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Grassland ecosystems play a critical role in global carbon cycling and
environmental health. Understanding the intricate link between grassland
vegetation traits and underlying soil properties is crucial for effective
ecosystem monitoring and management. This review paper examines
advancements in utilizing Radiative Transfer Models (RTMs) and hyperspectral
remote sensing to bridge this knowledge gap. We explore the potential of
vegetation spectra as an integrated measure of soil characteristics,
acknowledging the value of other remote sensing sources. Our focus is on
studies leveraging hyperspectral data from proximal and airborne sensors,
while discussing the impact of spatial scale on trait retrieval accuracy. Finally,
we explore how advancements in global satellite remote sensing contribute to
vegetation trait detection. This review concludes by identifying current
challenges, outlining future research directions, and highlighting opportunities
for improved understanding of the vegetation-soil property interaction.
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1 Introduction

Vegetation biophysical and biochemical properties (traits) such as chlorophyll, leaf size
and carotenoids etc., are key characteristics of the vegetation that determines how they
thrive in an environment. Understanding plant traits helps infer how environmental
changes impact them and their underlying soil. For instance, plant presence alters soil
structure, while soil properties (moisture, composition, density) affect plant growth. This
link between plant traits and soil properties is crucial for understanding ecosystem function
(Miedema Brown and Anand, 2022). Reliable measurements or estimates of vegetation
traits are crucial for grassland monitoring. Remote sensing offers a promising tool for large-
scale grassland monitoring, eliminating the need for extensive field surveys (Wang Z. et al.,
2022). Advancements in proximal sensing technologies, such as handheld or vehicle-
mounted multispectral and hyperspectral sensors (e.g., Analytical Spectral Devices,
unmanned aerial vehicle (UAV) UAV-based hyperspectral devices, etc.), provide
insights into leaf and canopy traits (pigment content, water use, etc.), crucial for
grassland characterization (Aneece and Thenkabail, 2022; He et al., 2020). These sensor
datasets can sample at a scale that is relevant to leaf properties and have been validated using
experimental methods that utilize in situ data at comparable scales. Understanding these
within-field trait characteristics is key to understanding how grasslands respond to
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management practices in remote areas. Over the past decade,
numerous journal articles have explored using remote sensing
data with statistical models to estimate vegetation traits (foliar
characteristics, leaf structure) and soil properties (moisture)
(Datta et al., 2022; Gholizadeh et al., 2022). However, most
existing research and review studies have primarily focused on
approaches for estimating and validating vegetation traits (Wang
Z. et al., 2022; Dorigo et al., 2007; Berger et al., 2018a; Ustin et al.,
2009). However, the extent to which these methods have advanced
our understanding of seasonal relationships between vegetation
traits and soil properties remains limited.

Grassland variations, shaped by management, soil properties,
and plant diversity, influence how plants interact with light (Ustin
and Jacquemoud, 2020). Plant functional traits (e.g., biochemistry,
structure) drive these interactions, enabling adaptation to the
environment. These traits affect light absorption and reflection,
offering insights into plant-environment relationships through
remote sensing (Ustin and Jacquemoud, 2020; Cavender-Bares
et al., 2022). While remote sensing holds promise for assessing
soil properties in grasslands, significant challenges remain.
Multispectral and hyperspectral data have shown potential in
differentiating soil and vegetation types (Adam et al., 2010;
Castaldi et al., 2015; Lu B. et al., 2019), but accurately estimating
soil properties is difficult due to spectral overlap, especially in areas
with dense vegetation cover (Asner and Heidebrecht, 2002).
Traditional masking techniques and linear unmixing methods
often fall short in complex grassland environments. Although
nonlinear unmixing methods offer some improvement, they are
limited by restrictive assumptions (Yu et al., 2019; Khan et al., 2022).
To accurately assess soil properties in grasslands using remote
sensing, ideal conditions include minimal vegetation, shallow soil
depth, soil types, and little plant litter (Ge et al., 2011; He et al.,
2020). However, even under ideal conditions, challenges such as
spectral similarity between green and non-photosynthetic
vegetation, plant diseases, and ecological factors can obscure the
soil-vegetation link, hindering accurate soil property retrieval. In
managed grasslands, soils are often subject to practices like mowing
which affect soil moisture content and compact its particle size,
greatly influencing soil spectra. These complexities make
characterizing soil properties in such areas difficult.

In plant remote sensing, spectra are used to estimate various
plant traits by capturing the reflectance of light by the leaves or
canopy (Zhang et al., 2021). Advancements in spectroscopic sensors
- from laboratory to UAV-based systems - enable measurement of
reflectance within the visible, near-infrared, and shortwave infrared
(VIS-NIR-SWIR) spectrum (350–2,500 nm). This spectral range,
covering over 90% of solar radiation reaching Earth’s surface, reveals
plant-light interactions and adaptations. Established methods for
retrieving vegetation traits from this spectral data fall into two
categories: empirical-statistical and physical modeling
(Jacquemoud et al., 2009; Ustin et al., 2009; Berger et al., 2018a).
Empirical-statistical methods like vegetation indices link observed
traits directly to reflectance data. However, they can be sensor-
specific and may not be transferable across different conditions
(Darvishzadeh et al., 2011; Verrelst et al., 2015a). Physical modeling
methods, based on radiative transfer models (RTMs), directly link
plant traits to spectroscopic data, offering transferability and
detailed simulations of plant-light interactions (Verrelst et al.,

2015a; Berger et al., 2018a). RTMs consider biochemical,
structural, and geometric factors to simulate leaf or canopy
reflectance. These reflectance databases generated by RTMs can
then be inverted using appropriate methods to retrieve the related
leaf or canopy characteristics (Gastellu-Etchegorry, 1996; Kimes
et al., 2000), providing a powerful tool for studying plant functioning
and responses to environmental factors. Both RTM-based methods
and empirical-statistical methods have been successfully used in a
range of applications, including the modeling and prediction of
plant traits, species identification, and phenotype analysis (Sehgal
et al., 2016; Berger et al., 2020; Schiefer et al., 2021; Kothari and
Schweiger, 2022).

RTMs simulate canopy spectra by mathematically representing
plant-light interactions. Their complexity varies, from one-
dimensional (treating light as direct/diffuse streams) to three-
dimensional models considering multiple scattering (light
interaction within the canopy). The selection of an RTM is
dictated by factors such as the application, data availability, and
model limitations. Their accuracy generally relies on the input
parameters accuracy and the modeled canopy structure. Detailed
overview of some popular one- and three-dimensional models and
their application to different environment can be found in these
studies (Bailey et al., 2020; Yan et al., 2021). In recent years, there has
been a growing body of research aimed at improving the accuracy of
RTMs for various vegetation types. Among these models, PROSAIL
(PROSPECT (Jacquemoud and Baret, 1990)+ SAIL (Jacquemoud
et al., 2009)) has emerged as a widely used model for vegetation trait
studies. PROSAIL has been used alongside multispectral images to
highlight significant differences in LAI (Leaf Area Index) and LCC
(Leaf Chlorophyll Content) dynamics between cultivars and
nitrogen levels through high-throughput phenotyping
(Impollonia et al., 2022; Sun et al., 2022) demonstrated that
incorporating prior information about LAI and average leaf
inclination angle can improve the accuracy of inversion of
PROSAIL for leaf pigment estimation. However, if there is a high
level of uncertainty, the use of prior information can result in
decreased accuracy. Using the PROSAIL model to simulate future
hyperspectral sensor setups, (Berger et al., 2018b), showed that
significant improvements in accuracy for LCC estimation could
be achieved by excluding wavelengths (optimized spectral sampling)
with the highest model errors. Recent advances in UAV-based
remote sensing have enabled the estimation of crop biophysical
parameters like leaf area index (LAI) and chlorophyll content (Cab)
through inversion frameworks that couple radiative transfer models
with optimal estimation theory (Zheng et al., 2023; Ji et al., 2024).
While promising, these methods require further refinement to
address challenges like spectral overlap, soil variability, and
atmospheric effects. A study by (Lu et al., 2021) highlighted the
importance of understanding the limitations of RTMs and taking
appropriate measures to improve the performance and successful
application of a given model in vegetation trait studies. A systematic
overview of these models and their applications towards agricultural
and grassland monitoring can be found in these studies
(Darvishzadeh et al., 2011; Darvishzadeh et al., 2012; Atzberger
et al., 2015; Verrelst et al., 2021b; 2021a).

In this review, we analyze the advances surrounding the use of
RTMs (PROSAIL) and spectroscopy to retrieve and explain the
interactions between grassland vegetation traits and soil properties.

Frontiers in Environmental Science frontiersin.org02

Buma et al. 10.3389/fenvs.2024.1430818

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2024.1430818


We also explore existing challenges and the potential of using
vegetation spectra as an integrated measure to explain underlying
soil characteristics. Our focus was on studies that utilized
hyperspectral spectrometer-sampled spectral reflectance data,
while recognizing the value of other remote sensing data sources.
Estimation of key plant traits (LCC and LAI), detectable from
proximal and airborne sensor datasets, was reviewed. We also
introduced a brief discussion of scale and how it affects plant
trait retrieval processes. Next, we discussed how advancements in
global satellite remote sensing are being utilized in trait detection.
We conclude with current challenges and opportunities and provide
suggestions and directions that are likely to further advance the
study of vegetation-soil properties interaction.

2 Literature review

2.1 Spectrometers and optically active
canopy attributes

The advancements in remote sensor technologies and data
analysis methods over the past few decades have led to an
increase in the use of remote sensing in grassland studies. The
quality of the data produced by remote sensors depends on their
spatial, spectral and temporal resolution, with low spatial and high
temporal resolution data being best suited for seasonal vegetation
health studies (Brown and de Beurs, 2008). However, Some studies
have shown that combining low spatial and high temporal
resolution data with high spatial and low temporal resolution
data can provide improved results in grassland studies (Danner
et al., 2021; Liu et al., 2021). Plant traits, including biochemical
properties (e.g., pigments, water content), structural properties (e.g.,
LAI, biomass), generally govern the functioning of plants and their
responses to the environment. For example, LCC, a major plant
pigment, plays a significant role in regulating the amount of solar
radiation absorbed by a leaf and thus impacts a plant’s
photosynthetic capabilities. Chl concentrations has served as an
indicator of a plant’s nutrient status. Other pigments such as
carotenoids and anthocyanin also play important roles in light-
harvesting and protecting leaves from excessive light (Gitelson et al.,
2006; Sousa, 2022). Given their importance, spatial and temporal
information on plant pigment dynamics is valuable for various
scientific purposes, exploring the relationship between pigments
and soil properties. Plant traits and environmental factors (e.g., soil
moisture) influence how plants absorb and scatter light, affecting
their spectral reflectance (Ustin and Jacquemoud, 2020). This
reflectance is determined by the interaction of radiation with
leaves/canopies, including leaf structure, shape, area, and
orientation.

Laboratory measurement of plant pigments typically involves
solvent extraction (e.g., methanol, acetone) followed by
spectrophotometric analysis or high-performance liquid
chromatography (Lichtenthaler, 1987; Dunn et al., 2004). For
large-scale canopy analysis, extrapolating from limited point-
sample measurements can introduce inaccuracies. Additionally,
this approach cannot monitor temporal pigment changes,
especially at the leaf level. Handheld instruments like Minolta
SPAD (Markwell et al., 1995) offer a faster, non-destructive

alternative for total chlorophyll estimation, but lack specificity for
individual pigments. Remote sensing complements these methods
by measuring upward radiation to estimate pigment content across
broader areas. The signals are sampled and quantized into raw
values at different wavelengths, forming spectral radiance, which can
be converted to an estimate of diffuse reflectance. This allows the use
of reflected radiation measurements to quantify plant pigments.
Field sample spectral data can be captured by various devices
equipped with proximal, airborne or spaceborne hyperspectral
sensors. Such sensors range from non-imaging portable
spectrometers such as the ASD (Analytical Spectral Devices, Inc.
Boulder, United States), to imaging sensors such as the Micro-
HyperSpec (Headwall Photonics Inc. Boston, MA, United States)
which can be mounted on manned or unmanned aerial vehicles.
Recently, advanced spaceborne imaging spectrometers, such as
DLR’s Earth Sensing Imaging Spectrometer (DESIS) on the
International Space Station (ISS), PRecursore IperSpettrale della
Missione Applicativa (PRISMA), and Compact High-Resolution
Imaging Spectrometer (CHRIS) on NASA’s Hyperion Earth
Observing-1, have been developed with high spectral and spatial
resolutions. These imaging spectrometers have provided large-scale
vegetation reflectance datasets, enabling researchers to test and
improve methods for estimating pigment concentrations.
Forthcoming generations of operational spaceborne imaging
spectrometer missions, including ESA’s Copernicus Hyperspectral
Imaging Mission for the Environment (CHIME), FLuorescence
EXplorer (FLEX), DLR’s Environmental Mapping and Analysis
Program (EnMAP), the Italian-Israeli Spaceborne Hyperspectral
Applicative Land and Ocean Mission (SHALOM) and NASA’s
Surface Biology and Geology (SBG)) are expected to provide a
new generation of Earth observation (EO) data and help advance
a wide range of applications in grassland monitoring. The study
from (Wang Z. et al., 2022) outlines some recent technological
advances and applications of proximal, airborne, and spaceborne
imaging spectrometry for remote sensing of grasslands. Extracting
meaningful information from existing or forthcoming hyperspectral
data requires rigorous preprocessing to address noise, atmospheric
effects, and geometric distortions. Advanced techniques like spectral
unmixing and non-negative matrix factorization are essential for
separating endmembers (pure spectral signatures) and estimating
their abundances within mixed pixels (Bioucas-Dias et al., 2012). By
overcoming these challenges, hyperspectral remote sensing can
provide valuable insights into plant traits, ecosystem dynamics,
and their relationships with environmental factors.

Hyperspectral sensors capture highly detailed spectral data
(hundreds/thousands of narrow bands) at high spatial resolution
(cm-scale). This allows detection of subtle features linked to specific
plant traits (e.g., pigments, biomass) (Eon et al., 2019; Rueda-Ayala
et al., 2019; Lu et al., 2021; Wang et al., 2021). Plant pigments have
unique spectral signatures, enabling their study with hyperspectral
data (Figure 1). For instance, scattering within the canopy
(influenced by plant structure) increases water absorption at the
leaf level, raising reflectance in the NIR-SWIR region compared to
other wavelength areas (Asner, 1998; Holzman et al., 2021).

Chlorophyll, the main pigment in green plants, primarily affects
the visible light region (400–700 nm) of the EM spectrum. It strongly
absorbs light in the blue and red regions, at the same time, reflects
green light, giving plants their green color. In remote sensing, the
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amount of light reflected in the green region (around 550 nm) can be
used to estimate LCC (Gitelson et al., 1996; 2003; Gitelson and
Merzlyak, 1998; Lu F. et al., 2019). Biophysical quantities such as
LAI, biomass, and plant density can impact the spectral reflectance
measured by remote sensing instruments. For example, For
example, higher LAI values typically result in lower reflectance in
the visible spectrum and higher reflectance in the near-infrared
region (Darvishzadeh et al., 2008; Din et al., 2017). However, it is
important to note that environmental factors like light availability,
soil moisture, and atmospheric conditions can influence this
relationship, making it complex. For instance, In the SWIR
region, soil moisture content and roughness are known to
significantly influence the reflectance spectra, thus, soil moisture
can be estimated using SWIR bands (Lobell and Asner, 2002; Wang
et al., 2008; Oltra-Carrió et al., 2015). However, atmospheric water
vapor partially overlaps with and is close to some of the liquid water
absorption bands, complicating retrievals in these regions. Soil
texture has also been shown to affect reflectance at different
wavelengths (Curcio et al., 2013). These changes in reflectance
can be used to infer information about soil properties and
vegetation-soil interactions (Asner and Heidebrecht, 2002; Effects
of Ground Cover and Leaf Area on the Spectral Reflectance of
Vegetation-Soil Target). By analyzing hyperspectral data, scientists
can investigate the relationship between plant pigments and soil
properties. However, scaling leaf-level measurements to the canopy
and separating the effects of vegetation structure and chemistry
remain significant challenges. To address these issues, researchers
have combine leaf hemispherical reflectance and transmittance

measurements with canopy radiative transfer models. (Berger
et al., 2018b; Schiefer et al., 2021; Luo et al., 2022).

Sensor resolution is crucial for capturing narrow trait-related
features. A spectral resolution of 10 nm band spacing, and 10 nm
full-width half maximum is generally considered necessary (Schiefer
et al., 2021; Chakhvashvili et al., 2022). Additionally, sensor
characteristics such spectral distortion, signal-to-noise ratio
should be taken into consideration. A sufficient signal-to-noise
ratio is crucial for identifying important spectral features,
considering random noise from sources such as detector
sensitivity. Hyperspectral data requires pre-processing for trait
analysis, including atmospheric correction, illumination and
directional effects correction, and wavelength calibration.
Calibration is essential for comparing data across sources and
locations for canopy trait mapping Different sensors may have
varying band centers, and these can change, especially for
airborne devices, so data resampling may be necessary. This
process can be data and computationally intensive and requires a
thorough understanding of spectral response functions or the ability
to recalibrate models to new wavelengths for precision.

2.2 Overview of plant trait estimation
from spectra

Given the expansion of hyperspectral sensors, there is a growing
need for methods/models that can effectively utilize such datasets to
identify vegetation biochemical and structural properties. This is

FIGURE 1
Leaf Spectral Reflectance (350–2,400 nm) of Grasslands in Beltville, Maryland, United States (Collected on 202208–12). Key spectral regions: Visible
(green), Near-Infrared (brown), and Shortwave Infrared (blue). Water absorption features indicated by blue arrows.
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particularly relevant for the study of grassland trait studies, as the
use of UAV-based hyperspectral systems and the new and upcoming
generation of hyperspectral satellites (such as CHIME, EnMAP,
HISUI, HypXIM, HyspIRI, and PRISMA etc.) are becoming more
widespread in industry. To estimate pigment concentrations from
hyperspectral datasets, a range of other factors (e.g., leaf internal
structure, surface characteristics, soil characteristics, etc.) that
influences leaf reflectance spectra must also be considered. As
seen in the previous section, pigments, water, and other
biochemical properties absorb certain wavelengths of radiation,
thus, lowering reflectance in those regions. This offers an
opportunity for pigments to be studied in a non-destructive
manner (Sims and Gamon, 2002). For example, some studies
have shown that assessing the functional properties or status of
growth of a plant could be feasible by examining how particular
traits (Chl-a, LAI, etc.) influences the plant’s optical properties
within specific regions of the EM spectrum (Kattenborn and
Schmidtlein, 2019; Impollonia et al., 2022; Sun et al., 2022).
However, due to overlapping absorption features of leaf pigments
and other constituents, relating reflectance at a single wavelength to
a pigment is not advisable (Berger et al., 2018b). This has led to
several studies using reflectance from multiple narrow bands to
overcome the non-linearity effect between pigments and reflectance
(Heckmann et al., 2017; Silva-Perez et al., 2018; Fu et al., 2019).

Leaf reflectance spectra contain many data points across
wavelengths. A radiometer’s spectral resolution (wavelength of
350–2,500 nm), especially for trait studies with overlapping
absorption features, is crucial for capturing subtle variations in
leaf traits (Prudnikova et al., 2019). Several methods analyze
specific spectral regions linked to leaf characteristics. For
example, studies have investigated the influence of soil
background on crop canopy reflectance in the visible and near-
infrared regions (Prudnikova et al., 2019), finding the impact most
pronounced between 350–500 nm and 620–690 nm. Likewise,
Berger et al., (Berger et al., 2018b), used models to evaluate the
potential of future hyperspectral sensors in the visible and near-
infrared (VNIR) regions. Their results showing that the green visible
and red edge regions had major inaccuracies due to complex
interactions of variables. However, they further demonstrated
that optimizing through spectral samplings improved the
accuracy of LCC estimates. Although spectroscopy offers promise
for mapping plant traits in remote sensing (RS), there’s no single,
universally accepted method for deriving these traits due to
challenges in connecting traits to RS data across scales. However,
two established methods exist: (1) a physics-based radiative transfer
models and (2) empirical models (Jacquemoud et al., 2009; Verrelst
et al., 2012; Féret et al., 2017). Recently, a combination of these
approaches, known as the (3) Hybrid method (Verrelst et al., 2019a),
has emerged. We will provide a brief overview of these retrieval
categories below.

Regardless of the chosen method or model for estimating
vegetation traits, it must effectively convert spectral observations
into biophysical properties and manage the multicollinearity of
adjacent bands that convey similar information. It is important
to note that the variable boundaries of retrieval categories
mentioned above are never fixed/straightforward. These
boundaries continually evolve with advancements in
computational speed and sensor technology. For example, future

missions like the Environmental Mapping and Analysis Program
(EnMAP) will provide more detailed hyperspectral data for remote
sensing analysis at 6.5 and 10 nm spectral sampling distances in the
VNIR and SWIR regions, respectively. This will bring new insights
into the biochemical and biophysical properties of different large-
scale terrestrial ecosystems. While compact hyperspectral data sets
are useful for pigment identification, they present a challenge in
terms of spectral band redundancy. Adjacent bands often contain
similar or interrelated information, making it essential that any
method or model used for vegetation trait retrieval be able to handle
this issue of multicollinearity.

2.2.1 Estimating plant traits from spectra–RTM
Radiative transfer models (RTMs) are essential components of

optical remote sensing and play a crucial role in connecting
observations with the physical processes that generate signals in
remote sensing. RTMs are widely used in various applications,
including sensor radiometric calibration, atmospheric correction,
and the modeling of radiation processes in vegetation canopies
(Verhoef, 1984; Vermote et al., 1997; Berk et al., 2014; Verrelst et al.,
2016b). In the context of vegetation studies, RTMs are mathematical
models used to simulate the interaction of light with vegetation
canopies. RTMs are based on the physical principles of light
propagation through a medium and can be used to predict the
reflectance and transmittance of light by vegetation canopies as a
function of various canopy properties, such as LAI, LCC, and leaf
angle distribution (Jacquemoud, 2000; Ustin and Jacquemoud,
2020). There are several RTMs used to simulate canopy spectra,
including simple one-dimensional RTMs and complex three-
dimensional RTMs. These models vary in their level of
sophistication and accuracy, with 1-D RTMs (e.g., PROSPECT
(Jacquemoud and Baret, 1990)) providing basic representation of
canopy spectra, while 3-D (e.g., Monte Carlo ray tracing models
(Govaerts and Verstraete, 1998)) RTMs allow for a more detailed
and accurate representation of complex canopy structures. As seen
in Table 1, both types of RTMs have their strengths and weaknesses
and the choice between them depends on the specific requirements
of each study.

For all RTMs, identifying the key input variables that affect the
spectral output is crucial, even if it means simplifying the model by
ignoring less important variables (Kimes et al., 2000; Verrelst et al.,
2016b; Lunagaria and Patel, 2019; Impollonia et al., 2022).
Simplifying RTMs enhances their usability, particularly for trait
retrieval applications. RTMs are employed in both forward and
inverse modes for studying grassland traits. In forward mode, RTMs
generate databases of reflectance spectra by varying input
parameters (e.g., LAI, chlorophyll, leaf structure). Analyzing these
databases helps identify spectral features sensitive to specific traits.
Examples of RTMs that have been designed for this purpose include
PROSPECT (PROpriétés SPECTrales) (Jacquemoud and Baret,
1990) and LIBERTY (Leaf Incorporating Biochemistry Exhibiting
Reflectance and Transmittance Yields) (Dawson et al., 1998) etc.
These models vary in terms of computational complexity, input
variable requirements, and how they represent the interaction
between light and the leaf or canopy structure. The inverse mode
of RTMs has been used to estimate plant traits such as LCC. The
successful use of the PROSPECT model at both the leaf and canopy
level has demonstrated the potential of this approach (Darvishzadeh
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et al., 2012; Zhang et al., 2017; Piegari et al., 2021). RTMs can be used
to simulate the spectrum of leaves or canopies for various growth
stages and conditions. However, to accurately parameterize RTMs, it
is necessary to have a certain amount of input information, such as
ground observations or synthetic data. It is recommended to gather
input variables from a diverse range of plant, soil, and weather
scenarios, preferably over different seasons. This will help to ensure
that the RTM is accurate for a wide range of conditions. In cases
where ground data is not available, a number of studies have used
prior knowledge to set their model variables within specific bounds
(Li et al., 2015; Berger et al., 2018a; de Sá et al., 2021; Wang
J. et al., 2022).

The reflectance spectrum of a leaf or canopy is influenced by
factors such as non-photosynthetic vegetation (NPV), non-leaf
elements, shadows, and soil reflectance. In grassland
management, layers of dead vegetation on the soil surface can
retain moisture, prevent erosion, and reduce soil compaction
(Arsenault and Bonn, 2005). Understanding spectral reflection
and pigment concentrations in grasslands requires accounting for
the impact of NPV and non-leaf elements. Differentiating between
green and non-green grassland components in radiative transfer
model (RTM) simulations is challenging, as most RTMs focus on
photosynthetically active plants. To address this, non-
photosynthetic plant parameters have been analyzed using RTM
outputs integrated with remote sensing, meteorological, and in situ
data. For example, (Berger et al., 2021a), trained Gaussian process
regression (GPR) models with carbon-based constituents variable at
canopy level over a simulated data from the PROSAIL-PRO model.
The resulting GPR model was applied to PRISMA hyperspectral
images, estimating non-photosynthetic biomass in croplands and
bare soils. Such approaches also allow for the study of crop biomass
(Berger et al., 2021a) and gross primary production from reflectance
spectra (Cheng et al., 2020).

When studying vegetation traits, computationally expensive
RTMs like Monte Carlo ray tracing models (Govaerts and
Verstraete, 1998) can be limiting due to their high number of
input variables and slow processing times. In contrast, more
economical models like PROSAIL, which combines the leaf RTM
PROSPECT (Jacquemoud et al., 2009; Féret et al., 2017) with the

canopy RTM SAIL (Verhoef, 1984; Verhoef et al., 2007), require
fewer input variables and have a faster processing time, making them
more practical for application. Despite the computational demands,
RTMs can produce high-resolution spectroscopic outputs, suitable
for both imaging and non-imaging spectroscopy data, with outputs
resampled to match the spectral resolution of different sensors.
Thus, selecting an RTM involves balancing the model’s complexity
and realism with its feasibility for inversion, as simpler models are
easier to invert but may be less realistic.

Another challenge in running and inverting RTMs is that
different combinations of leaf or canopy input variables can
produce similar reflectance signatures, leading to an increased
number of unknowns, known as the ill-posed inversion problem
(Jacquemoud et al., 2009). To address this, various regularization
strategies have been proposed, such as iterative numerical
optimization and look-up table (LUT) based inversion methods.
Both strategies aim to find the best match between measured and
RTM-simulated reflectance or field-derived observations. A hybrid
approach has also emerged, using LUTs as input variables for
machine learning models (Jacquemoud et al., 2009; Verrelst et al.,
2015a). Briefly, the numerical optimization method involves
iteratively estimating the difference between measured and
simulated reflectance through a cost function. While reliable, it
can be time-consuming, computationally demanding, and prone to
converging to a local minimum (Kimes et al., 2000; Berger et al.,
2018a). The LUT-based inversion strategy, on the other hand, uses a
range of possible input variable combinations to generate simulated
spectral reflectance. By applying a cost function like Root Mean
Square Error (RMSE), the simulated spectra can be compared to
measured ones to find the closest match across all wavelengths.
Recent studies suggest that using multiple cost functions can
improve the accuracy of inversion in predicting leaf and canopy
properties such as LCC and LAI (Darvishzadeh et al., 2012; Sehgal
et al., 2016; Impollonia et al., 2022; Antonucci et al., 2023). To
further mitigate the ill-posed problem and improve the accuracy of
LUT-based inversion routines, various regularization strategies have
been proposed. Some of which include adding white Gaussian noise
to account for measurement uncertainties, utilizing prior
information about input variable ranges to constrain the RTM,

TABLE 1 Comparison of 1D and 3D radiative transfer models.

1-D RTMs 3-D RTMs

Examples - Leaf RTM PROSPECT (Jacquemoud and Baret, 1990)
- Canopy RTM SAIL (Verhoef, 1984)
- Atmospheric RTM 6S (Vermote et al., 1997)

- Ray tracing models; Raytran (Govaerts and Verstraete, 1998) FLIGHT
(North, 1996)

- Vegetation and atmospheric transfer models; SCOPE (van der Tol et al.,
2009) and MODTRAN (Berk et al., 2014)

Advantages - Simplicity in modeling and computation, allowing for quick analysis of large
datasets

- Flexibility in handling different types of canopy structures and light
environments

- Often provide a good first approximation of canopy reflectance and
transmittance

- Can be used as a baseline for more complex models

- More accurate representation of complex canopy structures, including leaf
angles and inter-leaf spaces

- Better ability to capture the effects of multiple scattering and canopy
structure on radiation transfer

- Can be used to study the role of individual canopy components in
determining the overall reflectance and transmittance

Disadvantages - Limited ability to capture the effects of multiple scattering and canopy
structure on radiation transfer

- Assumes a homogeneous canopy structure, which may not always reflect
the true complexity of real-world canopies

- May not accurately capture the effects of individual canopy components or
provide accurate results for complex canopies

- Complexity in modeling and computation, requiring more time and
resources

- More complex input data is required to accurately model canopy structures
- Can be computationally expensive, making it difficult to analyze large
datasets. Thus, hindering may not be feasible for real-time analysis
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and applying spectral subsets (Chakhvashvili et al., 2022; Sun et al.,
2022; Xie et al., 2022; Xu et al., 2022).

While this review focuses on the application of the PROSAIL
RTM, it is important to note that RTMs for vegetation canopies vary
widely in their features, such as plant scattering behavior and the
type of medium they model. Despite this, these models are preferred
due to their transferability, robustness, and flexibility in describing
light-trait interactions. Although computational models have
limitations, technological advancements and robust in situ data
have improved RTM inversion accuracy. For example, field
campaigns and laboratory measurements are essential have been
heavily used for model calibration. For a comprehensive overview of
plant trait retrieval methods, previous studies and reviews should be
consulted (Verrelst et al., 2013; 2015a; 2016b; 2019a; Berger
et al., 2018a).

2.2.2 Estimating plant traits from
spectra–empirical methods (parametric and non-
parametric regressions)

Empirical methods are widely used for studying plant traits by
establishing regression models between specific light bands and
plant traits sensitive to those bands. This approach often requires
prior knowledge of trait-spectrum relationships to select particular
wavelengths and corresponding spectral vegetation indices (SVIs)
for analysis (Zeng et al., 2022). By taking advantage of the sensitivity
of specific bands to certain plant traits, SVIs can emphasize the
expression of a particular trait while minimizing interference from
other plant traits, soil reflectance, atmospheric conditions, and other
factors. Most SVIs involve comparing the reflectance of red (visible)
and near-infrared wavelengths, with red sensitive to chlorophyll
content and near-infrared to the mesophyll structure of leaves. For
example, VIs composed of these wavelengths have been correlated
with LAI and LCC, helping to distinguish grassland canopies (He
et al., 2006). SVIs have proven to be a valuable tool for researchers in
estimating traits, including Chlorophyll (Gitelson et al., 1996), LAI
(Thenkabail et al., 2000), the fraction of absorbed photosynthetic
active radiation (PAR) (Kamenova and Dimitrov, 2021). Among the
many indices, the ratio vegetation index (RVI), normalized
difference vegetation index (NDVI), and enhanced vegetation
index (EVI) are the most used. For instance, NDVI has been
used to characterize canopy cover by correlating it with green
canopy cover (Tenreiro et al., 2021). A variety of indices have
been developed and evaluated to establish a relationship between
remotely sensed data and ground truth data for predicting leaf
biophysical properties (Gitelson, 2004; Kamenova and Dimitrov,
2021). Some of these indices are listed in Table 2. For more
information on vegetation indices and their applications, please
refer to (Bannari et al., 1995; Haboudane et al., 2002; Xue and Su,
2017). When choosing VIs, the spectral sensitivity and features of
VIs and their suitability for target application should be considered.
In addition, timing of data acquisition in relation to plant growth
stage as well as the bandwidth and spectral resolution of sensor used
for data generation should be taken into consideration.

Calculating VIs is a fast and straightforward process but testing
various combinations of contiguous bands to identify the “best
index” can be tedious. Moreover, this method may overlook
subtle trait information in contiguous spectral bands since it only
focuses on specific regions of the spectrum. Parametric approaches

based on spectral shapes and spectral transformations are more
effective when working with hyperspectral images, as they extract
trait information from contiguous spectral bands specific to a
particular trait. The spectral shape approach includes methods
such as the red-edge index, which is sensitive to chlorophyll
(Gitelson et al., 1996) and LAI (Dong et al., 2019). The spectral
transformation approach includes continuum removal and wavelet
transform methods. Continuum removal can be used to calculate
LCC by focusing on the area under the spectral curve between
550 and 730 nm (Broge and Leblanc, 2001). Further example
applications of these methods to enhance the accuracy of plant
traits (e.g., LAI, nitrogen etc.) be found in these studies (Huang et al.,
2004; Luo et al., 2022).

Parametric methods enhance spectral transformations but
require a fitting function to estimate plant traits. Although
mathematically simple and fast, these methods cannot perform
per-pixel analysis. Non-parametric regression methods, in
contrast, optimize models through a learning phase and can
handle full-spectrum data without explicit parameterization.
These flexible models, often referred to as linear non-parametric
models, must avoid overfitting by properly defining model weights.
They are sometimes used in combination with principal component
regression (PCR) (Wold et al., 1987), and partial least squares
regression (PLSR) (Geladi and Kowalski, 1986) for hyperspectral
data dimensionality reduction purposes. This helps to mitigate the
collinearity effects, which is a problem that occurs when two or more
variables are highly correlated. Other common methods include the
stepwise multiple linear regression (SMLR) (Draper and Smith,
1981) and the ridge regression method (Geladi and Kowalski,
1986) etc. For a more comprehensive understanding of
parametric and non-parametric models, further information can
be found in a study conducted by Mahmoud (Mahmoud, 2021).
Table 3 summarizes their strengths and drawbacks in estimating
plant traits from remote sensing data.

Parametric methods such as PLSR, MLR, and CCA are effective
for vegetation trait estimation from remote sensing data, but
incorporating machine learning (ML) techniques can improve
accuracy (Caicedo et al., 2014; Yao et al., 2015; Kiala et al., 2016;
Wang et al., 2017; Féret et al., 2019; Burnett et al., 2021). ML
methods can handle nonlinear relationships between spectral data
and plant traits, various data types, and establish trait-spectral
relationships without prior data distribution knowledge (Verrelst
et al., 2012; Berger et al., 2021b). Some examples of ML methods
used in vegetation trait inversion are decision trees, artificial neural
networks (ANNs), and kernel-based regression families. These
methods have been shown to be more accurate than parametric
methods, especially when dealing with nonlinear relationships or
small training datasets (Verrelst et al., 2015a; 2019a).

Kernel ridge models are a popular type of ML method for
vegetation trait estimation. They are known for their ability to
handle nonlinear relationships, identify subtle grassland traits,
and robustly handle outliers and data noise (Tuia et al., 2018).
Gaussian process regression (GPR) is a specific type of kernel ridge
model that has been widely used for vegetation trait estimation. GPR
is based on a Bayesian framework and fits data through individual
functions, solving regression and probabilistic classification
problems (Gehler and Schlkopf, 2009). GPR has been applied
alongside multispectral and hyperspectral spectroscopic data from
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proximal, airborne, and spaceborne sensors to map leaf, LAI, and
fractional vegetation cover (Ali et al., 2021; Sun et al., 2022;
Antonucci et al., 2023; Zhao et al., 2023). Studies comparing
GPR to other ML methods, such as ANNs, random forest
regression (RFR), and support vector regression (SVR), have
shown that GPR outperforms other methods for predicting LAI
and LCC from spectroscopic data (Caicedo et al., 2014; Verrelst
et al., 2019a). GPR is preferred because it is easy to implement, has
hyper-parameter adaptive capabilities, and flexible nonparametric
inference (Verrelst et al., 2019a). Additionally, GPR provides
uncertainty intervals that can be used as a metric to evaluate the
performance of the model (Verrelst et al., 2013). However, effective
ML algorithms may encounter issues with multicollinearity and
computational expense, especially with large training datasets.
Nonetheless, using spectral dimensionality reduction and active
learning (semi-supervised approach) can mitigate these problems
by optimizing sampling domains for the trait of interest. (Berger
et al., 2021b; Danner et al., 2021; Salinero-Delgado et al., 2021).

For more details on ML approaches (e.g., ANN, SVR) and their
applications in vegetation trait estimation (LCC, LAI, etc.) under
diverse environmental conditions, please refer to the comprehensive
descriptions in the journals by Ali et al. (Ali et al., 2021) and Danner
et al. (Danner et al., 2021).

2.2.3 Estimating plant traits from
spectra–Hybrid Method

Future hyperspectral missions will generate increasingly
complex data (high spatial, spectral, and temporal resolution).
Processing and analyzing this data for large-scale trait estimation
requires significant computing power. Hybrid approaches,
combining the efficiency of machine learning (ML) with the
detail of radiative transfer models (RTMs), offer a promising
solution (Verrelst et al., 2019a). The hybrid method of vegetation
trait estimation uses both radiative transfer models (RTMs) and
machine learning (ML) methods to improve the accuracy of
estimating vegetation traits. In these hybrid methods, RTMs

TABLE 2 Some vegetation indices for leaf trait estimation.

Index Formula Use case

Simple Ratio Index SR � ρ800/ρ680 Chlorophyll/LAI Rouse and Haas (n.d.)

Modified Simple Ratio (MSR) MSR � (ρ800/ρ680 − 1)/ ������������
ρ800/ρ680 + 1

√
Chlorophyll/LAI Chen (1996)

CVI – Chlorophyll vegetation Index CVI � (ρ750/ρ550) × (ρ670/ρ550) Chlorophyll content Vincini et al. (2008)

NDVI - Normalized difference vegetation
index

NDVI � (ρ800/ρ670) ÷ (ρ800 + ρ670) Leaf structure Rouse and Haas (n.d.)

Enhanced Vegetation Index (EVI) EVI � 2.5 × (ρ800 − ρ670) ÷ [ρ800 + (6 × ρ670 − 7.5 × ρ400 + 1)] Leaf structure Huete et al. (2002)

NDRE- Normalized difference
Red edge

NDRE � (ρ750 − ρ710) ÷ (ρ75 + ρ710) Leaf structure Fitzgerald et al. (2010)

Soil Adjusted Vegetation Index SAVI � [1.5 × (ρ800 − ρ680)]/(ρ800 + ρ680 + 0.5) Chlorophyll Huete (1988)

OSAVI - Optimized soil adjusted vegetation
index

OSAVI � [(1 + 0.16) × (ρ790 − ρ670)]/(ρ790 − ρ670 + 0.16) Chlorophyll Rondeaux et al. (1996)

TVI – Triangular Vegetation Index TVI � 0.5 × (120 × ρ750 − ρ550) − 200 × (ρ670 − ρ550) Leaf structure Broge and Leblanc (2001)

Modified Triangular Vegetation Index MTVI � 1.2 × [1.2(ρ800 − ρ550) − 2.5(ρ670 − ρ550] LAI/Leaf structure Haboudane (2004)

Modified Triangular Vegetation Index 2 MTVI2 � 1.5 × [1.2 × (ρ800−ρ550)−2.5(ρ670−ρ550]���������������������������
((2 × ρ800+1)2)−(6 × ρ800−5 ×

���
ρ670

√ )−0.5
√ LAI/Leaf structure Haboudane (2004)

Red Edge Normalized Difference Vegetation
Index

RENDVI � (ρ750 − ρ705) ÷ (ρ750 + ρ705) Leaf structure Sims and Gamon (2002)

Moisture Stress Index
Modified Simple Ratio

MSI � (ρ1599) ÷ (ρ819) Vegetation stress/Leaf
structure

Huntjr and Rock (1989)

Anthocyanin Reflectance Index 1 (ARI1) ARI1 � (1/ρ550) ÷ (1/ρ700) Vegetation stress Gitelson (2004)

Anthocyanin Reflectance Index 2 (ARI2) ARI2 � ρ800[(1/ρ550) − (1/ρ700)] Vegetation stress Gitelson (2004)

Green Ratio Vegetation Index (GRVI) GRVI � ρ800 ÷ ρ550 Chlorophyll/LAI Sripada et al. (2006)

Modified Chlorophyll Absorption
Reflectance Index (MCARI)

MCARI � [(ρ700 − ρ670) − 0.2(ρ700 − ρ550)] × (ρ700/ρ670) Chlorophyll Daughtry et al. (2000)

Modified red edge simple ratio MRESR � (ρ750 − ρ445) ÷ (ρ705 − ρ445) vegetation stress
detection

Sims and Gamon (2002)

Modified Chlorophyll Absorption
Reflectance Index 2 (MCARI2)

MCARI2 � 1.5 × [2.5 × (ρ800−ρ670)−1.3(ρ800−ρ550]��������������������������
(2 × ρ800+1)2−(6 × ρ800−5 ×

���
ρ670

√ )−0.5
√ Chlorophyll Haboudane et al. (2008)

Normalized Difference Chlorophyll Index
(NDCI)

NDVI � (ρ1654 − ρ727) ÷ (ρ1654 + ρ727) Chlorophyll Mishra and Mishra (2012);
Baneerje et al. (2020)
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simulate light interaction with vegetation, considering leaf
properties and canopy structure. These simulations are then used
to train MLmodels (e.g., ANNs, SVRs) to estimate traits like LCC or
LAI from real spectral data.

A major advantage of the hybrid method is that it combines the
accuracy of physical models provided by RTMs with the flexibility
and speed of ML methods (ANNs, GPR, RFs, SVRs). This has
resulted in a recent increase in studies on hybrid retrieval of plant
traits using ML algorithms (Verrelst et al., 2016b; 2021a; Abdelbaki
et al., 2019; Danner et al., 2021; de Sá et al., 2021). For example, a
study by Berger et al. (Berger et al., 2020) employed a hybrid retrieval
method that combined a physically based approach with machine
learning regression to estimate crop nitrogen (N) content. The
results showed that the Gaussian process (GP) model was more
effective in estimating N content, and the SWIR spectral region
provided the best spectral settings. Another study used active
learning and spectral dimensionality reduction strategies to
optimize a hybrid hyperspectral retrieval model for mapping LAI
and fractional vegetation cover over a heterogeneous landscape
(Pascual-Venteo et al., 2022). In addition, a hybrid retrieval
scheme was tested using data from the new-generation PRISMA
satellite, which involved PROSAIL-PRO radiative transfer
simulations coupled with Gaussian processes regression to
estimate crop traits. The results were positive for all variables
investigated, demonstrating the potential of spaceborne imaging
spectroscopy for crop monitoring and the possibility of routinely
retrieving multiple crop traits over large areas (Tagliabue
et al., 2022).

The hybrid approaches are particularly useful in situations
where ground-truth measurements are difficult or costly to
obtain, and where RTMs alone may not be accurate enough.
Here, the hybrid method offers another significant advantage in
that, since the RTM simulations are utilized to train the statistical
model, the dependency of the RTM on ground input data for
forward model simulations is reduced. This allows for the use of
ground measurements primarily for model estimate validation.
Table 4 below provides a concise summary of the advantages and

disadvantages of the hybrid retrieval method compared to empirical
and RTM methods.

Understanding the fundamentals of a hybrid retrieval scheme is
crucial, as the determination of which methods constitute a hybrid
approach is at the discretion of the researcher and depends on the
vegetation properties of interest. Regardless of the specific statistical
technique utilized to construct a hybrid retrieval method, it is crucial
to recognize that it does not resolve the underdetermined nature of
the problem associated with RTMs. Thus, the same regularization
methods described earlier should be implemented to address this
issue. This may involve utilizing domain knowledge to limit model
variables, introducing artificial noise to accommodate model and
measurement uncertainties, and/or employing multiple optimal
solutions in the inversion process (Berger et al., 2018b; 2018a;
Verrelst et al., 2019a; Danner et al., 2021).

3 Methodology

3.1 Explanation of articles used in this review

This review comprehensively analyzes previous literature on
vegetation trait retrieval methods, including RTM inversion and their
acknowledged limitations (Jacquemoud et al., 2009; Berger et al., 2018a;
Verrelst et al., 2019a). Our focus extends beyond summarizing
methodologies, delving into how model vegetation trait estimates
relate to changes in soil properties like moisture, as well as other
physical and geotechnical properties such as density and composition.
Furthermore, we assess the evolving impact of past publications and
speculate on potential future developments within the field.

To assess relevant study trends, we conducted bibliometric
analysis of search engine results. We identified the most relevant
published papers (n = 318) through search engine database queries
(Google Scholar, Scopus, Web of Science, and Dimensions) and
journal-specific searches, documenting key attributes. This analysis
allows us to examine trends in the application of models, research
focus, and study scale over time. We specifically focus on proximal,

TABLE 3 Comparison of parametric and non-parametric models for plant trait estimation.

Method Strength Drawback Trait
retrieval

R2 References

Parametric
regression models

- Simplicity
- Speed
- Typically requires fewer
data points

- low computational expense

- Data acquisition time
- Vegetation type and site-
specific

- Lacking generalization for
upscaling approaches

Leaf Water
Content

0.75 Villacrés et al. (2023)

Foliar Nitrogen 0.72 Farella et al. (n.d.)

Carotenoid 0.61 Schiefer et al. (2021)

LAI and LCC 0.6–0.9 Verrelst et al. (2013); Peppo et al. (2021); Sun et al.
(2021); Rosso et al. (2022); Verma et al. (2022)
SM/0.2–0.8/Zhao et al. (2015); Quast et al. (2023); Nur
and Bachmann (2023)

Non-parametric
models

- No reliance on data
statistical distribution

- Use a learning phase based
on training data

- Suitable for linear or non-
linear data

- Can capture complex
relationships

- Computationally demanding
- Require field data
- May overfit noisy data
- Tend to be sensor-specific
- May require larger datasets

CHL 0.5–0.9 Singhal et al. (2019); Annala et al. (2020); Angel and
McCabe (2022); Kim et al. (2022)

LAI 0.6–0.9 Verrelst et al. (2015b); Peppo et al. (2021); Nandan
et al. (2022); Rosso et al. (2022)

Soil Moisture 0.3–0.8 Lakhankar et al. (2009); Araya et al. (2021); Liu (2021);
Dabboor et al. (2023); Singh and gaurav (2023)
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airborne, or spaceborne hyperspectral remote sensing publications
related to grasslands.

3.2 PROSAIL model description

PROSAIL (PROSPECT + SAIL) is a radiative transfer model
used for simulating the optical signals of vegetation. The model
simulates how sunlight interacts with vegetation canopies under
various conditions, including sun angles, atmosphere, and plant
properties (Jacquemoud and Baret, 1990). A detailed description of
the PROSAIL model can be found in (Jacquemoud et al., 2009).

The PROSPECTmodel is utilized at the leaf scale to estimate the
biochemical and biophysical traits of vegetation by replicating the
spectral response of a leaf in the VIS-NIR-SWIR range. The model
assumes the leaf is composed of N parallel homogeneous layers as
plates. It requires inputs of structural parameters of the leaf, such as
leaf thickness, dry matter content, and number of mesophyll cell
layers, as well as spectral data for the leaf being modeled. The latest
version of the model, “PROPECT-PRO,” was introduced in 2020,
with an improved feature of incorporating leaf protein content as an
input variable (Féret et al., 2020). Table 5 summarizes the input
variables for the PROSAIL model, including their symbols, units,
and typical ranges for grasslands.

The SAIL radiative transfer model is a 1-Dmodel that simulates the
bidirectional reflectance of vegetation canopies (Verhoef, 1984). The
model divides the canopy into several distinct layers and models the
interaction between light and each layer. Each layer is characterized by
its LAI, leaf angle distribution, and optical properties. The model then
combines these individual layers’ reflectance to produce the overall
reflectance of the canopy. The most recent variant, 4SAIL2, is designed
for numerical stability and speed optimization (Verhoef and Bach,
2007). This variant is a hybrid two-layer model that has been enhanced
to account for the hot spot and clumping effects, as well as improve the
accuracy of the canopy absorbance output.

SAIL was first developed to analyze uniform canopies, but it has
since been adapted to fit different research purposes discussed in
dedicated published articles (Jacquemoud, 2000; Verhoef and Bach,
2007; Jacquemoud et al., 2009; Ustin et al., 2009; Berger et al., 2018a).

This review focuses on how PROSAIL model variants have been
used to link vegetation traits with soil characteristics. PROSAIL
model calculates the reflectance of vegetation canopies from 400 to
2,500 nm in 1 nm increments. The model takes up to 16 input
parameters Table 5, which include factors such as pigment and water
content, canopy structure, soil background, hot spot, solar
diffusivity, and observation geometry.

3.3 Data used to evaluate performance

3.3.1 Radiative transfer modeling using
PROSAIL-PRO

The latest version of the PROSAIL model, PROSAIL-PRO,
couples a leaf-level radiative transfer model (PROSPECT-PRO)
with a canopy-level model (4SAIL). PROSPECT-PRO is a leaf
model that simulates the directional-hemispherical reflectance
and transmittance spectra of plant leaves in the 400–2,500 nm
range based on various leaf characteristics. These characteristics
include the leaf structure index (N), protein, PRO, CBC, chlorophyll
content (Cab), carotenoid content (Car), anthocyanin content
(Canth), equivalent water thickness (Cw), and dry matter per
area (Cm). PROSPECT-PRO can be used in two modes: forward
mode and inverse mode (Figure 2). In forward mode, the model is
used to simulate the optical properties of leaves based on a set of

TABLE 4 Comparison of retrieval methods: benefits and limitations.

Method/Model Strength Drawback

Empirical Method - Simple and fast - Lack of physical interpretation of results
- Limited accuracy and robustness

RTMs - Physically based
- Ability to handle multiple traits simultaneously

- Computationally expensive
- Limited accuracy in the presence of noise
- Requires detailed knowledge of canopy structure and physiology

Hybrid Method - Combines the strengths of both empirical and RTMs methods
- Improved accuracy and robustness compared to the individual methods

- More complex than either empirical or RTMs method
- Can still suffer from the limitations of either method

TABLE 5 PROSAIL input parameters.

Parameter Symbol Unit Seasonal range

Leaf optical properties (PROSPECT-PRO)

Leaf structural index N 1.5–2.5

Leaf chlorophyll content Cab µg/cm2 0–65

Leaf carotenoid content Car µg/cm2 0–15

Leaf anthocyanin content Anth µg/cm2 0–2

Leaf protein content CP g/cm2 0.001–0.0025

Carbon-based constituents CBC g/cm2 0.001–0.01

Brown pigment content Cbrown — 0

Leaf dry matter content cm µg/cm2 0.012–0.03

Equivalent water thickness Cw µg/cm2 0.03–0.05

Canopy reflectance model (4SAIL)

Leaf area index LAI m2 m2 0–2.8

Average leaf angle ALA [◦] 20–50

Hot spot parameter” hot — 0.01

Soil brightness coefficient* αsoil No dim 0.2–1

Diffuse radiation (%) skyl Fraction 10–2.3

Solar Zenith angle SZA [◦] 47

Observer Zenith angle OZA [◦] Fixed
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input parameters. In inverse mode, the model is used to determine
the input parameters based on the leaf optical properties.

The 4SAIL model (Verhoef et al., 2007), is a one-dimensional
bidirectionalmodel that uses radiative transfer equations to calculate the
scattering and absorption of four fluxes at canopy level. It assumes
leaves are small and randomly distributed in space, making it well-
suited for grasslands and agricultural canopies (Verhoef, 1984). 4SAIL
uses LAI, ALA and the hotspot (hspot, ratio of mean leaf size to height
of canopy) parameters to describe the canopy structure. Coupled with
PROSAIL-PRO, it simulates top-of-canopy reflectance in the
400–2,500 nm range with 1 nm resolution, based on various
biophysical and biochemical parameters like LAI, ALA, Cab, Car,
Cw, and soil reflectance. Table 5 provides an overview of input
parameters with symbols and units.

The parameter ranges for PROSAIL-PRO forward simulations
should be adjusted based on the characteristics of the study area
(Berger et al., 2018a; Verrelst et al., 2019a). These ranges (Table 5)
are suitable for a wide range of plant species but may need to be
adjusted for specific applications (Verhoef, 1984; Verhoef and Bach,
2007; Berger et al., 2018b; 2018c). Weather information from the day
of in-situ data collection is used to keep sun and view geometry
angles constant. The model training process is randomized to
prevent strong correlations between predicted variables, maintain
aggregation benefits, and avoid overfitting.

3.3.2 Generation of a look-up table (training
data base)

To construct a look-up table (LUT) for the PROSAIL-PRO
model, users must execute the model for various input parameters,
which can be defined based on field surveys. Parameter ranges are
specified by the user, and variable distributions can be uniform,
Gaussian, or a combination of both to reflect realistic variability

across seasons (Verrelst et al., 2016a; Féret et al., 2017; 2020; Berger
et al., 2018a; Lunagaria and Patel, 2019). The model generates
reflectance spectra corresponding to the specified parameter
space, stored in a database serving as the LUT for future model
inversions. The recommended LUT size for PROSAIL-PRO varies
based on input parameters and desired accuracy. While larger LUT
sizes offer enhanced precision, they demand more storage space and
computational time. (Duan et al., 2014). observed comparable
accuracy in LAI estimates across LUT sizes of 50,000 to
250,000 simulations. (Darvishzadeh et al., 2012). reported similar
outcomes for rice chlorophyll estimation. For accurate model
inversions, a LUT size of at least 10,000 spectra and above is
recommended, but the optimal size depends on the study
objectives and constraints (Darvishzadeh et al., 2011; 2012;
Berger et al., 2018a; Danner et al., 2021).

Once generated, the LUT employs a cost function (e.g.,
correlation coefficient, root mean square error, mean absolute
error) to identify the best-fitting simulated spectra to measured
reflectance spectra for corresponding input parameter values. The
choice of cost function depends on the specific application. Notably,
0 the cost function is only a measure of how well the simulated
spectra fit the measured spectra. The accuracy of the estimated
values depends on the quality of the LUT and the number of
simulated spectra that are used.

3.3.3 Sensitive band selection (band optimization)
Working with large databases and Look-Up Tables (LUTs) can

be computationally expensive and prone to multicollinearity.
Multicollinearity arises when variables are highly correlated,
making it challenging to estimate individual variable effects
accurately. Band optimization is a technique that can be used to
reduce the impact of multicollinearity and computational workload.

FIGURE 2
Using PROSPECT-PRO to simulate and estimate leaf optical properties.
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It involves selecting a subset of bands from the LUT that are most
informative for the estimation of a particular variable.

There are a variety of methods that can be used for band
optimization, such as ranking evaluation criteria or genetic
algorithms. (Verrelst et al., 2012; 2016b; 2021a). GPR models
based on Gaussian Processes (GPs) (Rasmussen, 2004) are ML
approaches suitable for this purpose. GPs are data-driven models
whose means and variances are functions of their input vectors.
These models have been successful in solving Earth observation
(EO) problems in recent years, particularly in model inversion
scenarios (Verrelst et al., 2013; Berger et al., 2021a; de Sá et al.,
2021; Pascual-Venteo et al., 2022; Tagliabue et al., 2022). GP models
have a solid Bayesian formalism, which allows for the inclusion of
prior knowledge about the problem and the quantification of
uncertainty and error propagation. This can be helpful for
making decisions about the accuracy of estimates. However,
implementing GPs can be challenging when determining signal
models and kernel/covariance functions, especially for different
signal-to-noise ratio (SNR) relations. GPR models typically
assume that the noise variance is constant across all observations.
This assumption may not be valid in cases where the noise variance
is dependent on the input variables. To address this issue, two types
of GPR models can be used: standard GPR models and
heteroscedastic GPR models. Standard GPR models assume that
the noise variance is constant, while heteroscedastic GPR models
allow the noise variance to vary across observations. The noise
variance and kernel hyperparameters for standard GPR models can
be estimated by maximum log-likelihood (Rasmussen, 2004). For
heteroscedastic GPR models, a variational inference procedure can
be used to estimate these parameters (Lázaro-Gredilla et al., 2014).
Heterogeneous GPRmodels have been shown to slightly outperform
standard GPR models in terms of accuracy (Berger et al., 2020).
However, standard GPR models have also been successful in
estimating vegetation trait properties (Mateo-Sanchis et al., 2018).

The process of selecting the optimal set of bands/features can be
divided into four steps:

1. Subset generation: This step involves generating a set of
candidate subsets of bands by sequentially removing bands
from the full set of bands.

2. Evaluation of subsets: This step evaluates the performance of
each candidate subset using a cost function, such as the
normalized root mean square error (NRMSE).

3. Stopping criteria: This step determines when to stop the
process of generating and evaluating candidate subsets.

4. Result validation: This step validates the results of the band
selection process by using a holdout dataset.

The selection of bands is typically based on their reflectance sensitive
regions, which can be determined through a sensitivity analysis of
PROSAIL (Verrelst et al., 2019b). A sequential backward band removal
(SBBR) algorithm is commonly used to generate candidate subsets of
bands. This technique begins with a full set of bands and evaluates
subsets based on information criterion that ranks the unconstrained
length-scale parameter. The SBBR algorithm iteratively removes the
band that has the least impact on the prediction error.

After each iteration, error statistics such as mean, maximum,
minimum, and standard deviation are calculated for each subset of

band combinations. Tenfold cross-validation is used to address any
small differences between bands in a particular spectral region.
Although the best combination of bands is selected based on a
given cost function (e.g., least Normalized RMSE), it is important to
be aware of high band correlation in outputs that may affect the
regression output.

4 Results

4.1 Journal search criteria and findings

In this section of the review, we comprehensively explored
studies utilizing various versions of PROSAIL RTMs to
investigate photosynthetic and non-photosynthetic traits of a
grassland canopy. Additionally, we evaluate studies using
PROSAIL models for soil property retrieval (e.g., soil moisture,
roughness, texture) from remote sensing data, if any. Relevant
studies that used PROSAIL RTMs to retrieve canopy traits were
identified through a systematic search of the literature. We used a
combination of keywords and search operators to search the
databases of Google Scholar, Scopus, Web of Science, and
Dimensions. The specific keywords and search operators that we
used are summarized in Table 6. In order to align with the current
trends in studies, we narrowed our search to include only peer-
reviewed, online-accessible articles from journals or books published
between 2018 and 2023.

4.2 Search results

Our initial database search yielded hundreds of papers
(Figure 3). After applying filters, we focused on studies using
PROSAIL RTMs to investigate both photosynthetic (such as
chlorophyll, LAI, etc.) and non-photosynthetic (including
equivalent water thickness (EWT), litter, and soil moisture,
etc.) traits. We also included relevant studies that aligned
with our future research goals. Noteworthy contributions
from some of these studies are highlighted in the
discussions section.

The Zotero software was used to create and manage a local
database of the relevant studies that met our search criteria. This
database included key identifiers such as titles, authors, keywords,
publication dates, etc. Duplicates were removed, and when
necessary, the “Advanced Search” function of Zotero (Zotero,
n.d.) (a free and open-source reference management software)
was used to query the local database for the identification of key
papers to be further discussed. This process resulted in a final
selection of 318 relevant papers.

The following themes were used to screen the relevant articles:

• The purpose of the PROSAIL model application.
• Vegetation type analyzed.
• Soil properties studied.
• Leaf and canopy level biophysical and biochemical
parameters retrieved.

• RTM retrieval method used.
• Use of hyperspectral data.
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While hundreds of studies utilize PROSAIL for vegetation traits
in grasslands, our focus here is on its potential for retrieving key soil
characteristics.

4.2.1 Canopy traits studied
Figure 4 illustrates the distribution of research papers focused

on the investigation and estimation of various canopy traits using
the PROSAIL model. The search results showed that the most
studied canopy traits are chlorophyll and LAI. This is not
surprising, given that these two traits are among the pivotal
photosynthetic properties of a plant canopy. They are often
studied together, possibly revealing the intricate interplay
between Caband canopy structure. Conversely, our search
results underscore a notable disparity in the number of studies
exploring non-photosynthetic properties (leaf structure, EWT, and
soil moisture). This is likely because they are not as directly related
to photosynthesis.

The distinct gap in the research landscape highlighted by the
plot offers a compelling opportunity for future investigations into
canopy properties like soil moisture and EWT. These are both
important factors that affect plant growth and productivity.
These less-explored areas hold promise for uncovering valuable
insights into vegetation dynamics, particularly in relation to water
availability and non-photosynthetic canopy properties.

4.2.2 Canopy trait retrieval methods used
Search results showed that from 2018 to 2023, the most popular

retrieval method is the LUTmethod, followed by the hybrid method,
the parametric method, and the ML method. This analysis of the
distribution of retrieval methods used to estimate canopy traits from
recent peer-reviewed studies provides valuable insights into the
trends and preferences within the field.

This prominence of studies using the LUT as their preferred trait
retrieval method can be attributed to the inherent simplicity and

TABLE 6 Relevant keywords and search operators for searching for studies on PROSAIL RTMs.

Keywords Search
operators

Description

PROSAIL RTM
PROSPECT, SAIL, radiative transfer models, Model
inversion
vegetation cover
vegetation traits
soil properties
soil moisture
soil roughness
soil texture
vegetation-soil relationship, trait retrieval
parametric regression, nonparametric regression method
Lookup table
Hyperspectral imagery

AND To combine multiple keywords (e.g., PROSAIL RTMs AND vegetation traits AND soil
properties)

OR To include variations of keywords (e.g., soil moisture OR soil

Quotation marks (“ ”) To search for exact phrases (e.g., “vegetation-soil relationship”) roughness OR soil
texture)

Date range To limit the search to studies published between 2018 and 2023

FIGURE 3
Yearly distribution of studies investigating canopy properties using PROSAIL (2023 data covers publications up to December 2023)
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efficiency of the LUT method. By utilizing a pre-calculated database
of spectral signatures, the LUT method allows researchers to rapidly
match observed data with known signatures, enabling quick trait
retrieval. This approach is particularly effective when dealing with
large datasets and offers a pragmatic solution to estimating canopy
traits. Recent studies have demonstrated an increasing preference
for the Hybrid retrieval method. This method integrates the
strengths of both LUT databases and Machine Learning (ML)
algorithms to enhance retrieval speed and accuracy. Hybrid
methods leverage the extensive information present in LUT
databases while employing ML techniques to fine-tune results. As
research questions become more complex and dataset dimensions
expand, a hybrid approach offers a well-balanced solution that
combines the quick lookup capabilities of LUT databases with
the adaptive learning of ML algorithms. This could be the reason
behind the recent surge in adoption of this retrieval method.

In summary, most of the studies we examined employed a hybrid
approach, combining the PROSAIL radiative transfer model with
either empirical or machine learning algorithms, to retrieve a wide
range of vegetation traits. However, as seen in Figure 5, very few
studies focused their research on the potential of using PROSAIL
estimates to understand aspects of grassland soil properties.
Nonetheless, as demonstrated by its ability to retrieve vegetation
traits, this approach has the potential for widespread use in a
variety of fields. Combining PROSAIL with empirical or machine
learning algorithms presents a promising avenue for future research in
the retrieval of non-photosynthetic grassland properties.

5 Discussions

The use of radiative transfer models (RTMs) has been growing
in recent years, particularly in vegetation trait studies with synthetic

and hyperspectral data. PROSAIL RTM, has played a crucial role in
accurately retrieving vegetation traits and has become an essential
tool in the field of remote sensing. As the demand for more
comprehensive and detailed insights into vegetation-soil
relationships grows, further research using RTMs like PROSAIL
becomes imperative. While most research has predominantly
focused on trait retrievals (Figure 4.), this section highlights
recent studies that not only used and validated vegetation traits
retrieval using the PROSAIL model, but also incorporated the
investigation non-photosynthetic properties of their study areas,
particularly soils. Studies of non-photosynthetic elements in
grasslands can help us understand the complex interactions
between vegetation and soil properties. We highlight these
studies to inspire future research using PROSAIL and other
RTMs to better understand these interactions.

5.1 Exploring vegetation-soil relationships:
studies utilizing PROSAIL and other RTMs

The study conducted by Yu et al. (2014) aimed to develop
spectral indices for estimating leaf Cab under varying natural
conditions while minimizing the effects of canopy structure, soil
background, and multiple scattering. Using PROSAIL, they
generated a synthetic dataset of canopy reflectance to train and
evaluate spectral indices. They hypothesized that a ratio of
reflectance difference (RRD) index would be a more reliable
chlorophyll indicator, less sensitive to soil and canopy variations
than simple ratios or NDVI-like indices.

Their findings indicated that reflectance in the 660–680 nm
(red) and 490–500 nm (blue) regions showed the highest variability,
while the 730 nm (red edge) and 530–550 nm (green) regions
exhibited the lowest, making them better suited for chlorophyll

FIGURE 4
Distribution of canopy traits studied using prosail from 2018 to 2023.
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estimation. However, they noted the need for further validation to
address soil background influences, especially during early growth
stages when the canopy is sparse. The study emphasized the
importance of validating spectral indices across diverse
conditions and accounting for soil background effects in canopy
reflectance data for accurate Cab estimation.

Similarly, (Darvishzadeh et al., 2008), investigated how external
factors influence the estimation of vegetation LAI (LAI) using
hyperspectral reflectance data. The authors proposed that
narrow-band vegetation indices would exhibit higher sensitivity
to LAI compared to broad-band indices, with reduced
susceptibility to soil type and plant architecture influences. They
executed a controlled laboratory experiment featuring four distinct
plant species, two soil backgrounds, and destructive LAI
measurements.

The findings revealed that the spectral contrast between leaves
and soil background governs the LAI–reflectance (red/near-
infrared) relationship. Notably, for light soils, a robust negative
correlation existed between LAI and red reflectance. Conversely, for
dark soils, this correlation was weaker. This discrepancy arises from
dark soils absorbing more red light than near-infrared light,
resulting in a diminished difference in reflectance between leaves
and soil. Consequently, the authors underscored the importance of
prior understanding of plant architecture and background soil
characteristics when employing remote sensing vegetation indices
for LAI estimation.

(Impollonia et al., 2022) conducted a study on hemp farming
management, assessing cutting-edge precision agriculture
technologies. They utilized UAV-based remote sensing
technology to estimate hemp traits such as LAI and Leaf
Chlorophyll Content (LCC). The study compared two PROSAIL
model inversion techniques: Look-Up Table (LUT) and hybrid
regression. Field measurements were employed for validation,

and performance metrics like R2, bias, RMSE, and NRMSE were
used to compare the methods. In the study, soil reflectance data were
retrieved from a public database and adjusted to match the
reflectance of the soil in the study area, which was then
integrated into the PROSAIL model. This resulted in the
generation of a look-up table (LUT) containing all possible
values for LAI and LCC. However, they did not investigate how
soil reflectance affected the trait estimates results. This is a limitation
of the study, as soil reflectance can have a significant impact on the
accuracy of remote sensing-based estimates of LAI and LCC.
Overall, the authors suggest that hybrid regression methods are
the most accurate for estimating hemp traits (LAI and LCC).
However, future studies should investigate the impact of soil
reflectance on the accuracy of these methods.

Live fuel moisture content (LFMC) is a crucial parameter for
predicting fire behavior in shrublands. (Lai et al., 2022). compared
the accuracy of physical and empirical models for estimating LFMC,
considering the inherent heterogeneity of these ecosystems. Prior
studies often relied on versions of the PROSAIL RTM assuming
uniform shrub distribution, which Lai et al. argue is unrealistic. The
authors used three RTMs (PROSAILH, PROGeoSail, and
PROACRM) to simulate canopy spectra of shrublands with
different levels of heterogeneity. They also calculated ten spectral
indices from MODIS reflectance and used them for both empirical
modeling and LFMC inversion. A unitless soil factor (psoil) was
used to account for soil moisture content, but it was cautioned that
psoil values may vary depending on soil type and moisture content.

The authors’ findings suggest that empirical models may be
more suitable for LFMC estimation in open shrublands, and that
spectral mixture analysis (SMA) or fine spatial resolution satellite
images or microwave sensors may be needed to improve the
accuracy of LFMC estimation in these areas. In closed
shrublands, PROSAILH, PROGeoSail, and PROACRM showed

FIGURE 5
Percentage distribution of canopy trait retrieval methods used in PROSAIL studies from 2018 to 2023.
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similar performance in estimating LFMC. However, in open
shrublands, all three models performed poorly due to mixed
spectra and inadequate representation of soil properties. The
study highlighted the significant influence of soil moisture on
canopy spectra and LFMC estimation.

In their study, (Tian and Philpot, 2015), used soil-canopy
radiative transfer models in the reflective optical domain to
assess near-surface soil water content. They aimed to explore the
feasibility of using optical Earth observation data for surface soil
water estimation. By performing a sensitivity analysis of the
PROSAIL model to soil reflectance variations and applying a
simple LUT inversion technique to remote sensing and ground
data from various agricultural sites, they found that these models
effectively evaluate near-surface soil water. The LUT inversion
technique proved valuable for estimating canopy and soil
variables, with PROSAIL being sensitive to soil reflectance
changes. The study recommended further research to enhance
the accuracy and reliability of inversion techniques and to
explore new applications of optical Earth observation data for
diverse scenarios.

5.2 Beyond trait retrievals: Understanding
soil properties and non-photosynthetic
elements in grasslands

(Lu et al., 2021) assessed how well different PROSPECT and
PROSAIL model iterations perform in estimating the spectral and
biophysical characteristics of photosynthetic and non-
photosynthetic vegetation in mixed grasslands. The authors
found that the PROSPECT-5M model had the lowest root mean
square error (RMSE: 0.015) for simulating the reflectance of non-
photosynthetic leaves, followed by the PROSPECT-5 (RMSE: 0.023)
and PROSPECT-D (RMSE: 0.031) models.

However, they noted that the models’ characterization of mixed
canopies containing both photosynthetic and non-photosynthetic
vegetation was challenging and recommended adding a parameter
for decay pigments in the PROSAIL model to improve its accuracy.
They also suggested further research to improve RTMs for non-
photosynthetic vegetation and to test these models on a wider variety
of vegetation types to enhance their applicability in mixed
grasslands. Additionally, the authors acknowledged the potential
confounding effects of litter and bare soil on LAI and chlorophyll
estimation and called for further investigation in this regard.

(Eon and Bachmann, 2021) validated the MARMIT model for
the retrieval of soil moisture content (SMC) from hyperspectral data
in a field setting. The model was validated in laboratory experiments
and further tested on data collected by a UAS-based hyperspectral
imaging system with ground truth measurements. The MARMIT
model is a radiative transfer model that accounts for how soil
moisture, vegetation, and atmospheric conditions impact the
reflectance of soil surface by simulating how light interacts with
soil and water. The authors found that the MARMITmodel was able
to accurately estimate SMC from hyperspectral data, even in the
presence of vegetation. The authors found that soil reflectance
decreases with increasing soil moisture content (SMC), with the
most significant decrease in SWIR wavelengths. This demonstrates
the effectiveness of SWIR bands in characterizing water content

using the MARMIT model. However, reflectance changes with SMC
differ by soil type, indicating that the MARMIT model may require
calibration for each soil type. Accurate retrieval of intermediate SMC
values also depends on calibrating endmembers, particularly the dry
and wet spectra. The model was validated with UAS-based
hyperspectral imaging and ground truth measurements, showing
promise for large-area SMC estimation. Nevertheless, as the study
was in a controlled environment, results may not generalize to other
conditions. Future research should test MARMIT in diverse
environments.

(Gross et al., 2008) investigated the relationship between plant
community functional traits (CFPs) and soil moisture in subalpine
grasslands under different land uses. The study aimed to identify
how plant traits respond to and affect soil moisture, as well as which
traits mediate the relationship between plant communities and
water availability. However, in the mid-late season, the effect of
vegetation on soil moisture was also dependent on aboveground
biomass. The authors conclude that leaf area and root length can be
considered as response-effect traits, as they both respond to field
abiotic conditions and affect soil moisture.

In their study, (Tian and Philpot, 2015), explored the
relationship between soil water content and spectral reflectance
in the SWIR region, focusing on three soil types in a lab setting.
They aimed to understand how water absorption bands relate to
evaporation rates and soil drying. By measuring water content and
linking it to SWIR band depth, they used a simple model to illustrate
the correlation between band depth and optical path. However, they
noted that the true optical path involves complex reflections and
refractions. Their findings suggested that SWIR band depth can
estimate soil water content, though accuracy varies with soil type
and particle size. They also highlighted that strong atmospheric
water vapor absorption complicates field estimation.

(Schiefer et al., 2021) investigated the influence of plant
phenology on trait retrieval from canopy reflectance using
statistical and physically-based modeling. Their study, involving
45 herbaceous species, revealed phenology’s significant impact on
model accuracy. While the hybrid inversion technique combining
PROSAIL and PLSR showed slight advantages, all methods
demonstrated comparable performance. However, limited ground
truth data constrained generalization. The authors recommend
future research with broader species representation and extended
time periods, considering additional factors like soil and nutrient
availability.

(Jay et al., 2017) explored the potential of ground-based multi-
angular optical remote sensing for field phenotyping of sugar beet
traits. Their study compared two retrieval methods: VIs and
inversion of the PROSAIL RTM. They evaluated the effectiveness
of both methods in remotely estimating LAI, leaf and canopy
chlorophyll content, and leaf and canopy nitrogen content in
sugar beet crops under field conditions. The study found that
PROSAIL inversion outperformed VIs in estimating LAI,
chlorophyll content, and nitrogen content in sugar beet crops. It
proved to be more robust to variations in plant material and
provided more accurate results. The accuracy of both methods
was affected by the viewing angle, with the best results obtained
from nadir and 15-degree views. This was because the nadir view
provides the most direct view of the canopy, reducing the effects of
atmospheric scattering and absorption, while the low angle view
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provides a better view of the understory of the canopy, which is
crucial for plant health and productivity. The authors suggest that
future research should explore the potential of multi-angular optical
remote sensing using satellite or aircraft measurements for large-
scale phenotyping applications.

In their study (Sinha et al., 2020), the researchers aimed to
estimate LAI in a tropical broadleaved forest plantation within the
Indo-Gangetic Plain of India. They assessed three techniques:
vegetation indices (VIs), machine learning regression algorithms
(MLRA), and physically-based inversion (LUT-inversion) using
ARTMO and PROSAIL models, leveraging Sentinel-2 data. Their
goal was to evaluate and compare these methods’ performance in
LAI estimation and compare outputs with MODIS and Sentinel-2
LAI products to assess their reliability.

The authors found that the physically-based LUT inversion and
MLRA-GPRmethods outperformed VI-based parametric regression
in LAI estimation. LUT inversion excelled in predicting peak season
LAI, while parametric regression was superior for growing season
LAI. Although MLRA-GPR had higher RMSE than LUT inversion,
it provided a broader LAI range. PROSAIL proved effective in
generating regional-scale spatial LAI maps through LUT
inversion. The study emphasized the importance of NIR and
SWIR bands in Sentinel-2 data for LAI estimation, given their
sensitivity to leaf water content linked to LAI. It also noted LAI
underestimation due to clumping effects in canopy imagery and
recommended integrating clumping effect correction in the
PROSAIL model for accurate LAI estimation.

5.3 Challenges and opportunities in soil-
vegetation spectral analysis

While vegetation spectra hold immense potential for inferring
underlying soil characteristics, effectively extracting soil information
from mixed vegetation-soil signals presents significant challenges.
Dense vegetation can significantly mask soil spectral signals, making
it difficult to isolate pure soil reflectance. Additionally, soil and
vegetation often exhibit overlapping spectral features, particularly in
specific wavelength regions, complicating the separation of the two
components.

Soil properties like moisture content, texture, and organic matter
vary spatially, introducing complexity into spectral interpretation.
These properties can also change with depth, affecting the spectral
response and making it challenging to accurately represent
subsurface conditions (Ben-Dor et al., 2009; Chabrillat et al.,
2019). Vegetation canopy structure, including leaf area index and
canopy cover, influences the amount of sunlight reaching the soil
surface, thereby affecting soil spectral signatures (Mayel et al., 2021).
Furthermore, vegetation biophysical traits, such as Chl and leaf
water content, can introduce spectral variations that interfere with
soil signal extraction.

Technological limitations also pose significant challenges.
Traditional remote sensing sensors often lack the spectral
resolution and sensitivity required to accurately capture subtle
soil spectral variations. Atmospheric conditions, such as aerosols
and water vapor, can distort spectral measurements, introducing
noise and uncertainty into soil property estimation. To overcome
these challenges, advanced spectral analysis techniques are essential

(He et al., 2020; Li et al., 2022). Developing unmixing algorithms
capable of separating soil and vegetation components in complex
spectral mixtures is particularly crucial when dealing with
hyperspectral data. Incorporating machine learning techniques
can significantly enhance the accuracy and robustness an
unmixing process (Bhatt and Joshi, 2020). Also, radiative transfer
models to simulate spectral signatures under varying soil and
vegetation conditions can enhance our understanding of spectral
interactions and improve retrieval algorithms (Döpper et al., 2022).

Integrating ground-based measurements of soil properties with
remote sensing data is essential for providing valuable calibration
and validation insights. By combining data from different sensors,
such as hyperspectral, multispectral, and radar, we can leverage their
complementary strengths to enhance soil property estimation. As
technological advancements in sensor innovation continue—such as
the development of sensors with higher spectral resolution, wider
spectral coverage, and improved signal-to-noise ratios—the capture
of detailed soil spectral information becomes more precise. Coupled
with the advancement of data processing algorithms and image
analysis techniques, these innovations significantly improve our
ability to extract accurate soil information from complex
spectral data.

By addressing these challenges and capitalizing on emerging
technologies, researchers can unlock the potential of vegetation
spectra as a valuable tool for assessing soil properties. Continued
advancements in remote sensing and data analysis will be essential
for improving our understanding of soil-vegetation interactions and
supporting sustainable land management practices.

6 Conclusion

Published studies often link optical properties to plant traits but
typically focus on a single growth stage, often near the midpoint of
the season (Croft et al., 2020). This approach overlooks the full range
of conditions plant traits exhibit throughout the season.
Consequently, findings may not apply across different seasons.
To address this, radiative transfer models (RTMs) provide
consistent optical data over time, offering insights into plant
traits’ optical properties. However, linking spectral data to plant
traits remains challenging due to the volume of data and variables
like time, space, and observation geometry. Despite their validation,
RTMs have not been extensively used to study the relationship
between soil properties and overlying plant traits across various
ecosystems.

To gain more insights into estimating soil properties from plant
traits in grasslands, future studies could build on the advancements
made in previous research. Studies like (Lai et al., 2022) can be
enhanced by incorporating soil background effects into their
spectral index estimation methods. By considering the
interactions between vegetation traits and underlying soil
properties, researchers can develop more robust and accurate
models for soil estimation. Moreover, as shown in (Lu et al.,
2021), the use of multiple PROSPECT and PROSAIL model
iterations could be valuable for estimating non-photosynthetic
elements in grasslands, offering potential clues for soil studies in
similar areas. Additionally, (Schiefer et al., 2021), demonstrated the
importance of considering plant phenology in trait retrieval. Future
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studies can improve accuracy by accounting for seasonal differences
in nutrient allocation among roots and shoots, which could impact
soil properties. Studies like (Orwin et al., 2010) that explore the
impact of root-related traits on soil moisture content can be
extended to grasslands, providing essential insights for soil
property estimation.

In summary, to gain a comprehensive understanding of the
intricate dynamics between vegetation traits and soil properties in
grassland ecosystems, researchers should focus on modifying
existing RTM techniques and incorporating soil-specific
parameters (moisture content, texture, composition, density, etc.).
By building upon the findings of previous studies and addressing the
limitations, we can enhance the use of RTMs to estimate soil
properties from plant traits effectively and contribute to the
advancement of ecological research and environmental
management.
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