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Reliable information plays a pivotal role in sustainable urban planning. With
advancements in computer technology, geoinformatics tools enable accurate
identification of land use and land cover (LULC) in both spatial and temporal
dimensions. Given the need for precise information to enhance decision-making,
it is imperative to assess the performance and reliability of classification
algorithms in detecting LULC changes. While research on the application of
machine learning algorithms in LULC evaluation is widespread in many countries,
it remains limited in Zambia and Sri Lanka. Hence, we aimed to assess the
reliability and performance of support vector machine (SVM), random forest
(RF), and artificial neural network (ANN) algorithms for detecting changes in land
use and land cover taking Lusaka and Colombo City as the study area from
1995 to 2023 using Landsat Thematic Mapper (TM), and Operational Land Imager
(OLI). The results reveal that the RF and ANN models exhibited superior
performance, both achieving Mean Overall Accuracy (MOA) of 96% for
Colombo and 96% and 94% for Lusaka, respectively. Meanwhile, the SVM
model yielded Overall Accuracy (OA) ranging between 77% and 94% for the
years 1995 and 2023. Further, RF algorithm notably produced slightly higher OA
and kappa coefficients, ranging between 0.92 and 0.97, when compared to both
the ANN and SVM models, across both study areas. A predominant land use
change was observed as the expansion of vegetation by 11,990 ha (60.4%),
primarily through the conversion of 1,926 ha of bare lands into vegetation in
Lusaka during 1995–2005. However, a noteworthy shift was observed as built-up
areas experienced significant growth from 2005 to 2023, with a total increase of
25,110 ha (71%). However, despite the conversion of vegetation to built-up areas
during the entire period from 1995 to 2023, there was still a net gain of over
11,000 ha (53.4%) in vegetation cover. In case of Colombo, built-up areas
expanded by 1,779 ha (81.5%), while vegetation land decreased by 1,519 ha
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(62.3%) during concerned period. LULC simulation also indicated a 160-ha
expansion of built-up areas during the 2023–2035 period in Lusaka. Likewise,
Colombo saw a rise in built-up areas by 337 ha within the same period. Overall, the
RF algorithm outperformed the ANN and SVM algorithms. Additionally, the
prediction and simulation results indicate an upward trend in built-up areas in
both scenarios. The resultant land cover maps provide a crucial baseline that will be
invaluable for urban planning and policy development agencies in both countries.

KEYWORDS

artificial neural network, Colombo, land use/land cover, Lusaka, random forest, support
vector machine

1 Introduction

Geoinformatics is now widely used as a reliable and effective
decision-making tool in various fields (Jayasinghe and Withanage,
2020; Withanage et al., 2024; Withanage et al., 2024; Wijesinghe
et al., 2023; Wimalasena and Withanage, 2022; Withanage et al.,
2023). Urban landscapes are dynamic, continually evolving in
response to a myriad of socio-economic, environmental, and
anthropogenic factors. Understanding the spatio-temporal
patterns of land use and land cover changes in rapidly growing
cities is critical for informed urban planning and sustainable
development (Yuh et al., 2023; Withanage and Jingwei, 2024).
The rise in urbanization is increasingly conspicuous across many
nations, particularly in mega cities and swiftly advancing regions,
leading to a host of socioeconomic and environmental issues. In
1950, a quarter of the global population resided in urban areas,
whereas presently, half of the world’s population calls urban regions
their home (Withanage et al., 2023; Withanage et al., 2024). To
effectively track these transformations, it is essential to generate
dependable and precise land use and land cover (LULC) maps and
predict future land use. These maps offer crucial data necessary for
the formulation of policies, conservation strategies, and urban
development plans, as well as for monitoring deforestation and
agricultural activities (Wijesinghe and Withanage, 2021; Withanage
et al., 2024; Noi and Kappas, 2017).

Recent advancements in remote sensing and machine learning
(ML) techniques have significantly enhanced the accuracy and
efficiency of land use and land cover (LULC) classification and
monitoring. Studies in Egypt have demonstrated the effectiveness of
various ML algorithms, such as Support Vector Machines (SVMs),
Decision Trees (DTs), Random Forests (RFs), and Artificial Neural
Networks (ANNs), in utilizing multi-spectral satellite imagery for
precise LULC mapping (Mahmoud et al., 2023). In India,
comparative reviews of machine learning classifiers for LULC
monitoring have highlighted that the Random Forest algorithm
frequently achieves superior accuracy compared to other classifiers
(Talukdar et al., 2021). These studies collectively emphasize the
robust application of ML algorithms in diverse geographic contexts,
driving forward the capabilities of LULC analysis and fostering
sustainable land management practices.

Remote sensing satellite images are regarded as crucial data
sources for LULC mapping owing to their wide geographical
coverage at a cost-effective rate, coupled with their ability to
provide invaluable information about the Earth’s surface. LULC
maps are typically generated using classification approaches based

on remote sensing imagery (Yuh et al., 2023). According to Navin
and Agilandeeswari (2020) the outcome of LULC mapping results is
influenced not only by the suitability of the imagery but also by the
careful selection of the classification methods. Choosing the optimal
classification algorithm presents a challenge due to variations in
accuracy across diverse environmental conditions, satellite data
sources, spatial resolutions, and other factors (Chowdhury, 2023).

Several image classification techniques across different
categories have been widely employed in the classification of
satellite images. Parametric classifiers such as maximum
likelihood (MaxL), minimum distance, linear discriminant, and
Bayesian classifiers are among the most commonly utilized
methods. Machine learning (ML) classifiers encompass support
vector machines, random forest, and k-nearest neighbor
algorithms. Additionally, deep learning algorithms, including
artificial neural networks and convolutional neural networks, are
prominent in satellite image classification (Chowdhury, 2023; Ge
et al., 2020). Machine learning models have been extensively applied
in diverse geospatial contexts, such as: (1) hydrology (Lee et al.,
2023); (2) urban growth (Shafahahd et al., 2022); (3) land-use
classification (Lu and Weng, 2007); (4) land-use forecasting
(Lukas et al., 2023); (5) remote sensing applications (Li et al., 2014).

MLmodels have been utilized to generate land probability maps,
which can be incorporated into dynamic models to enhance overall
simulation capabilities. Various studies have endeavored to identify
the optimal classification algorithm for LULC studies by evaluating
the performance of these classifiers either against each other or
against alternative classification methods (Khatami et al., 2016).
However, the findings from these studies diverge considerably. For
instance, Noi and Kappas (2017) observed that SVM yielded the
highest accuracy, followed by RF and kNN, a conclusion consistent
with (Adam et al., 2014). Conversely, Chowdhury (2023), in a
comparison of RF, SVM, ANN, and (MaxL), determined that
ANN was the most accurate and reliable model for urban LULC
classification. Many urban LULC and modeling studies in
developing countries, often constrained by coarse satellite
imagery, have predominantly relied on single methods, leading to
increased classification uncertainties compared to the utilization of
ML techniques. Notable examples include the works of (Ahmad
et al., 2023; Lukas et al., 2023; Kavian. et al., 2016; Simwanda et al.,
2021; Senanayake et al., 2013). In contrast, a comprehensive ML
study by (Yuh et al., 2023; Kavian. et al., 2016; Vapnik, 1998) in
Cameroon found that RF outperformed other models, followed by
kNN, SVM, and ANN, respectively, albeit limited to a
specific region.
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In this study, our primary objective is to leverage Machine
Learning (ML) techniques, employing three classification
algorithms (Support Vector Machine - SVM, Artificial Neural
Network - ANN, and Random Forest - RF), to effectively classify,
quantify changes, model, and simulate urban LULC dynamics in
two developing nation cities, Lusaka, Zambia, and Colombo, Sri
Lanka, Spanning the temporal scale from 1995 to 2023 using
Landsat TM/ETM+ and Landsat 8 OLI imagery. To the best of
our knowledge no research was published that compared and
evaluated the performance of the above ML algorithms for
Zambia and Sri-Lanka. Additionally, we endeavor to conduct a
novel comparative analysis of urban expansion between these two
cities. Our study aims to assess the classification performance of
these algorithms within the unique environmental contexts of
Lusaka and Colombo, discern the spatio-temporal patterns of
LULC changes in both cities and simulate future LULC changes
up to 2035. By undertaking this comprehensive analysis, we
endeavor to deepen our insight into the most appropriate
machine-learning techniques for distinct geographic regions
and medium-resolution imagery.

This paper is organized into five sections. Section one focused on
providing a comprehensive overview of the research background,
rationale, and literature review. Following that, Section two detailed
the study’s geographical scope, materials, and methodology. The
third Section presented the findings derived from three distinct
algorithms, accompanied by maps, tables, and figures. The
discussion Section delved into the limitations of the study,
proposed directions for future research, and discussed the policy
implications of LULC change detection and comparison of three
machine learning algorithms. Finally, the conclusion was presented
in the last section.

2 Materials and methods

2.1 Study area

(a) The city of Lusaka (Figure 1), situated in Zambia’s Lusaka
Province, spans an area of 418 km2, located between latitudes
15°17′56″ to 15°32′04″ South and longitudes 28°12′07″ to
28°29′19″ East. It serves as the pivotal political, cultural, and
economic hub of Zambia, housing the central government and
hosting a concentration of institutional, commercial, and
industrial activities. Since Zambia gained independence in 1964,
Lusaka has undergone rapid urbanization, evolving into a
metropolitan center. Its population has surged from 0.12 million
in 1963 to 2.2 million in 2022, with an annual growth rate of
2.0 according to the Zambia Statistical Agency, 2022. The urban
landscape of Lusaka is characterized by a mosaic of planned and
unplanned residential areas, alongside commercial, industrial, and
institutional zones. This swift urban expansion has placed significant
strain on land management and the provision of social services,
necessitating careful consideration for sustainable urban
development in future planning endeavors.

(b) Colombo, the bustling commercial hub of Sri Lanka, rests on
the western coast of the island nation, spanning an area of
approximately 37 km2 between latitudes 6°55’ – 6°59′ North and
longitudes 79°50’ – 79°53′ East (Figure 2). The heart of the city,
Colombo Fort, serves as the central business district (CBD) and
houses major transportation hubs, including the primary railway
station and central bus terminal. The rapid urbanization of Colombo
has led to its extensive expansion. Through contemporary urban
development initiatives and strategic planning projects, Colombo
has evolved into one of the most densely populated urban centers in

FIGURE 1
Location of study area. Lusaka.
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South Asia, boasting a resident population of 637,865 as of 2017,
according to Senanayake et al., 2013. This accelerated urban growth
has come at the expense of diminishing vegetation cover, as green
spaces give way to the construction of buildings, roads, parking lots,
pavements, and other infrastructure. Recognizing the national
significance of Colombo’s urban landscape, it becomes imperative
to gain a comprehensive understanding of its growth and expansion
for effective planning and sustainable development initiatives.

(c) Climate and Vegetation: Lusaka, Zambia: Lusaka has a
subtropical highland climate with distinct wet and dry seasons.
The wet season runs from November to March, characterized by
heavy rainfall and lush vegetation. Common vegetation types
include miombo woodland, sa-vanna grasslands, and various
agricultural crops.

Colombo, Sri Lanka: Colombo experiences a tropical monsoon
climate, with consistent temperatures year-round and two main
monsoon seasons. The city is characterized by tropical wet evergreen
forests, mangroves, and extensive urban vegetation.

2.2 Data sources

Landsat imagery was acquired online via the Google Earth
Engine (GEE) platform (accessed on 1 March 2024). A total of
eight Landsat Thematic Mapper (TM) and Operational Land
Imager (OLI) Thermal Infrared Sensor (TIRS) images, each with
a resolution of 30 m × 30 m, covering the areas of Lusaka and
Colombo across various years including 1995, 2005, 2015, and
2023, were procured. The specific date ranges for the acquisition
of these images were selected to avoid the rainy season and
minimize atmospheric interference, ensuring optimal image

quality: Colombo, Sri Lanka: 1 December (previous year) -
31 March; and Lusaka, Zambia: 1 May–31 October.
Specifically, Landsat 5 images were utilized for 1995 and 2005,
while Landsat 8 images were employed for 2015 and 2023. The
Landsat-8 Surface Reflectance (SR), Top of Atmosphere (TOA),
and OLI datasets are geometrically, atmospherically, and
radiometrically corrected.

Only Cloudmasking was performed by using the ‘pixel_qa’ band
to eliminate cloud interference. Subsequent image preprocessing,
including boundary filtering, date selection, median compositing,
and clipping, was conducted within the GEE platform. Ultimately,
cloud-free Landsat images spanning from 1995 to 2023 were
prepared for classification purposes.

For additional verification and comparison of the findings, we
incorporated two LULC datasets for the years 2005 and 2015: the
Moderate Resolution Imaging Spectroradiometer (MODIS) Global
Land Cover products (Friedl and Sulla-Menashe, 2019) produced by
NASA, are mapped at a 500 m pixel resolution; and the global land
cover and land use change datasets derived from the Landsat archive
(Potapov et al., 2021) with 30 m pixel resolution.

2.3 Methods

The study utilized all the raw bands available from the Landsat
TM and OLI sensors, specifically bands 1-7 for Landsat 5 TM and
bands 1–11 for Landsat 8 OLI, ensuring a comprehensive analysis of
the spectral information. To assess the performance of the selected
machine learning algorithms, several steps were undertaken,
including image preprocessing, classification, selection of training
datasets, and validation (Figure 3). Subsequently, an accuracy

FIGURE 2
Location of study area. Colombo.
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assessment of each algorithm was conducted. In the final stage,
LULC change detection and simulation were performed.

2.3.1 Image classification
To classify the atmospherically corrected surface reflectance and

cloud-free images of the study areas over the specified years, we
employed the random forest and Support Vector Machine (SVM)
classifier algorithms within the GEE platform, as well as the Multi-
layer Perceptron (MLP) algorithm in TerrSet 2020 GIS software for
Artificial Neural Network (ANN) analysis. The LULC maps are
produced by the 3 ML classification algorithms.

2.3.2 Training and validation
The dominant land cover types in Lusaka include water bodies,

built-up areas, vegetation, and bare land, whereas Colombo is
characterized by water bodies, built-up areas, and vegetation.
Sample points were established for each year, with 289, 518, 413,
and 619 points for Colombo, and 672, 898, 931, and 940 points for
Lusaka, respectively. Approximately 80% of the sample datasets was
allocated for training the classifiers, while the remaining 20% served
as validation samples to ensure accuracy. Sample points, hereafter
referred to as “samples,” were established for each year with the
following counts (Tables 1, 2). Samples were selected using a

FIGURE 3
Methodological flowchart of the study.
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stratified random sampling method. This method ensures that each
LULC class is proportionately represented in the training and
validation dataset.

This partitioning was achieved using the functions
“training.randomColumn”, “filter [ee.Filter.lessThan (“random”,
0.8)]”, and “filter [ee.Filter.greaterThanOrEquals (“random”,
0.8)]” as described by (Tassi et al., 2021).

2.3.2.1 RF
Random Forest is an ensemble learning method that constructs

multiple decision trees during training and outputs the mode of the
classes (classification) or mean prediction (regression) of the
individual trees. It aggregates multiple decision trees to improve
classification accuracy and robustness, particularly for high-
dimensional data (Avci et al., 2023).

2.3.2.2 SVM
Is a supervised machine learning algorithm that can be used for

both classification and regression challenges. It works by finding the
hyperplane that best divides a dataset into classes. SVM is effective in
high-dimensional spaces and is particularly useful for complex but
small to medium-sized datasets.

2.3.2.3 Artificial neural network (ANN)
ANN is inspired by the structure and function of the human

brain. It consists of interconnected groups of nodes, similar to a vast
network of neurons in the brain. ANNs can learn and model
complex relationships between inputs and outputs, capturing
nonlinear dependencies.

2.3.3 Accuracy assessment
To assess and validate our LULC maps produced by the (ML)

models, we computed classification accuracy for each model,
including Random Forest (RF), Support Vector Machine (SVM),
and Artificial Neural Network (ANN). The ground-truth data were
validated using high-resolution Google Earth imagery available

within the Google Earth Engine (GEE) platform. These accuracy
were then compared using both test and validation datasets,
facilitated by the “classifiedTest.errorMatrix ()” function. Four
widely used accuracy metrics were computed: Overall Accuracy
(OA), Producer’s Accuracy (PA), User’s Accuracy (UA), and Kappa
Coefficients. OA represents the overall percentage of correctly
classified LULC classes, calculated by dividing the number of
accurately classified land cover pixels by the total number of
pixels in the datasets using below Equation 1 (Yuh et al., 2023;
Olofsson et al., 2014; Mutale and Qiang, 2024; Withanage et al.,
2024; Congalton, 1991).

OA � 1
N

∑
n

ii�1Pii (1)

Where, OA is overall accuracy; N is total samples number; n is
total categories number; and Pii is correct classifications number of
ith sample in confusion matrix.

PAmeasures the percentage accuracy of individual LULC classes
within a map, determined by dividing the number of correctly
classified pixels in a specific land cover class by the total number
of pixels belonging to that class in the reference data. Misclassified
pixels within this metric are known as errors of omission and was
calculated using as below Equation 2.

PA � nii
ni+

(2)

Where, nii is correctly classified number pixel in each category;
ni+ is correctly classified total number pixels in that category
(column total).

UA evaluates the reliability of a given land cover map
concerning its agreement with ground observations. It is
calculated by dividing the number of correctly classified pixels in
a specific land cover class by the total number of pixels classified
within that class. Similar to Producer’s Accuracy, misclassified pixels
in this metric are referred to as errors of omission. The formula is as
below Equation 3.

UA � nii
ni+

(3)

Where, nii is correctly classified number pixel in each category;
ni+ is correctly classified total number pixels in that category
(row total).

The Kappa Coefficient Equation 4 indicates the level of
agreement between test and validation data in a generated land
cover map. It is based on the probability of the test data closely
matching the validation data during the land cover mapping process
and is highly correlated with overall accuracy.

k � po –pe( ) / 1 –pe( ) (4)
where, po = total accuracy and pe is random accuracy.

These metrics demonstrate the alignment between the LULC
outcomes and the real LULC on the respective sites, as viewed from
various angles (Lu et al., 2022; Hu et al., 2013).

The accuracy assessment of LULC classification was conducted
utilizing error matrices. During this assessment, four distinct
categories were considered: waterbody, built-up area, bare land,
and vegetation for Lusaka, and waterbody, built-up area, and
vegetation for Colombo. Waterbody delineates open water

TABLE 1 Number of samples for Lusaka (1995, 2005, 2015, 2023).

2.3 Year

2.4 Landuse 1995 2005 2015 2023

Waterbody 106 120 131 191

Built-up Area 184 286 307 335

Bareland 190 253 190 283

Vegetation 192 239 303 247

TABLE 2 Number of samples for Colombo (1995, 2005, 2015, 2023).

Year

Landuse 1995 2005 2015 2023

Waterbody 80 94 121 164

Built-up area 100 316 171 238

Vegetation 109 100 121 217
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TABLE 3 CORINE classification system (European Environment Agency).

Level 1 Level 2 Level 3

Artificial surfaces 1.1 Urban fabric 1.1.1 Continuous urban fabric
1.1.2 Discontinuous urban fabric

1.2 Industrial, commercial and transport units 1.2.1 Industrial or commercial units

1.2.2 Road and rail networks and associated land

1.2.3 Port areas

1.2.4 Airports

1.3 Mine, dump and construction sites 1.3.1 Mineral extraction sites

1.3.2 Dump sites

1.3.3 Construction sites

1.4 Artificial, non-agricultural vegetated areas 1.4.1 Green urban areas

1.4.2 Sport and leisure facilities

Agricultural areas 2.1 Arable land 2.1.1 Non-irrigated arable land

2.1.2 Permanently irrigated land

2.1.3 Rice fields

2.2 Permanent crops 2.2.1 Vineyards

2.2.2 Fruit trees and berry plantations

2.2.3 Olive groves

2.3 Pastures 2.3.1 Pastures

2.4 Heterogeneous agricultural areas 2.4.1 Annual crops associated with permanent crops

2.4.2 Complex cultivation patterns

2.4.3 Land principally occupied by agriculture, with

2.4.4 Agro-forestry areas

Forest and seminatural areas 3.1 Forests 3.1.1 Broad-leaved forest

3.1.2 Coniferous forest

3.1.3 Mixed forest

3.2 Scrub and/or herbaceous vegetation associations 3.2.1 Natural grasslands

3.2.2 Moors and heathland

3.2.3 Sclerophyllous vegetation

3.2.4 Transitional woodland-shrub

3.3 Open spaces with little or no vegetation 3.3.1 Beaches, dunes, sands

3.3.2 Bare rocks

3.3.3 Sparsely vegetated areas

3.3.4 Burnt areas

3.3.5 Glaciers and perpetual snow

Wet-lands 4.1 Inland wetlands 4.1.1 Inland marshes

4.1.2 Peat bogs

4.2 Maritime wetlands 4.2.1 Salt marshes

4.2.2 Salines

4.2.3 Intertidal flats

(Continued on following page)
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surfaces, while built-up area encompasses constructed and
human-inhabited regions. Forested and crop areas represent the
heterogeneous vegetation class, with bare land indicating areas
devoid of significant vegetation. The LULC classes
were established based on the CORINE classification
system (Table 3).

2.3.4 Change detection
Land cover change detection primarily revolves around four key

aspects, as outlined by (Zhou et al., 2008): (1) detecting the
occurrence of change, (2) determining the nature of the change,
and (3) quantifying the spatial extent of the change. In our study, we
conducted change detection analysis using ArcGIS 10.7.1 and

TABLE 3 (Continued) CORINE classification system (European Environment Agency).

Level 1 Level 2 Level 3

Water bodies 5.1 Inland waters 5.1.1 Water courses

5.1.2 Water bodies

5.2 Marine waters 5.2.1 Coastal lagoons

5.2.2 Estuaries

5.2.3 Sea and ocean

FIGURE 4
Lusaka RF, SVM, ANN classification 1995, 2005 2015 and 2023.
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Microsoft Excel, which are widely adopted tools for this purpose.
This analysis involves commonly utilized techniques such as image
differencing and image ratioing. Image differencing and ratioing
methods compare images obtained on different dates by assessing
the disparity or proportion of digital number values within the
images. These techniques serve to effectively identify and
characterize land cover changes over time.

3 Results

3.1 Performance of RF, SVM and ANN
algorithms

The LULC maps derived from RF, SVM, and ANN for the years
1995, 2005, 2015, and 2023 are depicted in (Figures 4, 5). Various

metrics were computed to evaluate the accuracy of the
classifications, including overall accuracy (OA), kappa coefficient
(K), producer’s accuracy (PA), and user’s accuracy (UA), as detailed
in (Supplementary Tables A1–A8). In general, all three-machine
learning (ML) models exhibited commendable performance in
generating LULC classifications across the study years (1995,
2005, 2015, and 2023), achieving Overall Accuracy (OA) scores
exceeding 85%. Particularly, the RF and ANNmodels demonstrated
superior performance, both achieving Mean overall Accuracy
(MOA) of 96% for Colombo and 96% and 93% for Lusaka
respectively from 1995 to 2023 (Table 4, 5). These models
surpassed the SVM model, which yielded OAs ranging between
86% and 88% throughout the study period in both Cities.

The RF algorithm notably yielded slightly higher overall
accuracy and exhibited superior kappa coefficients (ranging
between 0.92 and 0.97) compared to both ANN and SVM

FIGURE 5
Colombo RF, SVM, ANN classification 1995,2005, 2015 and 2023.
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models, across both study areas. Consequently, the RF-derived
LULC maps from all study years were selected for further
processing and analysis due to their consistently robust
performance.

In the ANNmodel in Lusaka, there were slight misclassifications
observed between vegetation areas and barelands. But, these
misclassifications are considered negligible.

However, in the SVM model, there was considerable
misclassification detected between vegetation and bare lands.
Further evaluation of the performance of each machine learning
algorithm revealed varying levels of spatial consistency for each
LULC class in both Cities. To confirm the accuracy of the LULC
from RF, ANN, and SVM models, a cross-check was performed
using the results of 2015 along with Landsat 8 OLI band composite
image of the year 2015 (Figure 6). In both cities, the classification of
built-up areas, and water bodies was nearly accurate across all three
algorithms (a1-a3, d1-d3, e1-e3,g1-g3). In Lusaka, the vegetation
class is detected similarly by the RF and SVM algorithms (d1, d3).
However, when identifying vegetation, the ANN displays
inconsistency, as some vegetation areas are classified as bare land
in Lusaka (b2, d2). In identifying bare lands in Lusaka city, both
ANN and SVM show some weakness, as they incorrectly identify
bare lands as vegetation or built-up areas (c2, c3). Highlighting the
weakness in LULC detection of the SVM algorithm compared to RF
and ANN for 2015, SVM did not identify any LULC class as bare
lands in Lusaka. The SVM algorithm has displayed misleading
detection compared to RF and ANN of built-up areas in
Colombo city as well, as it classified some vegetation areas as the
built-up class (f3).

3.2 Change detection

Supplementary Figure A1 illustrates the changes in LULC in
Lusaka from 1995 to 2005. To elucidate these findings, thematic
maps were produced to illustrate the gains and losses within four
identified LULC categories: waterbody, built-up area, bare land, and
vegetation. Notably, the predominant change observed during this
period was the expansion of vegetation, particularly in cropland
areas. A substantial gain of 11990.43 ha in vegetation area occurred
over the decade, accompanied by the conversion of 1926.75 ha of
bare land into vegetation. However, the transition was not
unidirectional.

In the years spanning 2005 to 2015, a noteworthy shift was
observed where built-up areas experienced significant growth, as
indicated in Supplementary Figure A2. This expansion escalated
notably between 2015 and 2023, with a total increase of 25110.15 ha
in built-up areas (Supplementary Figure A3). Analysis reveals that a
considerable portion of this conversion stemmed from the
vegetation class, accounting for over 7067.72 ha, and an
additional 2,710 ha from bare lands. Figure 7 depicts hotspot
maps showcasing the changes in two LULC classes over the
period of 1995–2023: built-up areas and vegetation in both
Cities. As inferred from the derived results (Figures 7A, B), the
areas where vegetation has been lost are predominantly taken over
by built-up areas in Colombo over time.

Identifying vegetation gains during this period in Colombo
proves challenging based on this hotspot map. By 2023, the
majority of dispersed vegetation areas in the eastern part of
Colombo city have vanished due to the rapid urbanization

TABLE 4 Overall mean accuracy, Lusaka (1995, 2005, 2015, 2023).

Classifier RF SVM ANN

OA Kappa OA Kappa OA Kappa

0.96 0.95 0.86 0.81 0.93 0.89

Land cover type PA UA PA UA PA UA

Waterbody 1.00 0.96 1.00 0.93 0.98 0.97

Built- up area 0.95 0.97 0.84 0.88 0.91 0.93

Bare land 0.94 0.94 0.91 0.86 0.92 0.90

Vegetation 0.97 0.97 0.90 0.84 0.93 0.92

Note: PA, (producer’s accuracy); UA, (user’s accuracy); OA, (overall accuracy); Kappa coefficient.

TABLE 5 Overall mean accuracy, Colombo (1995, 2005, 2015, 2023).

Classifier RF SVM ANN

OA Kappa OA Kappa OA Kappa

0.96 0.93 0.88 0.69 0.96 0.93

Land cover type PA UA PA UA PA UA

Waterbody 0.96 0.99 0.92 0.92 0.96 0.97

Built up area 0.94 0.95 0.88 0.85 0.93 0.94

Vegetation 0.96 0.93 0.80 0.94 0.93 0.92

Note: PA, (producer’s accuracy); UA, (user’s accuracy); OA, (overall accuracy); Kappa coefficient.
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during the concerned period. However, in some locations, lost built-
up areas have been replaced by forest or vegetation. This could be
attributed to urban greening policies implemented by planning
authorities. The analysis of land cover changes in Colombo
highlights a significant expansion in the built-up area
category (Figure 8).

Specifically, in 1995, the built-up area covered 2181.4 ha,
gradually increasing to 3086.2 ha by 2005, indicating a notable
growth of 41.5% over the span of a decade (Supplementary Figure
A4). Further examination, as illustrated in Supplementary

Figure A5, reveals that between 1995 and 2023, urban built-up
areas expanded by approximately 1,779 ha, while vegetation land
decreased by 1,519 ha, experiencing only minimal gains of 636 ha.
Notably, the most substantial increase in built-up areas, amounting
to about 2,555 ha, occurred in 2023, particularly notable between
2015 and 2023 (Supplementary Figure A6). Concurrently,
vegetation underwent a significant decline, diminishing by
approximately 53.5% during the same period.

Despite the conversion of vegetation to built-up areas during the
entire period from 1995 to 2023, there was still a net gain of over

FIGURE 6
LULC class derived by RF, ANN, SVM in Lusaka, and Colombo City, 2015. (A–D) Landsat8, Lusaka. (E–G) Landsat8, Colombo. (a1, b1, c1) rf, lusaka.
(a2, b2, c2) ann, lusaka. (c3, d3, e3) svm, lusaka. (e1, f1, g1) rf, colombo. (e2, f2, g2) ann,colombo. (e3, f3, g3) SVM,Colombo.
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11,000 ha in vegetation cover in Lusaka (Figures 7C, D). The
vegetation areas along the western boundary have undergone
rapid conversion into built-up areas during the concerned period.
Furthermore, by 2023, certain built-up areas and bare lands have
been reclaimed by vegetation or forest cover. Conversely, bare land
experienced the most significant reduction, dwindling from
12988.37 ha to 7002.62 ha, reflecting a net loss of 5,986 ha
(Figure 9). The bulk of this loss was attributed to its conversion
into built-up areas, underscoring the dynamic nature of land cover
transformations over the concerned period in Lusaka.

3.3 LULC simulation

Between 2023 and 2035, a notable trend emerged in the change
of Land Use and Land Cover (LULC) types, particularly in built-up
areas, mirroring patterns observed in preceding decades as shown in
Figure 10. Specifically, the built-up class expanded by 160 ha during
the 2023–2035 period in Lusaka, while experiencing a corresponding
loss of 60 ha in vegetation cover. Similarly, Colombo witnessed a
reduction in vegetation coverage from 863 ha to 526 ha within the
same period. Notably, water bodies remained unaffected by the

FIGURE 7
Hotspots maps showing gain and loss of vegetation and built-up areas (A, B) Colombo (C, D) Lusaka.
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simulation, as they were designated as conversion constraints in
both Lusaka and Colombo.

4 Discussion

4.1 Results comparison with other
LULC datasets

In this study we tried to evaluate the performance of 3 ML
algorithms for detecting the LULC changes in two cities: Lusaka;
and Colombo from 1995 to 2023. A recent study has demonstrated
that performance-based evaluation of LULC changes using various
machine learning algorithms is notably deficient, particularly in the
African context (Pacheco and Hewitt, 2014). Moreover, the majority of
researchers have relied on Maximum Likelihood Classification (MLC)
algorithms for their studies (Yuh et al., 2019; Ghosh and Joshi, 2014).
However, a similar study conducted by Yuh et al. (2019) in Cameroon

involved the comparison of four machine learning algorithms: SVM,
ANN, RF, and k-nearest neighbor (KNN). They discovered that among
these, RF outperformed all other algorithms (Yuh et al., 2023). Their
results showcased that all machine learning algorithms produced high
accuracy (>80%), with the RF model achieving an accuracy of >90%
consistent with our findings. Due to the lack of freely available high-
resolution satellite data and limited financial resources for satellite-
based land evaluation in Zambia and Sri Lanka, reliance is placed on
freely available Landsat data. Hence, it is crucial to uphold the high
accuracy and reliability of LULC change detection methods using
Landsat data, as many critical decisions and related actions rely on
the outputs generated from these methods.

The visual comparison reveals a significant spatial consistency
between our results (Figure 11) and MODIS and Global LULC
products published by Friedl and Sulla-Menashe, (2019), as well as
Potapov et al. (2021). For Colombo’s built-up areas, the
identification of water bodies remains consistent across the two
products: RF and Global LULC (a-d2). While the Global LULC

FIGURE 8
LULC area change, Colombo (1995–2023).

FIGURE 9
LULC area change, Lusaka (1995–2023).
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products identified the vegetation class to a small extent (a1,b1), the
MODIS products did not identify vegetation areas for both years
(a2,b2). In Lusaka, the identification of all four classes remains
consistent for both years, albeit showing minor differences in some
areas (c-d2). In their study, Yuh et al. (2023) identified relatively
strong correlations between their datasets and those from Potapov
et al. (2021), with R-squared values of 0.8 (p < 0.05) for the year
2020 and 0.7 (p < 0.05) for the year 2000 for built-up areas. They also
observed strong correlations between extracted water bodies with an
impressive accuracy level, of a 99% correlation with the
2020 MODIS data, as evidenced by an R-squared value of 0.99
(p < 0.05). For instance, our identification of built-up areas exhibited
a robust correlation with built-up areas extracted from Potapov et al.
(2021). Additionally, we observed a high level of spatial consistency
between our built-up areas and vegetation classifications and those
derived from the 2020 MODIS global land cover datasets. Also, the
identification of water bodies showed a high level of consistency
across all three products for both years. However, when identifying
bare lands, some inconsistencies were noted between our products
and those from other sources, particularly for Lusaka City. However,
the RF model findings of Lusaka are comparatively consistent with
other similar research conducted in tropical Africa and Asia (Li
et al., 2014; Khatami et al., 2016; Simwanda et al., 2021). Simwanda
and Murayama (2017) reported that the overall accuracy values and
kappa statistics achieved from their object-based, and, pixel-based
ULU classification approach in Lusaka city were sufficiently high,
exceeding 80%. In the case of Colombo, one of the studies by

Subasinghe et al. (2019) indicates that the Colombo metropolitan
area underwent rapid urban expansion, with a 288% increase in the
total urban footprint from 1992 to 2014. The annual urban
expansion intensity was particularly pronounced during the
2000s, reaching 1.45%. Indeed, this information corroborates the
evidence supporting the rapid expansion of built-up areas in
Colombo city.

Our findings suggest that these machine learning models (RF,
SVM, ANN) are comparatively robust approaches that hold the
potential for detecting LULC changes in urban areas in tropical
countries in Africa and South Asia. The results further revealed that
the RF model consistently outperformed the other two models for
each year of study, achieving over 95% accuracy compared to
between 88% and 94% accuracy generated for the SVM and
ANN, respectively. Thus, the RF model emerges as the most
suitable approach for land use and land cover mapping in other
studies with a similar spatial context. Indeed, studies of Pouteaua
et al. (2011), and Heydari and Mountrakis (2018) have
demonstrated that KNN outperformed RF, ANN, and SVM,
contrary to our findings.

4.2 LULC changes and policy
implementation

Our findings underscore a rapid outward expansion of urban
areas from Colombo city, posing several challenges for sustainable

FIGURE 10
LULC 2035 simulated map. (A) Lusaka. (B) Colombo.
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urban planning, including environmental issues, traffic congestion,
loss of agricultural lands, biodiversity loss, and the urban heat
islands effect as highlighted by previous research (Senanayake
et al., 2013; Subasinghe et al., 2021; Ranagalage et al., 2017).
Hence, urban planners should prioritize these concerns during
the planning, design, and implementation stages, as highlighted
by Subasinghe et al. (2021). This approach can helpmitigate land use

conflicts among stakeholders and maintain ecological balance in
Colombo city. As an immediate strategy, it is recommended to
increase green cover on highly congested impervious surfaces,
particularly along main roads.

Policymakers must tackle the challenges posed by the improper
expansion of settlements in Lusaka, primarily driven by slums and
urban poverty, unemployment issues as emphasized by Siwanda

FIGURE 11
LULC maps of RF, Global LULC, and MODIS, 2005,2015 (A, B) RF for Colombo. (a1, b1) global lulc for colombo. (a2, b2)modis for colombo (C, D) rf
for lusaka. (c1, d1) global lulc for lusaka. (c2, d2) MODIS for Lusaka.
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et al. (2017). Therefore, it is imperative to establish appropriate
urban zones, taking into account the significant expansion of built-
up areas outward from the city center, as indicated by our LULC
simulations for 2035.

4.3 Limitations and future research direction

Despite the significant urbanization observed throughout the
entire Western Province, Sri Lanka accompanied by diverse social
and environmental issues over the last 2 decades, which necessitate
reliable LULC identification for future urban planning prospects, we
restricted our study to the Colombo urban area due to time and
resource constraints. Also, we did not account for the limitations
stemming from potential nonlinearities that may arise from
ecosystem dynamics in the tropical region. Future research
should incorporate models such as Convergent Cross Mapping or
Optimal Information Flow to address these nonlinearities, as
recommended by Yuh et al. (2023) and Li and Convertino
(2021). Another limitation of the RF model is the complexity of
the decision-making and feature input process. The presence of
noise in datasets is another limitation that affected the classification
accuracy of SVM. Implementing advanced noise reduction
techniques and exploring additional distinguishing features for
LULC classes could improve the accuracy of SVM. Additionally,
the similarity in DN values across different LULC classes can reduce
the accuracy of the SVM model (Chowdhury, 2023). However, this
issue is unavoidable as some LULC classes (water, bare lands) are
inherently smaller compared to others. It is recommended to
develop specific methodologies, potentially through weighted
classification techniques, to address this challenge. Additionally,
future research could explore the use of object-based ULU parcels to
segregate ULU, aiming to mitigate spatial heterogeneity issues in
densely populated cities (Heydari andMountrakis, 2018; Subasinghe
et al., 2021). But upon commendable nature of cities the researchers
should prioritize developing and applying object-based approaches
to improve the precision of LULC classifications in the future. While
the class categories (Water Bodies, Built-up Areas, Vegetation, Bare
Land) are broad, they are selected to align with commonly observed
land cover types in urban environments. Future studies could benefit
from more granular classification to capture finer land cover details.

The study did not incorporate independent variables such as
socio-economic factors, climate data, or other environmental
variables, which could enhance prediction accuracy. Therefore,
future research should integrate a wider range of independent
variables to provide a more comprehensive understanding of the
factors influencing urbanization and LULC changes. The net gain in
vegetation cover despite urbanization is intriguing but could be
enhanced by a more detailed analysis of reclamation processes.
Thus, conducting in-depth studies on the drivers and processes of
vegetation reclamation in urban areas in the future could provide
valuable insights for urban planning and sustainability efforts. To
enhance the robustness of the RF model, it is recommended to
expand the geographical coverage of study areas to include more
rural landscapes. This approach will allow the model to be tested for
accuracy across a broader range of diverse landscapes. Additionally,
analyzing more frequent time intervals will be more effective and
reliable for capturing subtle changes and trends in LULC.

5 Conclusion

Detecting LULC changes in cities poses greater challenges due to
the high spectral mixing and spatial heterogeneity. Given the support
of remote sensing techniques utilizing satellite data, it could be
possible to develop various machine learning algorithms capable of
detecting LULC changes with reliable outputs. Our research
scrutinized and contrasted the performance of three machine
learning methodologies: RF, ANN, and SVM in detecting LULC
changes within two Cities, Lusaka, and Colombo, situated in the
global south. The performance assessments encompassed the
classification accuracy of each ML algorithm utilizing their optimal
parameters. Although both the RF and ANN algorithms displayed the
ability to achieve remarkably high OA, RF emerges as superior due to
its slightly higher overall kappa coefficients, when compared to both
the ANN and SVM. Throughout the entire period, despite the
conversion of vegetation into built-up areas, Lusaka experienced a
net increase in vegetation cover. During the specified period, built-up
areas expanded in Colombo while vegetation land decreased. The
LULC simulation suggested that both cases would experience an
expansion of built-up areas. However, the rate of increase in Colombo
exceeded that of Lusaka during the period from 2023 to 2035. The
results of the study offer a vital foundation that will prove invaluable
for urban planning and policy development agencies in both
countries. But,in the future researchers could benefit from
integrating independent variables or exploring advanced machine-
learning models to achieve more efficient and reliable results while
addressing the various drawbacks mentioned in the limitations.
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