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Digital technology plays a vital role in driving toward a zero-carbon future. This
paper explores whether new infrastructure, serving as carriers for digital
technology, contributes to carbon reduction and efficiency gains in cities.
Drawing on panel data from 280 Chinese cities spanning 2011 to 2019, we
establish a theoretical analytical framework to investigate how new infrastructure
influences urban carbon performance through the perspectives of influence,
threshold, and spatial spillover effects. The study reveals that new infrastructures
development has a contributing effect on the total factor carbon productivity of
cities, with consistent results across various testing methods. Additionally, the
threshold effect test suggests that the dual threshold of regional energy
consumption influences the enhancing effect of new infrastructure on total
factor carbon productivity, exhibiting nonlinear characteristics. Furthermore,
the spatial spillover effect test suggests that new infrastructure construction
accelerates the local carbon emission performance, while having a positive
spillover effect on neighboring cities. This study provides innovative ideas and
experiences from China for the global realization of simultaneous promotion of
digital economy development and energy conservation and emission reduction.
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1 Introduction

With the worldwide acknowledgement of the necessity to control greenhouse gas
emissions, 151 countries have committed to carbon-neutral climate goals, encompassing
94% of the global economies and 86% of the world’s population (Matthews et al., 2009;
ICON, 2023). International green initiatives are expanding in scale and influence to achieve
a sustainable global future (Arbolino et al., 2018). Major global economies have clarified
their decarbonization schedules and are actively progressing toward a zero-carbon future.

Despite this, the tension between economic growth and carbon emissions persists
globally. Any effective climate change policy must simultaneously aim to stabilize
greenhouse gas levels in the atmosphere and promote sustained economic growth,
thereby fostering the development decoupled from CO2 emissions. Developing nations’
economies, such as China, are shifting from high growth to high-quality development.
Improvement in factor productivity serves as a core indicator for assessing the quality of
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economic transformation (Solow, 1957; Khanna and Sharma, 2021).
Compared with traditional productivity, total factor carbon
productivity (TFCP) serves as a link between economic
development and carbon emissions. It has become an important
metric for reconciling economic growth with changes in carbon
emissions. TFCP is also gaining traction in academic research.
Studies have demonstrated that the advances in green technology
advances, renewable energy innovations, and the opening of high-
speed railways can serve as TFCP engines (Du and Li, 2019; Zhou
and Tang, 2021; Lin and Jia, 2022).

In December 2018, the concept of “new infrastructure (NI) ” was
introduced at China’s Central Economic Work Conference and
included in the government’s work report. NI is an infrastructure
system based on the concept of new development, driven by
technological innovation and supported by information networks. It
can be instrumental to economic growth (Fernández-Portillo et al.,
2020), technological innovation (Koutroumpis et al., 2020), industrial
structure upgrading (Wu et al., 2023), and enhanced factor productivity
(Mitra et al., 2016). Overall, NI has become a crucial indicator of
national competitiveness in the digital economy age. However, there is
an ongoing debate about the effectiveness of NI in promoting low
carbon development. Numerous studies focusing on specific types of NI
have suggested that digitization can lead to win-win situation for
national prosperity and carbon reduction (Madlener et al., 2022;
Kou and Xu, 2022). However, some scholars believe that the
construction and operation of NI may promote energy-intensive
production, leading to a rebound effect that exacerbates energy
consumption and potentially decreases carbon efficiency (Wang
et al., 2022). Consequently, the question of whether NI can enhance
TFCP still needs to be answered in some instances.

This study utilizes data from city-level studies in China to
investigate the impact of developing NI on TFCP. The
motivation for this research stems from several factors. First,
global carbon dioxide emissions reach a record high of
37.4 billion tons in 2023, according to the data of CO2 emission
in 2023 releasing by the International Energy Agency (IEA). Among
them, carbon emissions of China are 12.6 billion tons, and ranking
first in the world. As the world’s largest energy consumer, China is
committed to achieving the highest reduction rate in carbon
emission intensity globally and bears a significant responsibility
to accelerate the adoption of low-carbon and green industries. Cities
are the main geographical unit of carbon emissions in China,
accounting for about 85% of the total carbon emissions (Mi
et al., 2016), so improving carbon performance at the city level
in China is the key to realize low carbon development. Second,
unlike developed nations, developing countries face the dual
challenges of environmental preservation and economic growth,
which necessitates striking a balance between economic
development and climate change. Third, as a rapidly emerging
economy, China possesses considerable investment and
consumption demands. Its NI construction has yielded
substantial results through systematic development and large-
scale deployment. According to the data provided by the
Ministry of Industry and Information Technology (MIIT, 2024),
as of 2023, China has 64.32 million km of fibre-optic cable lines, and
over 3.377 million 5G base stations. Moreover, China is developing
NI for the construction of the “Belt and Road.” to promote deeper
global integration.

In summary, with China as the research object, the present study
seeks to address the following questions: How effective is the
development of NI in reducing carbon at the city level? Is there a
heterogeneous threshold effect for NI’s lifting effect on TFCP? Are
there spatial spillovers from NI influencing TFCP, and what is its
regional radiative effect? The present study aims to address these
question. The research results will provide additional empirical
support for the rise of emerging economies, global responses to
climate change, and the transition of development modes.

Compared with existing literature, this paper makes several
distinct contributions. First, according to the connotation of NI,
the paper assesses NI levels at the city level, employing a nuanced
scale encompassing information, integration, and innovation
dimensions. Second, it extends the dividend effect of NI from the
economic realm to the low-carbon domain. By effectively integrating
measures of economic growth and carbon emissions, it
comprehensively examines the impact of NI on reducing carbon
emissions through the TFCP indicator. Third, using a threshold
econometric model, the paper reveals that the promotional effect of
NI on urban TFCP is influenced by dual threshold of regional energy
consumption, exhibiting nonlinear characteristics. As energy usage
decreases, the positive promotional impact of NI on urban carbon
performance gradually strengthens. Applying the Durbin spatial
model, the study reveals that NI not only positively impacts the
region’s carbon performance improvement but also generates
positive spillover impacts on neighboring cities in terms of
relieving pressure on carbon emissions.

The rest of the paper is organized as follows: Section 2 reviews
pertinent literature. Section 3 outlines the theoretical framework and
necessary hypotheses. Section 4 delineates the research design,
encompassing the econometric model, variables, and data.
Section 5 presents empirical findings from the benchmark
regression. Section 6 further examines threshold and spatial
effects based on empirical results. The final section presents
conclusions with policy recommendations.

2 Literature review

Currently, academics base their empirical analyses on the
economic efficiency effects of new digital infrastructures,
affirming their dual role in enhancing the speed and quality of
economic advancement. At the macro level, Czernich et al. (2011) in
their examination of a sample of OECD data, confirmed that
broadband infrastructure enables high-speed Internet access,
thereby positively influencing economic growth through
increased penetration. Du et al. (2022) observed that new
infrastructure investment can propel sustainable economic
advancement by leveraging technological innovation, upgrading
industrial structures, and increasing production efficiency as
transmission pathways. At the micro level, Mitra et al. (2016)
posited that information infrastructure offers novel avenues for
firms to acquire and utilize information resources, consequently
fostering technological efficiency and enhancing factor productivity.

In terms of environmental effects, studies at the macro level have
found that the development of new digital infrastructures can
enhance the efficient use of energy, thus leading to a reduction in
pollution (Wu et al., 2021). At the micro level, studies have shown
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that the development of digital infrastructure can promote green
transformation of enterprises (Guo et al., 2024b).

As the emphasis on carbon neutrality in the digital age increases,
scholars are beginning to discuss the carbon reduction effects of NI.
Most studies have assessed the climate impact of specific types of NI
on carbon emissions. Danish et al. (2018), Yang et al. (2022), and Ai
and Yan, 2024 employed direct measures of NI, such as length of
fiber-optic cable lines, the Broadband China Policy and capital stock.
However, their findings regarding the influence of NI on the total
carbon emissions of developing nations have been inconsistent.
Some researchers have explored the impact of NI on urban per
capita carbon emissions and carbon intensity by constructing an NI
composite index (Tang and Yang, 2023; Zhang et al., 2023a).

The relation between economic development and zero-carbon
targets is viewed as integrated and mutually reinforcing. Carbon
performance has garnered scholarly attention because it connects
enhanced economic performances with reduced carbon emissions.
However, research on the impact of NI on carbon performance is
still in its early stages. Given the limitations of assessing carbon
performance by using a single metric (such as carbon productivity or
carbon intensity), few scholars have initiated an exploratory
investigation into the comprehensive effects of NI on ecological
performance from the TFCP perspective. Hu et al. (2023) discovered
that developing NI positively affects urban low-carbon development,
demonstrating beneficial spatial spillover effects. This “low-carbon
dividend” exhibits a Matthew effect and is prominent only in regions
with abundant low-carbon endowments. Lan and Zhu (2023) argued
that the impact of NI on TFCP exhibits nonlinear characteristics,
and the rebound effect complicates the role of NI in carbon
emission reduction.

Synthesizing the results of existing research, it can be inferred
that NI is a new engine to promote high-quality economic
development; however, there are limitations in the research on its
low-carbon effect: First, much of the existing studies have either
focused on NI’s economic performance at national, regional, and
enterprise levels or explored its environmental impact through
single indicators such as total carbon emissions and carbon
intensity. This approach makes it challenging to accurately assess
NI’s comprehensive effects on a city’s carbon reduction and
efficiency enhancement behaviors. Second, some studies have
used specific proxies such as Internet penetration or policy
dummy variables to represent NI, which may not accurately
capture the level of developing NI at the city level. Due to
limitations of previous studies regarding the relation between NI
and carbon performance, the causal relation between the two
remains to be clarified. There is a need to comprehensively
characterize NI and its positive impact on urban green, low-
carbon, and high-quality development. Third, the adverse effects
of NI on carbon emission reduction have garnered more attention,
and its positive impacts and the role of spatial spillovers in
alleviating emission reduction pressures need further analysis.

In view of this, this paper links carbon emissions to economic
development and measures the impact of NI on the efficiency of
urban low-carbon economic development through TFCP indicator
that considering multiple input and output factors. We innovatively
constructed a system of indicators to measure the level of
infrastructure development at the city level from the three
dimensional layers of information, integration and innovation.

The enhancement effect of NI on urban TFCP is also empirically
examined, further revealing the positive spillover impact of NI on
the low-carbon development of neighboring regions.

3 Theoretical analysis and research
hypothesis

3.1 Direct effect of NI on TFCP

NI serves as the cornerstone of intelligent city construction and
is fundamental for enabling the digital economy to bring about
environmental improvements. Focusing on the connotation
dimension of NI, we emphasize three aspects, namely
information, integration, and innovation, which are aimed at
promoting carbon reduction in cities.

First, information infrastructure lays the foundation for the
comprehensive development of the urban digital economy. It
bears the transmission of various information technologies such
as big data, the Internet of things, artificial intelligence, and digital
twins, establishing a collaborative network across the city. According
to the resource-energy hypothesis, resources and energy are
endogenously substitutable (Acemoglu et al., 2012). This implies
that as the scale of information capital expands, information
infrastructure can be dematerialized by high-tech information
technologies, thereby optimizing and replacing enterprise
production, processing, marketing, and management processes.
Consequently, the result in reduced production costs and energy
consumption reduce, thereby contributing to energy conservation
and decarbonization (Zhong et al., 2022; Fu et al., 2023).

Second, the deep integration of digital technology into
production and life scenarios plays a crucial role in fostering
low-carbon urban development by reshaping industrial processes
and promoting intelligent living. On one hand, the integration of
digital technology within industries has effectively promoted
specialized labor divisions in production. This integration has
deeply permeated crucial carbon-emitting industries like
petrochemicals, electricity, industry, construction, and
transportation, facilitating whole-industry and whole-chain digital
transformation and low-carbon industrial process re-engineering,
concurrently leading to improvements in both carbon emissions and
production efficiency (Dedrick et al., 2013). On the other hand,
integrating NI into smart city frameworks encourages the gradual
transformation of residents’ lives toward paperless, advanced, and
low-carbon alternatives. NI facilitates the realization of intelligent
living, including digital payments, smart travel, and online
healthcare, streamlining residents’ daily behaviors and thereby
reducing urban carbon emissions by improving travel efficiency
and promoting low-carbon consumption (Mouratidis et al., 2021).

Third, innovation infrastructure with public goods attributes
bolsters scientific research, technical advancement, and
environmental protection, while furnishing technological
dividends for urban units to engage in environmental
governance. This enables environmental regulators to
dynamically and promptly monitor production emissions,
thereby achieving the process control of carbon emissions.
Establishing a precise carbon information service platform
through digital innovation lays the groundwork, which will work
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together with energy-consuming rights trading policy and
environmental information disclosure system, for enhancing
governmental digital carbon management and the effectiveness of
digital carbon reduction efforts (Guo et al., 2024a; Fang et al., 2022;
Wang et al., 2024). In light of these observations, this study proposes
Hypothesis 1.

H1: Developing NI can enhance urban TFCP.

3.2 Threshold effect of NI on TFCP

During the industrialization phase, developing countries have
heavily relied on extensive resource consumption in exchange for
GDP growth, leading to a steady rise in carbon emissions. This
rough development model poses challenges to the sustainability of
economic growth and may lead to “productivity paradox”.
Consequently, the efficacy of NI to promote TFCP is difficult to
release. Additionally, developing countries often lack a robust
foundation for advancing the digital economy, leading to increased
energy consumption in pre-development stage of NI and a delay in
carbon reduction efforts. In the early stages of development, the digital
transformation of resource-dependent industries byNI, may boost their
production efficiency, thereby stimulating higher energy consumption
and impeding the Improvement in TFCP.

With dual-control constraints on the total amount and intensity
of energy consumption, NI is propelled by digital advancements,
instigating profound transformations within the energy sector,
thereby diminishing the reliance of economic growth on energy
consumption. Cities boasting larger economies, diverse industry
types, and lower resource dependence, facilitating the scaling up of
NI, are more prone to reap the benefits from the positive effects of NI
on carbon performance (Du et al., 2023). Therefore, the impact of NI
on TFCP may be constrained by the characteristics of regional
energy consumption thresholds. The amalgamation of NI and
energy constraints can effectively bolster TFCP.

H2: The effect of carbon emission reduction from new
infrastructure development depends heterogeneously on regional
energy consumption. NI’s positive facilitating effect on enhancing
urban carbon performance gradually increases as energy
consumption decreases.

3.3 Spatial spillover effects of NI on TFCP

As the cornerstone of the digital economy, NI’s roles in
enhancing the efficiency of regional economic development have
been validated. Drawing from Metcalfe’s law of network technology
development, NI effectively transcends the spatial and temporal
constraints of information exchange, facilitating the cross-regional
flow of high-value elements and generating spatial spillover effects
(Du et al., 2023; Yan et al., 2022). With its universality and
shareability, NI empowers the digital economy to break through
geographical constraints, thereby unleashing the diffusion effect and
influencing “local-neighborhood” economic activities (Bronzini and
Piselli, 2009). Consequently, NI not only impacts the region’s TFCP
but also enhances the carbon performance of neighboring regions.

H3: Developing NI exhibits a spatial spillover effect on TFCP in the
neighboring areas.

The theoretical framework is illustrated in Figure 1.

4 Research design

4.1 Modelling

This study establishes the following benchmark regression
model to assess the direct impact of NI on TFCP. The detailed
calculation is as Equation 1.

TFCPit � α0 + α1NIit +∑ α2Controlit + λi + ηi + εit (1)

Where i denotes city; t denotes year; TFCP denotes total factor
carbon productivity; NI denotes the level of new infrastructure
development; Controlit denotes a series of city-level control
variables over time, including resourcing level (RAL), financial
development level (FDL), level of investment in assets (IFA),
economic development level (EDL), and degree of
industrialization (IDD); λ denotes individual fixed effects; η
denotes time fixed effect; and ε is the random perturbation term.

To further explore whether there are nonlinear effects and
threshold conditions for the contribution of new infrastructure
development to total factor carbon productivity in cities, this
study established the threshold effect model on Model (1) as the
Equation 2 (Hansen and Seo, 2002):

TFCPit � β0 + β1NIitI ECit ≤ γ( ) + β2NIitI ECit > γ( )
+∑ β3Controlit + λi + ηi + εit (2)

In the equation, EC denotes the threshold variable energy
consumption, γ denotes the threshold, and I denotes an indicator
function that assumes the value 0 or 1.

Furthermore, to explore the spatial spillover effect of carbon
emission reduction of new infrastructure construction, Model (1)
has been expanded into a spatial panel model by adding a spatial
interaction element as the Equation 3 (Elhorst, 2012):

TFCPit � δ0 + ρWTFCPit + δ1NIit + μ1WNIit +∑ μ2WControlit

+ λi + ηi + εit

(3)
Here, W denotes the spatial weight matrix, ρ denotes spatial

effect coefficients, and μ1 and μ2 denote the spatial lag terms’
coefficients for the primary explanatory and controlling variables,
respectively.

4.2 Variable settings

4.2.1 Explained variable: TFCP
Carbon productivity can link carbon emissions to economic

development, and has emerged as a critical metric for gauging the
efficiency of a country’s (region’s) low-carbon economic
development. A single-indicator measurement approach
emphasizes the direct correlation between carbon dioxide
emissions and GDP. However, this method fails to capture the
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intrinsic relations between CO2 emissions and factors such as
capital, labor, and energy, thereby hindering the comprehensive
assessment of multiple inputs and outputs. The TFCP indicator,
which integrates various relevant factors, considers offers account
both economic efficiency gains and environmental carbon
reductions (Li and Liao, 2022; Chen and Yao, 2024). It is more
appropriate for evaluating the win-win performance of carbon
reduction and efficiency gains.

Among the various methods for measuring TFCP,
nonparametric data envelopment analysis (DEA) stands out for
its ability to effectively address issues related to different scales and
angular bias. DEA does not require the construction of production
functions and has found widespread application in efficiency
measurement studies (Zhou et al., 2017).

The present study employs a nonradial, nonangular Slacks-
Based Measure (SBM) model to measure urban TFCP, drawing
on the work of Tone and others (Tone, 2001). The indicator system
comprises input and output components. The input component
includes capital, labor, and energy. The fixed capital stock reflects the
capital input and is processed using the perpetual inventory method
(PIM) (Nehru et al., 1995). The formula of capital stock used for
calculation is as follows: Kit � Kit−1(1 − δit) + Iit. Utilizing 2000 as
the base year, we consider an economic depreciation rate of 9.6%
(Zhang et al., 2004). The practitioners in cities take on the dual role
as both producers and consumers, intricately linked to carbon
emissions, so the labor input factor is determined by the number
of practitioners in cities (Chen and Yao, 2024). The energy input
factor is gauged by the total amount of electricity consumed across
various locations (Kong et al., 2024). The output element
encompasses desired and undesired outputs. The desired output
indicator is expressed in terms of gross regional product, and the
undesired output is represented in terms of CO2 emissions. The CO2

emissions are calculated using the IPCC2006 methodology that
involves applying data on the amount of energy consumed by
electricity, natural gas, and liquefied petroleum gas, which are

relatively easy to obtain in prefecture-level cities, and multiplying
them by carbon emission coefficients, then summing to calculate
total urban carbon emissions (Shan Y et al., 2018).

4.2.2 Explanatory variable: NI
Existing literature has mainly assessed NI development based on

individual indicators such as the total volume of postal and
telecommunication services, length of fiber-optic cable lines,
Internet penetration rate, and the “Broadband China” strategy
(Danish et al., 2018; Yang et al., 2022; Xiao et al., 2024). While
these indicators provide insights into specific aspects of NI
development, they may not offer a comprehensive measure of
overall NI levels in a particular region.

Based on the definition of new infrastructure from the
Commission on National Development and Reform of China,
and according to the research ideas of Ndubuisi et al. (2021), Lan
and Zhu (2023) and Chang et al. (2024). This research constructs
an evaluation index system for China’s city-level new
infrastructure from three dimensions: information,
convergence, and innovation, to thoroughly mirror the reality
of China’s urban new infrastructure development. Information
infrastructure pertains to the communication network
infrastructure reliant on new-generation information
technology. Converged infrastructure combines information
technology and traditional infrastructure to address
deficiencies in the modern era. Innovation infrastructure
empowers various sectors including science, education, and
industry with digital innovation technology. By integrating the
dimensions of information, convergence, and innovation, the
level of NI development at the city level is determined using the
entropy weight method. Table 1 reports the specific indicators.

4.2.3 Other variables
The threshold variable is energy consumption (EC), measured as

electricity consumption per capita for society, which is calculated as

FIGURE 1
Theoretical framework.
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the ratio of total electricity consumption for the year to the number
of people in the area (Khanna and Sharma, 2021).

The rest of the data are control variables for this paper. Drawing
on the research methodology of Li et al., 2012, Rehman et al. (2019)
and Fang et al. (2020), the main control variables are as follows: (1)
Resource allocation level (RAL), represented by road space per
capita; (2) financial development level (FDL), indicated by the
year-end deposit and loan balances of the financial sector as a
share of GDP; (3) level of asset investment (IFA), quantified as
investment in fixed assets per capita; (4) economic advancement
level (EDL), measured as regional GDP per capita; (5) degree of
industrialization development (IDD), expressed as the share of
output in the secondary sector to the share of employees in the
secondary sector.

4.3 Data sources and descriptive statistics

To account for the missing data of some cities and ensure the
continuity and availability of sample data, this study includes
280 prefecture-level cities in China from 2011 to 2019. A
balanced panel of data from 2,520 cities is then formed. Data
are sourced from the China Urban Statistical Yearbook, China
Energy Statistical Yearbook, Statistical Yearbook of Urban
Construction in China, Annual Development Report of

China’s Electric Power Industry, provincial and municipal
statistical yearbooks and statistical bulletins, as well as the
Juchao Information Network. We employed interpolation to
manage data lacunae. Some variables are logarithmic to ensure
scale uniformity. Descriptive statistics for each variable are
presented in Table 2.

5 Empirical results and analyses

5.1 Benchmark regression results

Based on the theoretical analyses and hypotheses, first, this
study explores the performance of the fundamental role of new
infrastructure construction in carbon emission reduction.
Table 3 presents the results of the benchmark regression of
Model (1), controlling for the individual and time-fixed
effects. Notably, the contribution of NI to urban TFCP
appears relatively robust, with all impact coefficients being
significant at 1% confidence level. Specifically, each 1%
increase in the level of NI corresponds to an average 0.48%
increase in TFCP. Although the effect decreases after
incorporating control variables, it remains significant,
affirming that developing NI bolster urban TFCP. This
suggests that NI possess environmentally friendly

TABLE 1 Evaluation system for new infrastructure development.

Target level Dimensionality layer Indicator layer Description of indicators

New infrastructure Information infrastructure Information infrastructure construction Number of listed information and communications companies

Information infrastructure users Mobile phone subscribers per 100 population

Internet users per 100 population

Convergence infrastructure Level of digital applications Number of listed companies in digital technology applications

Digital business models Number of listed companies with digital business models

Digital inclusive finance Total Index of digital financial inclusion

Innovative infrastructure Technical elements Number of companies listed on digital technology concepts

Labour factor Number of employees in the information, computer and software industry

Capital element Scale of development of telecommunication services

TABLE 2 Descriptive statistics.

Variant Observations Average value Standard deviation Minimum value Maximum values

Explained variable TFCP 2,520 0.493 0.121 0.169 1.000

Explanatory variable NI 2,520 0.049 0.066 0.011 0.929

Control variable RAL 2,520 17.309 7.225 2.250 60.070

FDL 2,520 0.988 0.613 0.118 9.623

IFA 2,520 16.274 0.915 12.794 19.105

IDD 2,520 1.133 0.469 0.007 14.211

EDL 2,520 10.697 0.577 8.773 13.056

Threshold variable EC 2,520 7.591 1.072 3.716 11.634
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characteristics and can support low-carbon sustainable
development in cities (Vaka et al., 2020). These results verify
Hypothesis 1 of this study.

Meanwhile, ecnonmic development level (EDL) and degree of
industrialization development (IDD) also contribute to TFCP.
Financial development level (FDL) and investment in assets
(IFA) are negatively correlated with TFCP and both are
significant at 1% level. This result suggests that the level of
economic and industrialization development is an important
factor in urban carbon reduction and efficiency, while controlling
the level of financial development and asset investment is crucial.

Furthermore, this study employs lagged orders of NI for regression
to mitigate possible causal inversion and endogenous disturbances
stemming from unobservable factors in the benchmark regression
(Hu et al., 2023; Lan and Zhu, 2023). As depicted in columns (3)
and (4) of Table 3, the effect of lagged NI on TFCP remains significant.
The robustness of the results is indicated by the positive and negative
attributes of the coefficient values and the significance of the estimation
outcomes, confirming the lagged effect of NI’s influential role.

Lagged first and second orders of new infrastructure are
employed as instrumental variables (IV) and estimated using
two-stage least squares (2SLS) to further mitigate variable
endogeneity (Li and Liu, 2022). The results in Column (5) of
Table 3 indicate that the promotional effect of NI on TFCP
persists under this approach.

5.2 Robustness check

5.2.1 Replace explained variables
This study recalculates explained variables (TFCP) by

expanding the dimensions and reconducts regression tests by
comprehensively considering the input and output
performances of the production factors (Kong et al., 2024). In
this context, two additional resource factors, water and land, are
considered alongside the existing capital, labor, and energy input
factors. In addition to the desired outputs of economic value, the
wellbeing of life is considered, with the green space per capita in
parks serving as a proxy for this aspect. The TFCP is recalculated
using the super-efficient SBM model and labeled as TFCP1, and
the parameters of the benchmark regression model are re-
estimated. The results are displayed in column (1) of Table 4,
which indicate that findings are stable and valid.

5.2.2 Replace explanatory variable
evaluation methods

The informativeness method is employed as an alternative
approach to evaluate the level of NI development, and further
regression tests are conducted (Ndubuisi et al., 2021; Yang et al.,
2021). The results are presented in Column (2) of Table 4. The
positive effect of NI on TFCP remains significant. This finding
reaffirms the beneficial role of NI in enhancing the city’s TFCP.

TABLE 3 Benchmark regression results of NI on TFCP.

Benchmark regression Lagging first order Lagging second order IV-2SLS

(1) (2) (3) (4) (5)

TFCP TFCP TFCP TFCP TFCP

NI 0.483*** (0.108) 0.432*** (0.081) 0.576*** (0.085) 0.679*** (0.113) 0.722*** (0.080)

RAL 0.000 (0.001) 0.0001 (0.001) −0.0002 (0.001) −0.0001 (0.001)

FDL −0.014** (0.006) −0.014** (0.007) −0.015** (0.007) −0.016** (0.006)

IFA −0.053*** (0.009) −0.053*** (0.008) −0.060*** (0.009) −0.060*** (0.006)

EDL 0.030*** (0.010) 0.041*** (0.015) 0.031 (0.030) 0.031* (0.018)

IDD 0.126*** (0.024) 0.127*** (0.024) 0.127*** (0.026) 0.124*** (0.019)

Individual fixation Yes Yes Yes Yes Yes

Fixed time Yes Yes Yes Yes Yes

Constant 0.469 (0.005) −0.040 (0.211) −0.067 (0.211) 0.054 (0.213) −0.247 (0.184)

Observations 2,520 2,520 2,240 1,960 1,960

R2 0.741 0.749 0.749 0.787

Kleibergen-Paap rk LM [0.000]

Kleiberge-Paap rk Wald F 575.180

Hansen J [0.289]

Note: Column (1) shows the benchmark regression results of NI, on TFCP, without addition of the control variable., and column (2) adds control variables. Columns (3) and (4) show regression

test of lagged first and second order of NI, as instrumental variables. Columns (5) shows the regression results of two stage least square(2SLS). Clustering robustt standard errors in ( ), ***p <
0.01, **p < 0.05, *p < 0.1, P-values in [ ]. Endogeneity instrumental variable test using Kleibergen-Paap rk LM, statistic, Kleibergen-Paap rk Wald F statistic and Hansen J statistic to test for

under-recognition, weak instrumental variables, and over-recognition problems, respectively.
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5.2.3 Exclusion of special samples
Acknowledging the distinctive characteristics of directly

governed cities, which fall under the direct administration of the
central government, and coastal cities, which often benefit from
preferential national policies, it is evident that their infrastructure
configuration, economic development level, and degree of
information differ from those of other prefecture-level cities. To
enhance the generalizability of the research results, the sample data
from directly governed and coastal cities are excluded. Regression
tests are conducted again (Chang et al., 2024; Li et al., 2024). The
positive and negative attributes of the coefficient values in columns
(3) and (4) of Table 4 demonstrate the robustness of the findings of
this study.

6 Further analysis

6.1 Analysis of threshold effects

This study empirically tests the threshold effect of regional
energy consumption by using a panel threshold model to further
explore whether NI affects TFCP nonlinearly. According to Model
(2), a self-sampling threshold effect test (bootstrap) is initially
conducted with 1,000 repeated samples to confirm the existence
of a threshold. The results show that energy consumption has passed
the single-threshold and double-threshold tests at 1% significance
level. It indicates that the contribution of NI to TFCP exhibits
heterogeneity under different levels of energy consumption. Graphs
depicting changes in the likelihood ratio (LR) statistics of the

threshold variables clearly illustrate the threshold estimates and
their confidence intervals, as detailed in Table 5 and Figure 2.

The results presented in Table 6 indicate that NI contributes to
urban TFCP, and energy consumption exhibits a double threshold
effect on this relation, passing the 1% significance level test.
Specifically, when the level of energy consumption is below
5.213, every 1% increase in the level of NI construction will lead
to 10.643% increase in TFCP; when the level of energy consumption
in the city exceeds the threshold, the impact coefficient of NI
decreases to 3.888; and when the level of energy consumption
exceeds the second threshold, the estimated coefficient of the
impact index of NI decreases to 0.354. It indicates that the
impact of NI on urban carbon performance is affected by the
regional energy consumption threshold. The effect is obvious in
cities with low energy consumption, while in cities with strong
resource dependence, the carbon reduction effectiveness of NI is
difficult to be realized.

Many cities characterized by high levels of energy consumption
are in a rough development mode, relying heavily on industries with
high energy consumption and emissions for economic growth. This
situation leads to significant contradictions concerning resources,
environment, climate, and security. The convergence of new
infrastructures and resource-dependent industries plays a limited
role in such cities. Even if the manufacturing efficiency of traditional
resource-based industries improves through digital technology, it
often results in further driving regional energy consumption, with a
minimal pull effect on the city’s carbon performance or even
exacerbating low-carbon hazards (Hu et al., 2023). However,
cities with a low level of energy consumption usually have a

TABLE 4 Robustness test.

Replace explained
variables

Replace explanatory variable
evaluation methods

Excluding directly
governed cities

Excluding coastal
cities

(1) (2) (3) (4)

TFCP1 TFCP TFCP TFCP

NI 0.823*** (0.212) 0.363*** (0.129) 0.399*** (0.095)

RAL −0.000 (0.001) −0.000 (0.001) 3.84e-07 (0.001) 0.001 (0.001)

FDL −0.020** (0.009) −0.014** (0.007) −0.013** (0.006) −0.011** (0.005)

IFA −0.051*** (0.012) −0.053*** (0.009) −0.053*** (0.009) −0.061*** (0.010)

EDL 0.036*** (0.011) 0.030*** (0.010) 0.0305*** (0.010) 0.025*** (0.017)

IDD 0.091*** (0.024) 0.126*** (0.024) 0.1271*** (0.025) 0.169*** (0.023)

NI1 0.425*** (0.083)

Individual
fixation

Yes Yes Yes Yes

Fixed time Yes Yes Yes Yes

Constant 0.396 (0.255) −0.032 (0.211) 0.0544 (0.2129) −0.2472 (0.1844)

Observations 2,520 2,520 2,484 2,052

R2 0.668 0.749 0.7494 0.7865

Note: Column (1) shows the regression results of the explanatory variable expands dimensions (TFCP1). Columns (2) shows the regression results of replacing explanatory variable evaluation

methods (NI1). Columns (3) and (4) shows the regression results of excluding directly governed cities and excluding coastal cities. Clustering robust standard errors in ( ), ***p < 0.01, **p < 0.05,

*p < 0.1.
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larger scale of national innovation investment and a higher level of
digital technology application and innovation. Therefore, the
investment in digital infrastructure construction in low-energy
cities is more massive, and providing richer application scenarios
for them to promote the transformation and upgrading of energy
structure and the green and low-carbon development of industries
(Zhang et al., 2023a).

In the traditional theory of economic growth, abundant natural
resources are the basis for the start of industrialization and the
guarantee of sustainable economic development. Resource
dependent cities and Resource undependent cities differ in terms
of resource endowment and energy use efficiency. Thus, the sample
has been divided into 109 resource-based cities and
171 nonresource-based cities to verify the energy consumption
threshold effect for both types of cities. The findings demonstrate
that in the sample of resource-based cities, the threshold effect of
regional energy consumption fails the significance test. The
industrial structure of resource cities is mostly high energy
consumption and high pollution. Their reliance on traditional
resources is characterized by typical “path dependence” and
“lock-in effect”. The persistence of their high-energy
consumption pattern hinders the green transformation of
traditional industries and the development of new energy

industries, thus weakening the carbon-reducing effect of new
infrastructures (Du et al., 2023).

A sample test of non-resource cities shows that new
infrastructure development has a positive impact on the increase
of total factor carbon productivity in cities, and that energy
consumption has a double-threshold effect on this positive
impact. With the rapid progress of industrialization, the demand
for coal, electricity and other energy consumption of the whole
society remains high in the early stage of urban development. At this
stage, the digitalization level of cities is relatively backward, and the
new infrastructure construction fails to follow up, which makes it
difficult to release its effect on carbon performance. Industrial
change promotes the diversification of the development mode of
non-resource cities, and the level of energy consumption of the
whole society is gradually reduced. At this stage, as the level of digital
technology application in cities gradually increases, it creates more
favorable conditions for the integration and penetration of new
infrastructures (Pan et al., 2022; Peng et al., 2024). This has also led
to digital infrastructure and digital platforms even better in cities,
which makes it easier to upgrade industrial structure and green
technological innovation, and strive to improve the efficiency of
energy utilization, thus curbing carbon emissions (Liao and
Liu, 2024).

TABLE 5 Threshold effect tests.

Threshold variables Threshold
type

F
value

P-value Boundary value Threshold
value

Confidence
intervals

10% 5% 1%

Energy consumption (full sample) Single threshold 504.08 0.000 84.513 100.293 125.313 5.213 [5.085, 5.281]

Double threshold 155.89 0.000 59.423 84.424 115.275 6.059 [6.053, 6.073]

Energy consumption (nonresource-
based cities)

Single threshold 469.71 0.000 98.715 115.376 146.695 5.689 [5.636, 5.717]

Double threshold 85.94 0.000 18.717 22.111 31.136 6.900 [6.867, 6.910]

Energy consumption (resource-
based cities)

None — — — — — — —

FIGURE 2
Plot of change in LR statistic for the whole sample.
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In addition, this paper also replaces the explained and
explanatory variables during the threshold test and the
robustness test shows that the research conclusions are still valid.
In addition, this paper also replaces the explained and explanatory
variables in threshold test during the threshold test. The robustness
test shows that the research conclusions are still valid.

6.2 Analysis of spatial effects

To examine the existence of a spatial influence and linkage
between NI and urban TFCP changes, first, we assess the spatial
correlation of the core variables by calculating the global Moran’s
Index (Moran’ I). The Moran’ I index is calculated using the
Formula 4 (Tiefelsdorf and Boots, 1997):

Moran′I �
n∑n
i−1
∑n
j−1
wij xi − �x( ) xj − �x( )

∑n
i�1
∑n
j�1
wij∑n

i�1
xi − x( )2

(4)

Where n denotes the number of sample cities; xi, xj are TFCPs of
cities i and j; �X is the sample mean value of x; wij denotes the
constructed spatial weight matrix. When i and j are not neighboring,
wij = 0, and vice versa is 1. The global Moran’ I index takes the value
range of [-1, 1], and if Moran’ I > 0, it indicates the existence of

spatial positive correlation of TFCP, and if Moran’ I < 0, it indicates
the existence of spatial negative correlation (Hao and Liu, 2016).

The construction of spatial weight matrix is the basis for spatial
measurement correlation analysis. In order to reflect the degree of
spatial correlation between cities and the spatial effect of NI on the
impact of TFCP (Elhorst, 2012). Considering that the research
content and explanatory variables in this paper are related to
environmental pollution and energy consumption, and therefore
related to spatial distance. So this paper chooses to construct the
weight matrix based on the spatial neighboring of cities (W1) and
geographic distance (W2). The detailed calculation is as Equation 5
and Equation 6.

W1 � 1,When city i and city j share a common boundary or node
0,When city i and city j do not share a common boundary or node

{ }
(5)

W2 � 1/dij i ≠ j( )
0 i � j( ){ (6)

Here, dij denotes the surface distance between cities calculated
by longitudinal and latitudinal position, with greater weighting
given to closer geographic proximity.

The results are presented in Table 7. The values of global
Moran’s I index for both NI and TFCP are positive, indicating
significant spatial autocorrelation between the two variables. To
further explore the spatial effects, this study selects the spatial

TABLE 6 Threshold regression and robustness test results.

Variant Full sample Nonresource-based cities Robustness check

(1) (2) (3) (4)

TFCP TFCP TFCP2 TFCP

NI (EC ≤ 5.213) 10.643*** (1.118)

NI (5.213<EC ≤ 6.059) 3.888*** (0.462)

NI (EC > 6.059) 0.354*** (0.077)

NI (EC ≤ 5.689) 9.036*** (0.809)

NI (5.689<EC ≤ 6.900) 1.782*** (0.225)

NI (EC > 6.900) 0.277*** (0.083)

NI (EC ≤ 4.895) 13.819*** (1.097)

NI (4.895<EC ≤ 6.059) 4.474*** (0.527)

NI (EC > 6.059) 0.346*** (0.077)

NI2 (EC ≤ 5.213) 14.391*** (2.336)

NI2 (5.213<EC ≤ 6.059) 5.570*** (0.745)

NI2 (EC > 6.059) 0.381*** (0.080)

Control yes Yes yes yes

Constant −0.289 (0.206) 0.441 (0.271) −0.329 (0.211) −0.183 (0.204)

Observations 2,520 1,539 2,520 2,520

R2 0.461 0.501 0.470 0.433

Note: Column (1) and (2) shows the threshold regression results of full sample and nonresource-based cities. Columns (3) and (4) shows the robustness test results of replacing explained

variables(TFCP2) and explanatory variable(NI2). Clustering robust standard errors in ( ), ***p < 0.01, **p < 0.05, *p < 0.1.
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Durbin model (SDM) with double fixed effects based on the LM,
LR, Wald and Hausmann tests (Elhorst, 2014).

Table 8 displays the spatial autocorrelation regression
coefficients ρ of the two models, which are 0.141 and 0.541,
respectively. Both coefficients pass the 1% significance level test,
indicating that the city’s TFCP is affected by the NI levels in
geospatially proximate cities. This finding confirms that NI
exhibits a radiative effect on regional carbon emission
performance, consistent with the findings of selected scholars
(Zhang et al., 2023b). The positive effect persists in the
regression coefficients of the spatial interaction terms. The
coefficient of the interaction term with geographical distance is
even more significant, indicating that NI enhances the TFCP of
neighboring cities, and this cross-regional spillover effect is closely
related to geographical distance.

NI enables the continuous adaptation of a city’s internal space
through the aggregation of multiple functions and the transmission
of massive amounts of information, effectively connecting the city’s
external space. While some studies have suggested a spatial-
geographical decay law of knowledge spillover (Fischer et al.,
2009), the high permeability of NI determines its role in
blurring the traditional geographic boundaries and facilitating
knowledge sharing. NI breaks through the limitations of
geospatial distance; promote flow of knowledge, information,
data, and other innovation factors across regions; and reduce
information asymmetry caused by geographic distance
(Raghupathi et al., 2014). This strengthens the correlation
between a city’s carbon emission performance and the level of
NI development in neighboring cities. In that case the NI of
neighboring cities significantly contributes to local low carbon
development through elemental correlation.

Because of a significant and nonzero ρvalue, the direct use of
regression coefficients cannot adequately explain the effects of the
two variables. Therefore, the total marginal effect should be divided
into direct and indirect effects to more comprehensively analyze
the effects of each factor on urban TFCP (Lesage and Pace, 2009).

Regarding the total effect (see Table 9), NI facilitates the
improvement of the TFCP index in the region and neighboring
cities under two spatial weight matrices of neighborhood and
geography. The deployment and utilization of new
infrastructure in the region radiate the integration and
development of digital industries in neighboring regions. The
application of information technology enhances productivity by
reducing energy loss, while reducing emissions of pollutants such
as CO2, thereby promoting low-carbon development in the local
area and neighboring regions (Khan et al., 2018).

From the results reflecting by the direct and indirect effects, the
direct and spillover impact coefficients of NI on urban TFCP are
significantly positive at 1% confidence level. This indicates that NI
significantly positively affects carbon reduction and improve
efficiency in the region. Its diffusion effect surpasses the echo
effect, enhancing the green, low-carbon, and high-quality
development of neighboring regions. Notably, the spatial
spillover effect under the geographic weighting matrix is
substantially more pronounced than the direct effect, with a
difference in the coefficient of influence of NI being 3.408. This
suggests that the geographic distance significantly amplifies the
promotional effect of NI on TFCP of neighboring regions.T
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Moreover, NI promotes high-efficiency concentration and diffusion
of information technology factors between regions through spatial
clustering and production networking. It also drives the greening,
digitalization, and energy-saving upgrading of production processes
and techniques. The accelerated establishment of a wide-coverage
intelligent transport and fast-track system, along with the rapid flow
of production factors across regions and the continuous reduction of
logistics and transaction costs, contribute to the formation of an
organic community among cities (Hepburn et al., 2021).

7 Conclusions and policy implications

Digital technologies play a crucial role in driving towards a zero-
carbon future. This paper explores whether new infrastructures as
vehicles for digital technologies can play a role in carbon reduction
and efficiency enhancement in cities. Drawing on panel data from
280 Chinese cities spanning 2011–2019, this study investigates the
effect of NI on urban TFCP, offering insights to complement
existing literature and create policy rationale toward low-carbon
development through digitization. The main findings of the study
are as follows: (1) The fundamental role analysis shows that NI
positively influences urban TFCP, with robustness of the result
affirmed through various testing methodologies. (2) As the level
of energy consumption decreases, the positive contribution of NI to

TFCP gradually increases. This effect is obvious in non-resource
cities, while the carbon reduction effect of new infrastructure is
difficult to realize in cities with strong resource dependence. (3) The
spatial spillover effect analysis indicates that NI can accelerate local
carbon performance and exerts a positive spillover effect on
neighboring cities through emission reduction and pressure
reduction, thereby promoting large-scale urban integration.

Based on the empirical tests provided above, we present the
following policy recommendations:

In view of the significant impact of NI on the improvement of
urban carbon performance, On one hand, it is recommended to
advance the layout of NI appropriately, increase the penetration rate
of information infrastructure such as 5G base stations, data centers,
and the Internet of Things, so as to enhance the new energy level of
the digital pedestal. The “NI” should be emphasized the effectiveness
of investment, and localities make a prediction of investment
prospects. It is necessary to design the profit model rationally
and arrange the financing method. It should be made feasible for
commercial investment, enhance development momentum and
form high-quality assets that can be reused in the long term.
Meanwhile, it is necessary to increase financial support to
support the relevant fields of universities, research institutes and
enterprises to carry out common technology research jointly and
solve technical problems of industries involved in NI. On the other
hand, strengthening the innovation infrastructure that supports
scientific research and promoting the application of digital
technology in urban low-carbon management. Carbon emissions
are monitored and analyzed through big data, and the effects of
environmental policy implementation are assessed. This improves
the efficiency and responsiveness of urban governance and creates
conditions for enhancing the effectiveness of digital carbon
management and digital carbon reduction by the government.

Furthermore, considering that the carbon emission reduction effect
ofNI is affected by regional energy consumption thresholds, cities should
strengthen energy constraints and other key supporting factors and seize
energy consumption’s “threshold point” in NI development. On one
hand, accelerate the deep integration of information technology and
resource-based industries, and lead the transformation and upgrading of
traditional energy industries with digital technology. Cities introduce

TABLE 9 Spatial measurement model regression results.

Spatial weighting matrix Type of effect Ratio

W1 Direct effect 0.415*** (0.059)

Indirect effect 0.439*** (0.139)

Total effect 0.855*** (0.135)

W2 Direct effect 0.395*** (0.060)

Indirect effect 3.803** (1.510)

Total effect 4.199*** (1.501)

Note: Clustering robust standard errors in ( ), ***p < 0.01, **p < 0.05, *p < 0.1.

TABLE 8 Spatial measurement model regression results.

Variant (1) (2) Variant (3) (4)

W1 W2 W1 W2

TFCP TFCP TFCP TFCP

NI 0.403*** (0.060) 0.381*** (0.061) WNI 0.333*** (0.124) 1.510*** (0.574)

Control yes Yes Control yes yes

ρ 0.141*** (0.028) 0.541*** (0.105) ρ 0.141*** (0.0281) 0.541*** (0.105)

sigma2_e 0.003*** (9.34e-05) 0.003*** (9.27e-05) sigma2_e 0.003*** (9.34e-05) 0.003*** (9.27e-05)

Observations 2,466 2,466 Observations 2,466 2,466

R2 0.182 0.242 R2 0.182 0.242

Note: Column (1) and (3) shows the results of the spatial effects test under spatial adjacency matrix. Columns (3) and (4) shows the results of the spatial effects test under geographic distance

matrix. Clustering robust standard errors in ( ), ***p < 0.01, **p < 0.05, *p < 0.1.
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policies and norms to promote the synergistic development of digital
infrastructure and green energy actively. promote the rational
distribution of green energy, and improve the energy utilization
efficiency of the digital industry. On the other hand, the Government
has scientifically designed and deployed an accurate energy control
mechanism, built a modern smart grid and promoted the digitalization
of energy control. Through real-time monitoring and analysis of energy
use data, the visualization of energy use is realized, ultimately improving
energy use efficiency and reducing energy consumption.

Finally, NI has spatial spillover effects on neighboring cities in terms
of carbon reduction and efficiency, and contributes to the construction
of ecological civilization in urban agglomerations by upgrading
innovation capacity and accelerating urban-rural integration.
However, the prevalence of information silos and the lack of
effective integrated planning have led to different cities promoting
NI projects independently without unified coordination, resulting in
scattered resources and duplication of construction. At the starting line
of the construction of smart city clusters, a top-level design with a far-
reaching orientation is crucial. The Government should strengthen
interregional cooperation in the development of the digital economy
and coordinate the construction layout of interregional data centers,
arithmetic algorithms, industrial Internet and other infrastructures to
maximize their effectiveness. The carbon-reducing effects of new
infrastructure can cross traditional urban governance boundaries by
industrial integration, corporate cooperation and factor sharing. This
creates a green and intensive regional integration pattern and improves
the overall green economy efficiency among cities.

Although this study uses 280 cities in China as the sample, the
findings are equally helpful for other emerging countries. Like
China, most developing economies are still in the early stages of
NI. Expanding effective investment and advancing the layout of NI
will significantly impact the economic growth of these countries.

This study also has some limitations. On the one hand, we focus
on the fundamental role, nonlinear effect and spatial spillover effect
of NI impact on TFCP. This research line of thought weakens the
differences manifested under different city characteristics. Future
research can further explore the impact, such as different city sizes,
factor endowments, and geographic locations. On the other hand, in
the complex relationship of NI affecting urban TFCP, whether there
are other factors that play a moderating role besides being
constrained by the threshold characteristics of energy
consumption. Which can be further explored at a later stage to
explore the role of technological accumulation, human capital, and
so on, in enhancing the empowering effect of digital investment.
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