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Cities are the core carriers and key positions to achieve the dual carbon goals. It
is of great significance to explore whether promoting urbanization can
improve carbon emission performance, which is of great significance to
comprehensively promote the goal of carbon neutrality. Based on the panel
data from 2006 to 2021, this paper analyzes the spatial autocorrelation of
carbon emission performance per unit space and the impact mechanism of
urbanization process on it. The fixed-effect model was further used to identify
the influencing factors of spatial carbon emission performance. The results
show that: 1) China’s carbon emission performance per unit space is declining
year by year. 2) There is a strong positive spatial correlation and stable path
dependence on the performance of carbon emissions per unit space in each
region. 3) To a certain extent, increasing the level of urbanization will reduce
the carbon emission performance per unit space. 4) The urbanization process
has a spatial spillover effect on the carbon emission performance per unit
space of surrounding provinces, and the spatial spillover effect of industrial
structure and energy consumption structure is more obvious than that of
economic level, population density and urbanization rate. Based on the
conclusions, this paper puts forward specific policy suggestions to reduce
the carbon emission performance per unit space to help the low-carbon
development of cities.
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1 Introduction

With the acceleration of urbanization and the increasing population on a global scale,
regional development is facing more and more challenges, one of which is environmental
problems. Studies have shown that cities are the main source of the highest energy
consumption and greenhouse gas emissions. The process of urbanization is directly
related to environmental indicators such as urban land use efficiency, traffic congestion,
energy consumption and carbon emissions (Ishii et al., 2009). In 2020, China put forward
the goal of carbon peak and carbon neutrality, that is, China is committed to achieving
carbon emission peak before 2030 and carbon neutrality before 2060 (Zhuang, 2021). As an
important indicator of urban planning and management, urbanization plays an important
role in the sustainable development and environmental protection of cities and regions.
Therefore, building low-carbon cities has become an inevitable choice for China to embrace
climate change and promote the development of a low-carbon economy.

At present, the discussion on carbon emissions mainly focuses on the influencing
factors of carbon emissions (Song and Lu, 2009; Lin and Liu, 2010; Chen et al., 2014),

characteristics (Hu et al., 2008), and estimation methods (Feng, 2011; Wang, 2012; Jing
et al., 2019), among which carbon emission performance has become the focus of the
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discussion. Liu Guoping (Liu and Zhu, 2013) proposed that carbon
emission welfare performance is the economic and social welfare
output per unit of carbon emissions based on the ecological welfare
performance theory and the steady-state economic theory of
Herman Daly (Daly, 1974). Yan Wentao et al. further expanded
carbon performance into energy utilization performance, air
environment performance, water environment performance,
biodiversity performance, and soil environmental performance. It
is also applied to the study of environmental performance, root
causes of environmental problems, and optimal spatial structure
(Yan et al., 2012). Hua Jian et al. define carbon emission
performance as two meanings based on reality and expectation.
Reality: Carbon performance refers to the ratio between the actual
expected output per unit of carbon emissions and the expected
output of the optimal production technology. Expectation: Carbon
emission performance is the ratio of the theoretical carbon emission
boundary to the actual carbon emission (Hua et al., 2013).

Studies have shown that about 50% of CO2 emissions from
residential transportation can be attributed to urban
morphological factors such as urban form, land structure,
building type, and transportation network, and urbanization has
a non-negligible impact on carbon emissions (Zuo et al., 2022).
Based on the quantitative relationship between urban spatial form
and carbon emissions, Ewing pointed out that urban spatial
structure indirectly affects residents’ emissions through
intermediate factors (Ewing and Rong, 2008). Ou et al. analyzed
the relationship between carbon emissions and spatial structure
and morphology, and showed that single-center cities have higher
LPIs and are more prone to congestion and high carbon emissions
(Ou et al., 2013). Zahabi, et al. showed that improving the
urbanization process and land use mix can reduce greenhouse
gas emissions (Zahabi et al., 2012). Hilber et al. pointed out that
increasing population density and increasing the number of
automobiles can lead to a proportional decrease in CO2

emissions (Hilber and Palmer, 2014). In fact, carbon emissions
are not only affected by the local urbanization process, but also by
the spatial spillover effects brought by the surrounding areas. Du
Huibin pointed out that China’s regional carbon emission
performance shows an obvious regional cluster phenomenon,
and there is a strong spatial positive correlation (Du et al., 2013).

The above studies focus on the impact and mechanism of local
urbanization on carbon emissions, but lack of in-depth discussion on
spatial externalities. There is still insufficient research on the positive and
negative effects of regional spillover on carbon emissions. The central
problem of Spatial Economics is to explain the agglomeration of
economic activities in geographic space (Liang, 2005). Ecological
Geography the laws and mechanisms of the relationship between
various components of the ecosystem and the geospatial distribution
pattern of ecological processes (Fu and Fu, 2019). In order to introduce
the land scale factor, this paper proposes the carbon emission
performance per unit space from the perspective of Spatial
Economics and Ecological Geography, and defines it as the ratio of
carbon emissions or environmental load to GDP within a certain spatial
range. At the same time, the positive effects of economic and welfare
output per unit of carbon emissions and the negative effects of
environmental load per unit space are considered, and the
relationship between land resource input and environmental impact
targets is studied. It includes the control of the scale of carbon emissions

in a certain space, as well as the restrictions on resource input and
emission output intensity targets, which more comprehensively reflects
the dimensions and complexity of carbon emission performance. Based
on the theory of ecological economics and the perspective of spatial
interaction, the Spatial Dubin Model is constructed by using
econometric methods to study the logical relationship between
urbanization process and carbon emission performance per unit
space. At the same time, this paper explores the impact mechanism
of spatial spillover effects between regions on the carbon emission
performance per unit space, aiming to put forward spatial planning
and policy suggestions for regional environmental constraint indicators,
help China achieve the dual carbon goals in an orderly and efficient
manner, promote the coordination of economy, society and
environment, and achieve sustainable development.

2 Research hypothesis

2.1 Hypothesis 1: The impact of urbanization
on spatial carbon emission performance

The impact of urbanization on the performance of carbon emissions
per unit space mainly comes from the changes and fluctuations in
economy, population, energy, and industrial structure (Li and Zhou,
2012; Sun et al., 2013; Shen et al., 2023). Both the theory of ecological
modernization and the theory of urban environmental transformation
believe that with the evolution of urban development, the quality of
urban environment will deteriorate first and then improve (Zhang et al.,
2016). The growth of GDP is usually accompanied by an increase in
energy consumption, including an increase in energy demand for
industrial production, transportation, and residential life. The
consumption of these energy sources is often accompanied by large
amounts of greenhouse gas emissions, especially carbon dioxide.
However, when the level of economic agglomeration and
urbanization reach a certain threshold, it will show the dual effects of
energy conservation and emission reduction at the same time, and can
have a direct impact on carbon emissions through various positive
externalities (Shao et al., 2019).With the improvement of economic level
and technical level, the industrial production mode has undergone
intelligent changes. Under the process of urbanization, changes in
residents’ lifestyles, such as the increase in the level of electrification,
have a certain negative impact on the performance of spatial carbon
emissions. That is, it can reduce the level of carbon emission
performance per unit space. At the same time, the development of
China’s three industries also has a certain impact on carbon emissions.
An increase in the number of employees and capital stock in the primary
and tertiary sectors leads to a reduction in carbon emissions. The GDP,
capital stock, and employees of the secondary industry have a positive
effect on carbon emissions (Zheng and Liu, 2011), so reducing the
proportion of the secondary industry structure can effectively reduce the
carbon emission performance level of urban space.

However, Population growth will lead to an increase in
greenhouse gas emissions, on the one hand, a large total
population will increase the demand for energy, which in turn will
lead to more and more greenhouse gas emissions from energy
consumption. On the other hand, the population is growing
rapidly, the supply of existing resources is likely to exceed demand,
the environment such as forests are destroyed, and the use of land is
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changing, resulting in an increase in carbon dioxide emissions (Zhu
et al., 2010). With the evolution of urbanization, changes in energy
consumption structure, the spread of urban civilization and the
improvement of technological level will have a restraining effect on
carbon emissions. However, China’s coal-dominated energy
consumption structure makes coal account for a major share of
energy consumption. Even if the energy structure is changed
through energy substitution, it is mainly the substitution of oil for
coal. The proportion of non-fossil energy use is still low, and oil is a
carbonaceous fossil fuel second only to coal, and still has a high level of
carbon emissions (Sun, 2010). Therefore, with the advancement of
urbanization, the growth of population density and the adjustment of
energy structure will still increase the overall carbon emission level,
whichwill have a positive impact on the carbon emission performance
level per unit space.

Hypothesis. H1: Increasing the level of urbanization to a certain
extent will reduce the carbon emission performance per unit space.
Specifically, economic level, industrial structure, and urbanization
rate have a negative impact on the carbon emission performance per
unit space, while population density and energy consumption
structure have a positive impact on the carbon emission
performance per unit space.

2.2 Hypothesis 2: Spatial spillover effects of
urbanization on spatial carbon emission
performance

Carbon emissions are not only affected by the local urbanization
process, but also by the spatial spillover effect brought by the
surrounding areas. Adjacent areas have similar cultural
environments, social conditions, and economic levels. The
frequent flow of transportation, population, technology, etc.,
creates an agglomeration effect between regions, resulting in
interactions. In this process, carbon emissions will be diffused
and transferred to the surrounding areas along with the
atmospheric circulation and various production activities, which
may cause transboundary pollution.

Hypothesis. H2: There is a spatial spillover effect on the carbon
emission performance per unit space of neighboring provinces in the
process of urbanization. The theoretical block diagram of the impact
of urbanization on carbon emission performance per unit space is
shown in Figure 1.

3 Methods and data

3.1 Methods

3.1.1 Space carbon performance
Using the carbon emission performance per unit space as the

explanatory variable, the carbon emission is combined with GDP
and built-up area, and the carbon emission effect of the city in the
whole geographical space is considered, and the sustainability
performance of different regions is compared. The provincial
carbon emission data is derived from the Carbon Emission
Accounts and Datasets (CEADs). The formula is as follows:

CE � ∑
n

k�1
Ck � ∑

n

i�1
ADi × EFi (1)

Where: CE is the total carbon emissions, Ck is the carbon
emissions of fossil fuels, n is the type of fossil energy, ADi refers
to the consumption of fossil fuels, and EFi is the emission coefficient
of the fuel.

The formula for carbon emission performance per unit space is
as follows:

Q CO2( )i,t � CEi,t/GDPi,t/BUAi,t (2)
where: Q(CO2)i,t represents the carbon emission performance per
unit space of province i in year t, CEi,t represents the carbon
emission of province i in year t, GDPi,t denotes the GDP of
province i in year t, BUAi,t denotes the built-up area of province
i in year t.

In this paper, the regression imputation method is used to
deal with the missing values of the intermediate years. The
average growth rate combined with adjacent time points was

FIGURE 1
Theoretical framework of the impact of urbanization on carbon emission performance per unit space.
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used to fill in the missing values of the years at both ends to
improve the integrity and reliability of the data (Jin, 2001). Due to
the differences in regional factors, historical development,
industrialization and urbanization processes, if carbon
emissions are only used as the explanatory variables, the error
of the research results is large, and the conclusions do not have
realistic reference value. In order to facilitate the study of the
inter-regional carbon emission impact mechanism and draw the
conclusion of effective emission reduction, the carbon emission
performance per unit space was selected as the
explanatory variable.

3.1.2 Estimation of urbanization progress
In this paper, economic level, population density, industrial

structure, energy consumption structure, and urbanization rate are
used as the criteria for measuring the urbanization process (Gan
et al., 2011; Li et al., 2016; Shao et al., 2022). The definitions of
indicators are shown in Table 1.

3.1.3 Spatial Durbin model
Due to the interdependence of economic activities at

multiple levels such as trade, investment, and industrial
chains, economic fluctuations or policy adjustments in one
region often affect other regions, forming a strong
macroeconomic correlation. At the same time, environmental
protection policies and carbon emission reduction policies in
various regions will have mutual influences, and regions tend to
learn from and imitate each other, so macroeconomic variables
such as carbon emissions have obvious spatial spillover effects.
In this paper, a spatial Durbin model is constructed. The formula
is as follows:

ln co2kt � η0 + ρ∑
j
wkj ln co2jt + η1 lngdpkt + η2 lnpopkt + η3iskt

+ η4eskt + η5urbkt + η6Xkt + η7∑j
wkj lngdpjt

+ η8∑j
wkj lnpopjt + η9∑j

wkjisjt + η10∑j
wkjesjt

+ η11∑j
wkjurbjt + η12∑j

wkjXjt + ϕkt (3)

Where: k and j correspond to the cross-sectional units of each
province; w is the element in the spatial weight matrix W; t
represents the year; φ is the random perturbation term. lngdp is
the vector of economic level variables; lnpop is the vector of
population density; is the vector of industrial structure variables;
es is the vector of energy consumption structure variables; urb is the
vector of urbanization rate variables; X is the vector of other
control variables.

3.1.4 Spatial weights matrix
Spatial autocorrelation is based on the spatial correlation

measure, which describes and visualizes the spatial distribution
pattern of things or phenomena to discover the degree of spatial
agglomeration or dispersion, so as to reveal the spatial interaction
mechanism between research objects (Gan et al., 2011). Spatial
autocorrelation can be divided into global spatial autocorrelation
and local spatial autocorrelation.

3.1.4.1 Spatial weight matrix setting
In the spatial econometric model, the weight matrix is

exogenous, and the spatial weight matrix can be constructed as
needed. In order to systematically investigate and flexibly respond to
different spatial correlation patterns, so as to better understand the
correlation between urban density and carbon emission
performance per unit space, the following four spatial weight
matrices are constructed, including geographic adjacency weight
matrix, geographic distance weight matrix, economic distance
weight matrix and economic geography weight matrix.

Geographic adjacency weight matrix: W1. It represents the
connection between adjacent units in geographic space, for each
geographic unit, the units directly adjacent to it are given a non-zero
weight, and the units that are not directly adjacent are given a zero
weight. The distance between regions i and j is expressed by dij, W1 =
1 when dij < d, and W1 = 0 when dij ≥ d.

Geo-distance weight matrix: W2. It represents the spatial
distance relationship between geographic units, i.e., the reciprocal
of the nearest road mileage between provinces. The surface distance
of the provincial capital city calculated by latitude and longitude
location is expressed by dij, W2ij = 0 when i = j, and W2ij = 1/dij
when i≠j.

Economic distance weight matrix: W3. Due to the spatial
correlation between the levels of regional economic development,
in order to introduce more information of economic correlation and
enhance the analysis of regional economic linkage, the weight matrix
of economic distance with economic factors was constructed. The
weights are the inverse of the difference in GDP between the two
provinces. When i = j, Wij = 0. When i≠j, Wij = 1/|Yi-Yj|. Yi and Yj

are the average regional GDP of province i and province j after GDP
deflator processing from 2006 to 2021, respectively.

Economic GeographyWeight Matrix: W4. Since the relationship
between geography and economy may be nonlinear, relying only on
geographical distance or economic distance to construct a matrix
cannot fully capture the complex correlation between regions. The
weight is the product of the difference in GDP between the two
provinces and the reciprocal of the most recent road mileage

TABLE 1 Measurement system of urbanization process.

Target layer Quasi-test layer Indicator layer unit

Urbanization process Economic level Ln (GDP/Area of built-up area) 100 million yuan/km2

Population density Ln (Resident population at the end of the year/built-up area for the year) 10,000 people/km2

Industrial structure GDP of the tertiary sector/GDP of the secondary sector —

Energy consumption structure Coal Consumption/Total Energy Consumption —

Urbanization rate Urban Population/Total Population —
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between the two provinces. When i = j, Wij = 0. When i≠j, Wij =
|Qi-Qj|/dij2. Qi and Qj are the mean regional GDP of province i and
province j after GDP deflator processing from 2006 to 2021,
respectively. dij

2 is the square of the shortest road mileage
between the two provinces. W4 takes into account both the
proximity of geographical distance and the impact of economic
activities on adjacent areas, which makes the understanding of the
spatial correlation between cross-sectional units more
comprehensive and accurate.

3.1.4.2 Global Moran index test
In order to investigate whether there is spatial autocorrelation in

the whole spatial series, this paper uses the global Moran index to
test the samples under each weight matrix. The global Moran index
is shown below:

I �
∑
n

i�1
∑
n

j�1
wij xi − �x( ) xj − �x( )

S2∑
n

i�1
∑
n

j�1
wij

(4)

Where: xi is the carbon emission intensity per unit space of
29 provinces. S2 is the sample variance. wij is the (i,j) element of the
spatial weight matrix. The Moran index ranges from −1 to 1. When
the Moran index is close to 1 or −1, it means that there is an integer
or negative spatial autocorrelation in the sample. When the Moran
index is close to 0, it indicates that the spatial distribution is basically
random, and there is no obvious trend of aggregation or dispersion.
At the same time, it is also necessary to consider whether it is
significant, and if it is significant, the null hypothesis that spatial
autocorrelation does not exist is rejected, and it is believed that there
is significant spatial autocorrelation between observations.

According to the results of the global spatial correlation test
(Table 2), the Moran’s I index is significant under the weight matrix
of W1, W2, W3 and W4, indicating that the distribution of carbon
emission intensity per unit space shows spatial autocorrelation
characteristics. There are not only spatial correlation characteristics of
simple economic differences or geographical differences, but also
comprehensive spatial correlation characteristics of geography and
economy. In this paper, the empirical results of four weight matrices
of W1, W2, W3 and W4 are used for spatial econometric analysis.

3.2 Data

In this paper, 29 provincial-level administrative regions in China
are taken as the research unit, including 22 provinces, four
municipalities and 3 autonomous regions (Sun et al., 2015; Yang
and zhang, 2024; Xu, 2024). Due to lack of data, the study area does

not include Hong Kong, Macau, Taiwan, Xinjiang and Tibet. Based
on the existing relevant literature, technological progress, openness
to the outside world, building density, and environmental regulation
were selected as the control variables in this paper (Zhang and Wei,
2014; An and Xie, 2015; Wei, 2017; SS et al., 2019). Technological
progress is expressed as the inverse of energy intensity (Total energy
consumption/GDP). The degree of openness to the outside world is
expressed as the logarithm of the proportion of import and export
trade volume in local GDP of each province. Building density refers
to the ratio of the base area to the land area. The degree of
environmental regulation is based on the proportion of
environmental pollution control investment in each province
to local GDP.

The GDP, population, output value of the secondary industry,
output value of the tertiary industry, and investment in environmental
pollution control are derived from the statistical yearbooks of each
province and the statistical yearbook of China in each year. The
population density, built-up area and urban area of the city are
derived from China Urban Statistical Yearbook, China Urban and
Rural Construction Statistical Yearbook, and China Urban Construction
Statistical Yearbook. The total energy consumption and coal
consumption are from China Energy Statistical Yearbook. Since the
urban area data provided after 2006 in the China Urban Construction
Statistical Yearbook is different from the city area data provided before
2006. In order to ensure the accuracy of the data, the time period of each
indicator data is 2006–2021. The descriptive statistics of the indicator
data are shown in Table 3.

By comparing the mean, standard deviation, maximum, and
minimum values of different variables, an initial understanding of
their distribution and variability can be obtained. From the results of
Table 1, it can be seen that the carbon emission performance per unit
space varies greatly. Due to the differences in economy, technology,
regional resources and other aspects, the carbon emission
performance per unit space in different regions shows large
differences. Among the explanatory variables, the difference in
industrial structure is the most obvious, followed by population
density, economic level and energy consumption structure, and the
urbanization rate is the least different.

In order to better understand the annual trend and regional
differences of carbon emission intensity per unit space, this paper
divides the 29 provincial-level autonomous regions into four
regions, namely, Eastern, Western, Central, and Northeastern,
according to the interpretation of the National Development and
Reform Commission, as shown in Table 4.

4 Results

4.1 Spatiotemporal evolution characteristics
of spatial carbon emission performance

According to Eqs 1 and 2, the carbon emissions of each region and
the carbon emission performance per unit space in China are calculated.
As can be seen fromTable 5 (orange for the larger value and blue for the
smaller value), China’s carbon emission performance per unit space is
declining based on the time perspective. Except for the northeast, the
east, west and central parts of the country showed a continuous
downward trend, and the decline rate was about the same.

TABLE 2 Results of the global spatial correlation test of the weight matrix.

Moran’s I p-value* Geary’s c p-value*

W1 0.418 0.000 0.546 0.000

W2 0.247 0.000 0.726 0.000

W3 0.135 0.000 0.912 0.012

W4 0.174 0.000 0.801 0.000
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TABLE 3 Descriptive statistics of indicator data.

Sign Variable Observations Mean Standard deviation Min Max

lnCO2 Carbon emissions performance per unit space 464 −11.214 1.279 −14.04 −7.71

lngdp Economic level 464 2.455 0.463 0.93 3.59

lnpop population density 464 7.854 0.437 6.39 8.75

is Industrial structure 464 1.135 0.663 0.5 5.3

es Structure of energy consumption 464 0.589 0.356 0 1.76

urb Urbanization rate 464 0.565 0.138 0.27 0.9

ee Technological advancements 464 1.189 0.822 0 4.82

lntdp Degree of openness to the outside world 464 2.872 1.061 −1.26 5.14

bula Building density 464 0.159 0.145 0 0.81

er Degree of environmental regulation 464 1.366 0.832 0.3 9.38

TABLE 4 Major provinces included in the four regions (Excluding Tibet, Xinjiang, Hong Kong, Macao and Taiwan).

Region Province

Eastern Beijing, Tianjin, Hebei, Shanghai, Jiangsu, Zhejiang, Fujian, Shandong, Guangdong and Hainan

Northeastern Liaoning, Jilin and Heilongjiang

Central Shanxi, Anhui, Jiangxi, Henan, Hubei and Hunan

Western Inner Mongolia, Guangxi, Chongqing, Sichuan, Guizhou, Yunnan, Shaanxi, Gansu, Qinghai and Ningxia

TABLE 5 Regional differences in carbon emission performance per unit space from 2006 to 2021.

year Eastern Western Central Northeastern Average

2006 −11.069 −9.516 −10.457 −11.053 −10.405

2007 −11.193 −9.683 −10.708 −10.537 −10.504

2008 −11.336 −9.753 −10.802 −10.632 −10.607

2009 −11.404 −9.799 −10.826 −10.651 −10.653

2010 −11.502 −9.958 −10.966 −10.691 −10.775

2011 −11.599 −10.084 −11.104 −10.793 −10.891

2012 −11.735 −10.206 −11.251 −10.895 −11.021

2013 −11.873 −10.386 −11.289 −11.070 −11.156

2014 −11.981 −10.521 −11.409 −11.147 −11.273

2015 −12.097 −10.721 −11.528 −11.188 −11.411

2016 −12.239 −10.808 −11.631 −11.253 −11.518

2017 −12.370 −10.959 −11.750 −11.294 −11.644

2018 −12.472 −11.084 −11.935 −11.390 −11.770

2019 −12.547 −11.166 −12.043 −11.393 −11.847

2020 −12.602 −11.257 −12.129 −11.443 −11.921

2021 −12.689 −11.416 −12.243 −11.499 −12.035
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With the increase of years, the Northeast region showed a trend
of first increasing and then declining, reaching a peak in 2007 and
then beginning to decline, and the decline rate was significantly
lower than that in other regions. This is because China was in a
relatively fast economic growth and high energy consumption in the
early stage, which led to an increase in carbon performance. As the
government’s attention to environmental sanitation continues to
increase, a series of emission reduction measures have reduced
carbon dioxide emissions. For example, in recent years, the
western region has gradually formed a new pattern of large-scale
protection, large-scale opening-up and high-quality development, so
the carbon performance in the later period has shown a downward
trend. From a spatial perspective, there are large regional differences
in China’s carbon emission performance per unit space.

The lowest is in eastern China, including Beijing, Tianjin, Hebei,
Shanghai, Jiangsu, Zhejiang, Fujian, Shandong, Guangdong and
Hainan, followed by Northeast China, including Liaoning, Jilin
and Heilongjiang, whose carbon emissions per unit space are
roughly in the range of −11 to −13, all lower than the national
average carbon emission performance per unit space. The carbon
emission performance per unit space in the western region is higher
than the national average. The performance of carbon emissions per
unit space in the western provinces of Inner Mongolia, Guangxi,
Chongqing, Sichuan, Guizhou, and Yunnan is about 1.35 times the
national average.

The above phenomenon shows that the carbon emission
performance per unit space is closely related to the level of
economic development, energy consumption structure, industrial
structure and other factors. The eastern region has a prosperous
economy and a leading level of science and technology. The
environmental capacity space is relatively sufficient, with
advanced manufacturing and many cities with trillions of GDP.
In particular, in recent years, China has accelerated its
modernization and become a strategic highland in China’s
science and technology, economy, and governance. However, due
to the limitations of the geographical environment and ecological
environment, the economic development level of the western region
lags behind that of the eastern region. The technological level of
environmental protection in the western region is relatively lagging
behind, and there is a phenomenon of excessive exploitation of
resources. As an economically underdeveloped and resource-
endowed central region, its economic development has long

relied on fossil fuels such as coal. In particular, in major coal
provinces such as Shanxi and Henan, coal accounts for 80% and
76% of the energy consumption structure respectively, resulting in
high carbon emissions.

4.2 Spatially correlated characteristics of
spatial carbon emission performance

4.2.1 Global spatial autocorrelation feature
As an important basis for distinguishing the traditional model

from the spatial econometric model, the spatial correlation analysis
can reduce the deviation in the measurement results. According to
Eq. 4, 2), the global Moran’s I value and the corresponding p-value of
each province from 2006 to 2021 can be obtained, as shown
in Table 6.

As can be seen from Table 5, the Moran’s I value was below
0.05 in all years except 2006. Moran’s I values from 2007 to
2017 passed the test at the 5% significance level, and in all
other years, the Moran’s I values passed the test at 1%
significance. This indicates that the performance of carbon
emissions per unit space of each province is not random, and
there is a strong spatial positive correlation and a certain
agglomeration effect. In other words, the provinces surrounding
the provinces with high carbon emission performance per unit
space also have high carbon emission performance per unit space,
and the provinces with low carbon emission performance per unit
space are clustered together. The performance level of carbon
emission per unit space of each province is not only affected by its
own economic activities, carbon production and consumption, but
also by the carbon emissions, economic level, population density,
industrial structure and other factors of surrounding provinces,
such as the transfer of production activities, energy use diffusion,
carbon trading market, etc.

4.2.2 Local spatial autocorrelation features
The results of the global Moran index test show the overall

situation of each province in terms of spatial carbon emissions, but
cannot reflect the local spatial autocorrelation and spatial
agglomeration of carbon emission performance per unit space, so
the local Moran index is used for testing. The local Moran index
formula is as follows:

Ii � yi − �y
1
n∑ yi − �y( )2

∑
n

j ≠ i

ωij yi − �y( ) (5)

Where: n is the total number of regions; yi is the carbon emission
performance value per unit space of the 29 provinces;y is the average
value of carbon emission performance per unit space, which is the
(i,j) element of the spatial weight matrix.

According to Eq. 5, the Moran scatter plot is calculated and
plotted. Moran scatter plots reflect the tendency of data to
accumulate or disperse in space, and it divides observations into
four quadrants.

First quadrant: High-High value agglomeration (HH) area. It
indicates that the carbon emission performance per unit space of the
observed provinces and their surroundings is high, showing a
positive spatial correlation.

TABLE 6 Moran’s I value of carbon emission performance per unit space of
Chinese provinces from 2006 to 2021.

Year Moran’s I p Year Moran’s I p

2006 0.139 0.215 2014 0.291 0.022

2007 0.256 0.038 2015 0.313 0.014

2008 0.290 0.022 2016 0.317 0.013

2009 0.289 0.022 2017 0.319 0.013

2010 0.290 0.022 2018 0.333 0.010

2011 0.295 0.020 2019 0.363 0.005

2012 0.305 0.017 2020 0.380 0.003

2013 0.290 0.023 2021 0.369 0.004

Frontiers in Environmental Science frontiersin.org07

Jianmin et al. 10.3389/fenvs.2024.1431324

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2024.1431324


Second quadrant: Low-High value agglomeration (LH) region. It
indicates that the carbon emission performance per unit space of the
observed provinces is low, while the carbon emission performance
per unit space of the surrounding provinces is high.

Third quadrant: Low- Low value agglomeration (LL) region. It
indicates that the carbon emission performance per unit space of the
observed province itself and its surroundings is low.

Fourth quadrant: high-low value agglomeration (HL) region. It
indicates that the carbon emission performance per unit space of the
observed provinces is high, while the performance per unit space of
the surrounding provinces is low.

There is a positive correlation between the carbon emission
performance per unit space in the first quadrant and the third
quadrant. There is a negative correlation between the second
quadrant and the fourth quadrant for carbon emission
performance per unit space.

Based on the geographical adjacency weight matrix, the local
Moran scatter plots for three representative years in 2006, 2014 and
2021 were drawn, as shown in Figure 2. The horizontal axis
represents the standardized carbon emission performance value
per unit space, and the vertical axis represents the spatial lag
value of carbon emission performance per unit space. The figure
shows that the carbon emission performance per unit space of most
provinces is located in the HH and LL regions, that is, there is a
positive spatial correlation. Specifically, in 2006, the provinces with
HH carbon emission performance per unit space were Gansu,
Ningxia, Shaanxi, Inner Mongolia, Yunnan, Shanxi, and Qinghai,
which were concentrated in western China. The provinces located in
the LL region include Hubei, Hunan, Anhui, Zhejiang, Shandong,
Fujian, Jiangsu, Guangdong, Jiangxi, and most of them are
concentrated in eastern China. In 2014, the number of HH
regional provinces increased slightly, from 7 provinces in 2006 to
9, including Gansu, Ningxia, Inner Mongolia, Shaanxi, Shanxi,
Hainan, Qinghai, Heilongjiang and Jilin. From 2006 to 2014, the
concentration shifted from the western region to the western and
northeastern regions. However, the number of LL-type provinces
has changed little, from 9 districts in 2006 to 10 districts. The
increase is in Guangxi, and the provinces are still concentrated in
eastern China. In 2021, the HH-type region increased the number of
Liaoning Province and the LL-type region increased the number of
Yunnan Province, both of which were concentrated in the western,
northeastern, and eastern parts of China, respectively, which were
consistent with the results in 2014.

The above results are closely related to practical factors such as
economic structure and industrial layout.

From a spatial perspective, most of the HH regions are provinces
in the central and western regions. This is because the level of
economic development in the central and western regions is limited
and the level of urbanization is low. In addition, the western region,
especially Shanxi, is more dependent on traditional energy sources,
such as oil and coal, which makes the carbon emission performance
per unit space of the provinces show a trend of high value
agglomeration. The LL area is mostly in the eastern regions. Due
to the relatively good level of economic development in the eastern
region, it is easier to carry out industrial upgrading and
technological innovation, and the level of urbanization is
relatively high. At the same time, natural resources are relatively
abundant, the climatic conditions are more suitable, and the energy
utilization is more efficient. Therefore, the carbon emission
performance per unit space of the provinces showed a trend of
low value agglomeration. The phenomenon of high-value
agglomeration in the eastern province and the low-value
agglomeration in the western region are relatively stable, with
strong path dependence.

From a time perspective, comparing the spatial agglomeration in
2006, 2014 and 2021, it can be seen that the number of low-value
agglomeration provinces is increasing year by year, and is stable in
the eastern region. The high-value agglomeration provinces are
gradually concentrated in the western and northeastern regions

FIGURE 2
The performance of carbon emissions per unit space in
29 provinces in 2006 (A)-2014 (B)-2021 (C).
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from the western region. The number of provinces with low and
high value agglomeration shows a decreasing trend year by year,
while the number of provinces with high and low value
agglomeration has been small or almost none.

4.3 The spatial spillover effect of
urbanization on the performance of carbon
emissions per unit space

4.3.1 Spatial econometric model
Based on Eq. 3, a suitable spatial panel model is selected before

exploring the spatial spillover effects of economic level, population
density, industrial structure, energy consumption structure and
urbanization rate on the performance of carbon emissions per
unit space, so as to more accurately capture the possible spatial
dependence and spatial spillover effects between variables. This
paper uses the test idea of Elhorst (2014) to test the adaptability
of the spatial panel model of the four weight matrices, and the results
are shown in Table 7.

The results show that when W1, W2, W3 and W4 weight
matrices are used, the LM test statistics are significant, indicating
that the choice of spatial econometric model is reasonable and the
hybrid panel model is rejected. The spatial-temporal fixed-effect
test of LR for W1, W2, and W4 all rejected the null hypothesis at
the 1% level. The spatiotemporal fixed effect of W3 was significant
at the 5% level and the temporal fixed effect was significant at the
1% level, indicating that the time-spatiotemporal double fixed
effect model was more effective. The Hausman test of the four
weight matrices was significant at the 1% level, which strongly
rejected the null hypothesis and suggested that the fixed-effect
model should be used. Both LR andWald’s test were significant at
the 1% level, indicating that the SDM model would not

degenerate to the SEM model or the SAR model, and the SDM
model was superior to the SEM model and the SAR model.
Therefore, the spatial Durbin model with time-space-time
double fixed effect is selected for analysis.

4.3.2 Spatial spillover effects
In order to better describe the interaction and dependence in

geographic space, Stata was used to estimate the parameters of
Equation 4 under the premise of considering spatial factors such as
spatial correlation, spatial dependence, and spatial heterogeneity.
The estimated results are shown in Table 8.

As can be seen from Table 7, the values of R2 under different
weight matrices are all greater than 0.87, indicating that the model
fits well. On the whole, economic level, urbanization rate,
technological progress, and openness to the outside world all
have a negative impact on the carbon emission performance per
unit space. Except for the degree of openness, it is significant at the
level of 1%, and the degree of openness to the outside world is only
significant at the level of 10% under the weight matrix of
geographical distance. Population density, building density, and
environmental regulation have a positive impact on the carbon
emission performance per unit space. Population density is
significant at the 1% level in all four matrices. However, the
degree of environmental regulation has no significant impact on
the carbon emission performance per unit space. In addition, the
industrial structure and energy consumption structure have negative
and positive effects on the carbon emission performance per unit
space under the geographical adjacency matrix, respectively, and are
significant at the 1% level, but fail the significance test in other
matrices. The results of the study are as follows:

(1) Economic level. An increase in the economic level within a
reasonable range can curb the increase in carbon emissions.

TABLE 7 Spatial panel model adaptation results.

Spatial panel model test Spatial weight matrix type

W1

Value
W2

Value
W3

Value
W4

Value

LM test Moran’s I 1.718* [0.086] −8.2323 [2.000] −172.810 [2.000] 0.356 [0.722]

LM-lag 146.172*** [0.000] 6.880*** [0.009] 0.880 [0.348] 0.287 [0.592]

Robust-LM-lag 133.177*** [0.000] 5.932** [0.015] 0.322 [0.570] 0.493 [0.482]

LM-error 28.897*** [0.000] 3.762* [0.052] 9.092*** [0.003] 2.567 [0.109]

Robust-LM-error 15.902*** [0.000] 2.814* [0.093] 8.534*** [0.003] 2.773* [0.096]

Spatiotemporal-temporal fixed effects test LR-both/ind 64.00*** [0.0000] 33.86*** [0.0002] 21.00** [0.0211] 77.67*** [0.0000]

LR-both/time 1136.27*** [0.0000] 1183.14*** [0.0000] 1088.72*** [0.0000] 1192.85*** [0.0000]

Hausman test 45.20*** [0.0000] 37.74*** [0.0000] 32.67*** [0.0002] 103.57*** [0.0000]

Wald test Wald-SDM/SAR 128.24*** [0.0000] 67.65*** [0.0000] 22.19*** [0.0083] 74.68*** [0.0000]

Wald-SDM/SEM 104.70*** [0.0000] 61.87*** [0.0000] 23.53*** [0.0051] 60.81*** [0.0000]

LR test LR-SDM/SAR 117.29*** [0.0000] 62.27*** [0.0000] 21.78*** [0.0096] 68.17*** [0.0000]

LR-SDM/SEM 111.28*** [0.0000] 57.77*** [0.0000] 22.94*** [0.0063] 58.56*** [0.0000]

Note: ***, **, and * indicate significant at the 1%, 5%, and 10% levels, respectively, and the p-value in [] is the value.
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With the development of the economy, the government has
strengthened environmental awareness, enterprises have been
transformed and upgraded, and cleaner and energy-saving
technologies and equipment have been adopted to effectively
reduce carbon emissions. However, the spatial lag term
coefficient of the economic level is only significant in some
spatial matrices, and some of the significance is not high. This
indicates that the economic level of the province will have an
impact on the carbon emission performance per unit space of
neighboring provinces and geographically similar provinces,
but the impact is not obvious.

(2) Population density. There is a positive correlation between
population density and carbon emission intensity. It has a
significant impact not only on the performance of carbon
emissions per unit space of the local area, but also on the
carbon emissions of neighboring regions. From the
perspective of scale effect, areas with high population
density have a larger scale of production, often have more
enterprises and factories, and at the same time, regions need
to provide more infrastructure services such as
transportation, heating, and power supply, which increases
overall energy consumption and carbon emissions. From the
perspective of agglomeration effect, areas with high

population density usually face more congested traffic,
more intensive residential energy consumption, and
relatively higher energy needs for residents’ lives, which in
turn increases carbon emissions.

(3) Industrial structure. The regression coefficient of industrial
structure to carbon emission performance per unit space is
only significant at W1, but the spatial lag term coefficient is
significantly negative under the four spatial matrices. This
suggests that spatial proximity plays an important role in the
impact between industrial structure and carbon emissions.
Neighboring provinces and provinces with similar
geographical distances have a strong interaction and
similar economies have a significant agglomeration trend
in terms of carbon emissions per unit space. With the
adjustment and upgrading of industrial structure,
economic development has gradually changed to the
direction of high-tech and low-carbon, and the emergence
of new high-tech industries, the support of green finance
policies and a number of policy guidance have had a negative
effect on the carbon emission performance per unit space.

(4) Energy consumption structure. The local energy
consumption structure has a promoting effect on the
carbon emission performance per unit space of the region

TABLE 8 Parameter estimation results.

Variable W1 W2 W3 W4

lngdp −0.906*** [0.000] −0.859*** [0.000] −0.873*** [0.000] −0.855*** [0.000]

lnpop 0.245*** [0.000] 0.206*** [0.000] 0.222*** [0.000] 0.254*** [0.000]

is −0.155*** [0.000] −0.101 [0.101] 0.026 [0.682] −0.038 [0.553]

es 0.443*** [0.000] 0.026 [0.782] −0.089 [0.357] −0.015 [0.886]

urb −4.023*** [0.000] −1.939*** [0.000] −2.583*** [0.000] −2.011*** [0.000]

ee −0.106*** [0.001] −0.193*** [0.000] −0.167*** [0.001] −0.214*** [0.000]

lntdp −0.052 [0.113] −0.066* [0.083] −0.056 [0.127] −0.064 [0.104]

bula 0.710*** [0.000] 0.504** [0.022] 0.519** [0.017] 0.627*** [0.005]

er 0.020 [0.157] 0.003 [0.877] 0.020 [0.218] 0.014 [0.397]

W*lngdp 0.448*** [0.000] −0.349* [0.058] 0.190 [0.143] 0.151 [0.611]

W*lnpop 0.386*** [0.000] 0.085 [0.549] 0.007 [0.939] 0.081 [0.797]

W*is −0.250*** [0.000] −0.978*** [0.000] −0.370*** [0.000] −0.578*** [0.006]

W*es −0.461*** [0.000] 0.502*** [0.003] 0.236* [0.055] 0.865** [0.026]

W*urb 1.734*** [0.005] 2.809** [0.042] −1.203 [0.143] −0.944 [0.673]

W*ee 0.109* [0.072] 0.002 [0.986] 0.107 [0.152] −0.014 [0.925]

W*lntdp −0.042 [0.536] −0.574*** [0.000] 0.124* [0.078] −0.514*** [0.001]

W*bula −0.787* [0.081] −0.252 [0.692] −0.536 [0.333] −0.705 [0.447]

W*er −0.012 [0.607] −0.008 [0.851] 0.070* [0.061] 0.031 [0.693]

R2 0.8891 0.8877 0.8806 0.8788

LogL 31.6852 4.2916 −11.8456 −14.1086

Obs 464 464 464 464

Note: ***, **, and * indicate significant at the 1%, 5%, and 10% levels, respectively, and the p-value in [] is the value.
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and the economically similar regions. However, it has a
restraining effect on carbon emissions in adjacent areas.
China’s total energy consumption ranks among the top in
the world, accounting for about 23% of the global total. Coal
still accounts for a significant proportion of energy
consumption, resulting in relatively high carbon emissions.
Economically similar regions often have similar economic
activities and industrial structures, and there is a certain
supply and demand relationship. When local coal
consumption increases, energy consumption in
economically similar regions may also move in the same
direction. However, due to the cross-regional balance between
energy supply and demand, the surrounding areas will reduce
their own coal consumption or adjust their energy structure,
and stimulate technological progress and technology transfer,
so that the carbon emission performance per unit space of the
surrounding areas will be reduced.

(5) Urbanization rate. To a certain extent, strengthening
urbanization has an inhibitory effect on the performance
of carbon emissions per unit space. But too much aggregation
will lead to a waste of resources. The spatial lag coefficient of
urbanization rate was significantly positive in W1 and W2,
and passed the test of significance of 1% and 5%, respectively.
This indicates that the increase in local urbanization will have
a promoting effect on carbon emissions in neighboring areas
or areas with close geographical distances, but the effect is
not obvious. As building traffic in cities becomes more
compact and concentrated, energy losses in the
transportation and supply process will gradually decrease,
economic activities will become more concentrated, and
resource utilization will be higher. At the same time, the
mutual reinforcing effect between population and economic
activity contributes to innovation and technological progress.
However, due to the diffusion effect of economic activity, the
number of businesses and residents in the periphery of the
city has increased. This, in turn, creates more demand for

energy consumption, which increases carbon emissions in
the surrounding area.

For the other control variables, only technological progress and
building density coefficient are significant in the four matrices, but
they act in completely opposite directions. Technological progress
can curb carbon emissions to a certain extent, and the increase in
building density will increase carbon emissions. The spatial lag
coefficients of technological progress, building density, openness
to the outside world and environmental regulation are only
significant in some matrices, indicating that the impact of these
four variables on carbon emissions in the surrounding areas is
not obvious.

In summary, economic level, industrial structure, and
urbanization rate have a negative impact on carbon emissions.
Population density and energy consumption structure have a
positive impact on carbon emissions. The hypothesis H1 is
demonstrated, that is, increasing the level of urbanization to a
certain extent will reduce the carbon emission performance per
unit space.

4.3.3 Spatial effect decomposition
Due to the spatial spillover effect, the change of a variable will

not only cause the change of carbon emission performance per unit
space in the region, but also cause the change of carbon emission
performance per unit space in adjacent areas. In order to accurately
measure the influence of spatial effects on the relationship between
variables, this paper will further decompose the impact of each
variable on the performance of carbon emissions per unit space,
including direct and indirect effects. Direct effects: the impact of a
variable change on the carbon emission performance per unit space
of the region, including the cyclic feedback effect of the variable
change on the environmental factors in the surrounding
neighboring areas and in turn the impact on the region. Indirect
effects: the impact of a change of a variable on the performance of
carbon emissions per unit space in adjacent areas and a series of

TABLE 9 Decomposition results of spatial effects.

Weight matrix Effects lngdp lnpop is es urb ee bula

W1 Direct effects −0.897*** 0.312*** −0.198*** 0.412*** −4.103*** −0.095*** 0.607***

Indirect effects 0.089 0.714*** −0.469*** −0.380*** 0.019 0.092 −0.702

Total effect −0.808*** 1.025*** −0.667*** 0.032 −4.083*** −0.003 −0.095

W2 Direct effects −0.858*** 0.199*** −0.093 0.029 −2.021*** −0.189*** 0.471**

Indirect effects −0.280 0.068 −0.937*** 0.495*** 2.897* 0.006 −0.261

Total effect −1.138*** 0.268* −1.030*** 0.524*** 0.877 −0.184** 0.209

W3 Direct effects −0.870*** 0.217*** 0.027 −0.082 −2.692*** −0.161*** 0.480**

Indirect effects 0.180 0.014 −0.384*** 0.245* −1.212 0.105 −0.566

Total effect −0.690*** 0.230** −0.357*** 0.163 −3.904*** −0.056 −0.086

W4 Direct effects −0.856*** 0.247*** −0.032 −0.011 −2.084*** −0.210*** 0.596***

Indirect effects 0.237 0.041 −0.530*** 0.843** −0.655 −0.007 −0.709

Total effect −0.618* 0.289 −0.562*** 0.832** −2.739 −0.216 −0.113

Note: ***, **, and * indicate significant at the 1%, 5%, and 10% levels, respectively.
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chain reactions and adjustments, i.e., spatial spillover effects. In this
paper, the model is decomposed according to the partial differential
method, and the direct effects, indirect effects, and total effects of
each variable under different weight matrices are obtained as shown
in Table 9.

Since the coefficients of the degree of openness to the outside world
and the degree of environmental regulation are not significant, the
spatial effect is not statistically significant, so it is not discussed here.

Overall, the total effect of the four weight matrices is basically the
same. The direct effects of the geographic adjacency matrix and the
geographic distance matrix affect the same direction. However, there are
some differences in the direction of the direct effects of the economic
distance matrix and the economic geography matrix. This is because
economic factors are introduced into these two matrices, and China has
a vast territory, there are obvious differences in economic development
between regions, and it is affected by many factors such as history,
culture, and policy, so there are differences in the direction of influence.
At the same time, there are certain differences in the direction of the
indirect effects of the four weight matrices. This is due to the fact that
there are obvious spatial externalities in China’s economic and social
activities. Moreover, the inter-regional connection network is very
complex, including transportation, population flow, industrial chain
and other contact methods between cities, and the interaction of
multiple effects leads to the diversification of indirect effects.

At the specific level, the direct effects of economic level, population
density and urbanization rate under the four matrices all passed the
significance test of 1%. However, the indirect effect is only significant in
some matrices. This indicates that these three factors have a certain
spatial spillover effect, but it is not obvious. The indirect effects of
industrial structure and energy consumption structure are significant.
However, the direct effect was only significant inW1. This indicates that
the impact of industrial structure and energy consumption structure on
carbon emissions in geographically adjacent or economically similar
regions is more significant than that on this region.

In the energy consumption structure, the order of the coefficient of
indirect effect estimation of each matrix is as follows: W4(0.843)
>W2(0.495)>W1(-0.380)>W3(0.245). This reflects that among the
spillover factors that affect the carbon emission performance per unit
space of energy consumption structure, economic geographic nesting is
the main factor, and proximity is a secondary factor. This may be due to
the impact of the dual carbon policy, which is prone to strategic
competition among regions. Therefore, it is necessary to strengthen
cooperation, consultation and experience sharing when formulating
emission reduction policies to achieve greater emission reduction benefits.

Among the control variables, although the direct effects of
technological progress and building density are significant in the
four matrices, the total effects are only significant in some matrices,
indicating that although the introduction of new technologies can
reduce the carbon emission intensity of buildings, transportation
and industry. But it may lead to more resource consumption and
environmental pollution. Increased building density helps reduce
commuting distances and traffic demands. However, it may lead to
higher energy consumption. The combined effects of the two cancel
each other out to a certain extent, resulting in insignificant results.

In summary, economic level, population density, industrial
structure, energy consumption structure, and urbanization rate all
have spatial spillover effects. That is, there is a spatial spillover effect
of urbanization process on the carbon emission performance per unit
space of neighboring provinces, and hypothesis H2 is demonstrated.

4.4 Robustness test

In order to further verify the robustness of the model, this paper
uses the method of substituting explanatory variables to test. Drawing
on the research ideas of Cheng et al. (2013) and Liu and Liu (2021), the
per capita GDP is used to represent the economic level, and the
proportion of the output value of the secondary industry in the
GDP represents the industrial structure, and the model regression is
carried out after substituting the explanatory variables. The regression
results are shown in Table 10. The results show that there is no
significant change in the main regression results, indicating that the
test in this paper is robust.

5 Conclusion and suggestions

5.1 Conclusion

Based on the consideration of multiple spatial factors, this paper
conducts a new empirical analysis of the regional differences, spatial
autocorrelation, and spatial effects of carbon emission performance

TABLE 10 Robustness test results.

Variable W1 W2 W3 W4

lngdp −0.120*** −0.108*** −0.154*** −0.114***

lnpop 0.245*** 0.183*** 0.235*** 0.244***

is 0.258 0.076 −0.172 −0.017

es 0.413*** 0.123 0.056 0.074

urb −5.255*** −3.968*** −2.593*** −3.720***

ee −0.101*** −0.134*** −0.129*** −0.140***

lntdp −0.058* −0.078** −0.101*** −0.069*

bula 0.376* 0.382* 0.143 0.369*

Er 0.011 0.004 0.006 0.011

W*lngdp 0.029** 0.109*** 0.081*** 0.066

W*lnpop 0.238*** 0.153 0.188** 0.798**

W*is −0.254 1.513*** 0.613* 1.439**

W*es −0.389*** −0.094 0.117 0.165

W*urb 1.938*** −2.813** −2.461*** −2.763

W*ee 0.094 0.152* 0.1 0.151

W*lntdp 0.068 −0.252*** 0.069 −0.205*

W*bula −0.624 −1.010* −0.695 −1.321

W*er 0.013 −0.073* 0.019 −0.055

rho 0.345*** 0.218** 0.128** 0.219

lgt_theta −2.941*** −2.934*** −3.001*** −2.971***

sigma2_e 0.035*** 0.038*** 0.038*** 0.039***

Note: ***, **, and * indicate significant at the 1%, 5%, and 10% levels, respectively.
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per unit space. This paper studies whether promoting urbanization
can help achieve the goals of carbon neutrality and carbon peaking.

(1) To a certain extent, increasing the level of urbanization will
reduce the carbon emission performance per unit space.
Population density has a significant effect on the performance
of carbon emissions per unit space in both local and adjacent
areas. Spatial proximity plays an important role in the impact
between industrial structure and carbon emissions. The energy
consumption structure has a promoting effect on the carbon
emission performance per unit space in local and economically
similar regions, but has a restraining effect on the carbon
emissions in adjacent areas. From 2006 to 2021, China’s
carbon emission performance per unit space showed a
downward trend year by year. The decline rate was similar in
the east, west and central part of the country, with the northeast
rising first and then decreasing. In terms of intensity, the eastern
part is the lowest, followed by the central and northeastern
regions, and the western part is the highest. The level of
economic development, energy consumption structure, and
industrial structure are closely related to the carbon emission
performance per unit space.

(2) The urbanization process has a spatial spillover effect on the
carbon emission performance per unit space of neighboring
provinces. Among them, the spatial spillover effects of
industrial structure and energy consumption structure are
more obvious than those of economic level, population density
and urbanization rate. Economic geographic nesting is the main
factor that affects the spillover of energy consumption structure on
carbon emission performance per unit space. There is a strong
positive correlation and stable path dependence on the
performance of carbon emissions per unit space in each
region. The number of LL agglomeration provinces is
increasing year by year, and it is stable in the eastern region.
The HH agglomeration provinces are gradually concentrated in
the western and northeastern regions from the western region.
There are fewLH agglomeration provinces andHL agglomeration
provinces, which show a decreasing trend year by year.

5.2 Suggestions

Based on the research conclusions of this paper, such as the
impact of urbanization level on carbon emission performance per
unit space and the spatial spillover effect, some policy suggestions
are put forward for urban development.

(1) Strengthen the management of carbon emissions in densely
populated areas and adjacent areas. Focus on public
transportation, energy-saving buildings and green space
construction, and promote low-carbon production and
clean energy utilization. Strengthen the formulation and
enforcement of environmental protection laws and
regulations, and impose restrictions and penalties on
enterprises with high carbon emissions.

(2) Promote the upgrading and optimization of industrial structure
and strengthen regional cooperation. Due to the important role of
spatial proximity, the government needs to continue to promote

technological innovation in the process of industrial restructuring
and upgrading. Realize the withdrawal of old production capacity
and the construction of new production capacity. Strengthen
inter-regional industrial ties and economic cooperation to
promote the further reduction of carbon emissions.

(3) Adjust the energy consumption structure and promote the
transformation of the energy consumption structure to clean
energy. Increase investment in R&D and promotion of clean
energy technologies, and encourage enterprises and residents
to use clean energy. At the same time, preferential policies
such as loan support and tax incentives are provided to
promote the development and application of clean energy.

(4) Strengthen cross-regional cooperation mechanisms, such as
building a cross-regional environmental protection
information platform to share environmental protection
management experience, monitoring data and
technological achievements. Promote experience sharing
and technology transfer to achieve greater carbon emission
reduction and environmental protection benefits.
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