ability to correctly identify all positive instances,
resulting in 100% recall. Overall, AdaBoosting achieves the highest
recall among the models, followed by ANN, Perceptron, and SGD.
The perfect recall achieved by AdaBoosting emphasizes its
capability to identify all positive instances in the test dataset.
SGD and Perceptron exhibit lower recall values, suggesting the
potential for missing a significant number of actual positive
instances. Conversely, ANN demonstrates improved recall,
reflecting its enhanced overall performance in capturing
positive instances.

The F1 score serves as a comprehensive metric by harmonizing
precision and recall, making it particularly valuable in cases of data
imbalance or when both precision and recall carry equal
importance (Lin et al., 2022c). As shown in Figure 7D, SGD
achieves an F1 score of 30.62%, denoting a balanced
performance in correctly classifying positive instances. This
score represents the harmonic mean of precision and recall and
reflects the SGDmodel’s overall capability in accurately identifying
positive instances. Similarly, the Perceptron model demonstrates
an F1 score of 30.20%, signifying comparable performance to SGD,
with a similar harmonic mean of precision and recall. Conversely,
the ANN model exhibits notable improvement with an F1 score of
37.06%, surpassing both SGD and Perceptron. This higher F1 score
signifies the ANN model’s superior balance between precision and
recall. Consequently, the ANN model displays enhanced overall
performance and effectiveness in classification. Impressively,
AdaBoosting achieves a perfect F1 score of 1, signifying its
exceptional ability to accurately classify positive instances. This
score indicates the optimal balance achieved between precision
and recall by the AdaBoosting model, resulting in unparalleled
classification performance. Overall, AdaBoosting attains the
highest F1 score among the evaluated models, followed by
ANN, Perceptron, and SGD. The perfect F1 score achieved by
AdaBoosting underscores its remarkable precision and recall
balance, further emphasizing its accurate classification of
positive instances. Although SGD and Perceptron exhibit lower
F1 scores, they present opportunities for improvement in
achieving a better balance between precision and recall.
Conversely, the ANN model showcases an improved F1 score,
highlighting its superior overall performance and effectiveness in
classification.

In conclusion, compared with the other algorithms,
AdaBoosting achieves the best performance for water quality
level classification, as evidenced by its superior accuracy (100%),
precision (100%), recall (100%), and F1 score (100%).

3.4 Identification of key water quality
indicators

Figure 8 presents the feature importance analysis conducted
using the AdaBoosting model on various water quality indicators.
The results reveal the top four important factors for water quality
level classification: COD (0.684), phosphate (0.119), iron (0.112),
and TDS (0.084), as depicted in Figure 8A.

COD is a crucial parameter in assessing the water quality,
representing the amount of oxygen required to chemically
oxidize the organic and inorganic compounds in water. Higher
COD values indicate elevated concentrations of organic and
inorganic pollutants, suggesting poorer water quality. The
significant importance of COD in the AdaBoosting model
highlights its pivotal role in classifying water quality levels. This
finding aligns with the existing literature, which emphasizes COD as
a primary indicator of water pollution (Ehteram et al., 2024).

Phosphate is a common nutrient found in water bodies that can
lead to eutrophication and water quality degradation when present
at excessive levels due to pollution sources such as agricultural
runoff or wastewater discharge. The inclusion of phosphate as an
important feature in the AdaBoosting model signifies its significance
in determining water quality levels. Phosphate levels are monitored
closely in many water bodies’ quality studies due to their impact on
aquatic ecosystems (Uddin et al., 2024a).

Iron is a naturally occurring element in water from geological
sources or human activities. It can impact the water quality and taste
and cause discoloration. Its relevance as an important feature in the
AdaBoosting model underlines its influence on water quality
classification. The presence of iron in water, particularly in high
concentrations, is often associated with industrial pollution and
natural leaching processes (Uddin et al., 2023a).

TDS refers to the concentration of inorganic salts, minerals, and
other dissolved substances in water. High TDS levels may indicate
water pollution, excessive mineral content, or contamination. The
incorporation of TDS as an important feature in the AdaBoosting
model underscores its influence on water quality level classification.
TDS is a widely used parameter in water quality assessments to
evaluate the salinity and overall chemical content of water (Uddin
et al., 2023b).

Collectively, these four features—COD, phosphate, iron, and
TDS—provide valuable information for the AdaBoosting model in
accurately classifying water quality levels. Their respective
importance signifies their contribution to the model’s predictive
power in determining the quality of water samples.

Dendrograms, hierarchical tree-like structures, serve as valuable
tools for illustrating the relationships and similarities between
features or samples. In Figure 8B, the dendrogram depicts the
feature importance, specifically showcasing the grouping of
phosphate and TDS in one branch and pH and turbidity in
another branch. The distance between these branches signifies
the dissimilarity or separation between these groups of features.
The grouping of phosphate and TDS within the same branch implies
a higher level of correlation between these two features, suggesting
that variations or changes in phosphate levels are likely to coincide
with similar variations in TDS levels. Consequently, there exists a
potential relationship or co-occurrence between these two
parameters regarding their impact on water quality. Similarly, the
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grouping of pH and turbidity in the same branch suggests a
correlation or similarity between these two features, indicating
their combined influence on water quality.

By identifying and discussing these key water quality indicators,
our study provides a comprehensive understanding of the factors
that are most influential in determining water quality levels, offering
valuable insights for water resource management and
policy-making.

4 Discussion

4.1 Novelty and contributions

This study offers several novel contributions compared to the
existing literature. First, it uniquely integrates Bayesian
optimization to dynamically tune hyperparameters in different
machine learning algorithms, addressing the challenge of
parameter optimization more effectively than the traditional
methods. Additionally, unlike previous studies, this research
considers a broader range of water quality parameters,
providing a more holistic evaluation of water quality. By
employing AdaBoosting with optimized hyperparameters, the
study achieves outstanding performance metrics (100%
accuracy, precision, recall, and F1 score) that surpass the
existing models in the literature.

Moreover, this is the first study to apply these advanced
machine learning techniques specifically to Korattur Lake,
offering valuable insights for local water quality management
and conservation efforts. Compared to previous studies that
utilized models like ANFIS, RBF-ANN, and MLP-ANN, our
approach with AdaBoosting shows superior performance in
terms of accuracy and other evaluation metrics (Uddin et al.,
2024a; Sajib et al., 2024). The use of Bayesian optimization
further enhances the model’s efficiency and effectiveness,
addressing limitations found in grid search and random
search methods.

4.2 Advantages and limitations in terms of
methodology

Bayesian optimization offers higher efficiency and better
performance compared to traditional grid search and random
search methods, significantly enhancing the hyperparameter
tuning process (Uddin et al., 2023a; Uddin et al., 2023b). The
AdaBoosting model achieves perfect scores in accuracy, precision,
recall, and F1, demonstrating its robustness and reliability.
Additionally, the comprehensive feature importance analysis
identifies key water quality indicators, providing actionable
insights for water resource management.

Despite these advantages, there are limitations to consider.
Although the models achieve a high performance, their
interpretability can be challenging. Efforts to enhance model
interpretability, such as using SHAP (SHapley Additive
exPlanation) values, could be beneficial in future studies.
Furthermore, although the model performs exceptionally well for
Korattur Lake, its generalizability to other water bodies needs
further investigation. Future work should focus on validating the
model in different geographical locations with varying water quality
parameters.

4.3 Perspective of the future application

Future applications of this study include the integration of the
optimized AdaBoosting algorithm into real-time water quality
monitoring systems to provide accurate and timely classifications
of water quality. This can enable quick responses to changes or
deterioration in water conditions. Additionally, by identifying key
factors such as COD, phosphate, iron, and TDS, the model can be
used in predictive maintenance to anticipate and mitigate issues,
thereby enhancing water resource management. The findings can
also inform policymakers and regulatory bodies to develop targeted
regulations and policies for water quality management based on the
important factors identified. Furthermore, the methodology and

FIGURE 8
Identification of key water quality indicators in terms of features importance from the model of AdaBoosting: (A) bar chart; (B) dendrogram.
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results can serve as a reference for further research in environmental
science and engineering and as a teaching resource for related
courses. Lastly, this approach can be adapted and applied to
classify the water quality in other lakes or water bodies, aiding in
the broader assessment and management of water resources in
various geographical locations.

5 Conclusion

This study used different machine learning models integrated
with Bayesian optimization to classify the water quality in Korattur
Lake. The results show that that the optimized hyperparameters of
N_estimators, learning rate, algorithms, random state, and base
classifier for the AdaBoosting algorithm by the method of Bayesian
optimization are 83, 0.005, SAMME. R, 31, and DTC with a
maximum depth of 3, respectively. Compared with the other
algorithms, AdaBoosting achieves the best performance for water
quality level classification, as evidenced by its superior accuracy
(100%), precision (100%), recall (100%), and F1 score (100%). The
top four important factors for water quality level classification are
COD (0.684), phosphate (0.119), iron (0.112), and TDS (0.084). In
addition, variations or changes in phosphate levels are likely to
coincide with similar variations in TDS levels. Future applications of
this study include the integration of the optimized AdaBoosting
algorithm into real-time water quality monitoring systems to
provide accurate and timely classifications of water quality. The
findings can also inform policymakers and regulatory bodies to
develop targeted regulations and policies for water quality
management based on the important factors identified.
Furthermore, the methodology and results can serve as a
reference for further research in environmental science and
engineering and as a teaching resource for related courses. Lastly,
this approach can be adapted and applied to classify the water
quality in other lakes or water bodies, aiding in the broader

assessment and management of water resources in various
geographical locations.
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