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Soil temperature is a key parameter in many disciplines, and its research has
important practical significance. In recent years, the prediction of soil
temperature by deep learning has achieved good results. However, deep
learning is difficult to popularize in practical use because of its opacity. This
study aims to interpret and analyze the Long Short TermMemory Network (LSTM)
model for global soil temperature prediction using SHapley Additive exPlanation
(SHAP), Permutation Importance (PI) and Partial Dependence Plot (PDP). The
results show that Temperature of air at 2 m above the surface of land has the
greatest influence on the prediction of soil temperature, and its SHAP and PI
characteristic values have significant seasonality. Meanwhile, radiation also has a
certain influence on the prediction results. There was a significant positive
correlation between the temperature of 2 m and the soil temperature. The
explanatory insights provided in this paper enhance the transparency and
confidence of the model, which promotes the applicability of soil temperature
prediction models in relevant fields.
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1 Introduction

Presently, deep learning has found extensive applications in soil temperature analysis.
However, as the performance of deep learning models improves, their internal structures
become more complex. It poses challenges for users to comprehend. The lack of
interpretability hampers the practical utilization of deep learning in soil-related
domains. By using Explainable Artificial Intelligence (XAI) to delve into its principles,
individuals can gain a more intuitive understanding and build trust. Therefore, this study
aims to apply XAI to soil temperature prediction and explore its underlying principles.

Soil temperature is a crucial parameter in soil science, agronomy, hydrology, and
meteorology (Samadianfard et al., 2018). Soil temperature demonstrates high sensitivity to
climate change and exerts significant influence on both climate change and atmospheric
circulation (Delbari et al., 2019). Additionally, soil temperature plays a pivotal role in
shaping soil formation processes and facilitating plant growth through the regulating of
photosynthesis, water and nutrient uptake (Alizamir et al., 2020). The impact of soil
temperature on the survival of soil animals and microorganisms s significant and cannot be
overstated (Mihalakakou, 2002). Concurrently, changes in soil temperature affect organic
matter decomposition rates and alter carbon dioxide levels in the atmosphere (Hao et al.,
2020). It is evident that research on and prediction of soil temperature are of immense
practical significance.
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The process of soil temperature variation is highly complex and
influenced by numerous factors, including solar radiation, air
temperature and soil moisture (Paul et al., 2004). Currently, soil
temperature estimation methods, both domestically and
internationally, can be classified into two types: mechanism model
and empirical model (Bilgili, 2010). The mechanismmodel, also known
as the white box model, is a process-based model that accurately
represents the internal mechanisms of the process through
mathematical modeling. Its advantage lies in the ease of parameter
adjustment, clear display of process structure and internal relationships,
and clear physical interpretation. However, establishing the
mathematical expression using the mechanism model is challenging.
It is difficult to widely implement in practical application. Furthermore,
while most calculation methods adopt a linear relationship between
independent and dependent variables, soil temperature exhibits
nonlinear behavior in relation to other climate variables, limiting
performance potential. Empirical models, commonly referred to as
“black box models”, typically use machine learning algorithms to
establish the relationship between soil temperature and influencing
factors. They continuously extract information from training datasets to
enhance model performance. These models encompass linear
regression, neural network models, among others. The empirical
model, in contrast to the mechanism model, relies on numerical
data, so it is straightforward to establish and involves fewer
parameters. Hence, it has been extensively employed both
domestically and internationally in recent decades. Over the last
2 decades, machine learning has been used in earth science research
widely because of its efficiency and low cost.

In the realm of soil temperature prediction, deep learning has
demonstrated remarkable prowess. However, it is predominantly
data-driven, thereby possessing a “black box” nature which
diminishes interpretability in the prediction process (Saeed and
Omlin, 2023). Greater explainability fosters a deeper understanding
of decision-making rationales. Conversely, the absence of
explainability engenders ethical concerns and erodes user trust. It
impedes the widespread adoption of numerous AI applications (Kim
et al., 2020). To surmount this challenge, Explainable Artificial
Intelligence (XAI) has been proposed.

Explainability methods can be categorized based on different
classification criteria. In terms of scope, they can be classified as
global and local explainability (Gupta et al., 2023). Global
explainability involves utilizing all available information in a dataset
to establish the relationship between causal and independent variables
in order to comprehend the operational mechanism behind model
decisions, though this can be challenging to achieve in practice. Local
explainability pertains to understanding the reasoning behind a single
prediction result. It only delves into the principles behind obtaining that
specific prediction in an individual case. In current commonly used
approaches, Permutation Importance (PI) and Partial Dependence Plot
(PDP) are global explainabilitymethods, and locally explainablemodel-
independent interpretation (LIME) is a locally explainable method. As
per the principle of black-box interpretation, explainable methods can
also be divided into Intrinsic methods and Post-hoc methods (Arrieta
et al., 2020). Intrinsic explainability uses an essentially explainable
model to approximate the black box model, and then explains the
black box model by looking at the parameters or characteristic statistics
inside the explainable model, such as the decision tree. Post-hoc
methods mean to explain the predicted results of the model. Most

of today’s explainable methods are Post-hoc methods. Such as the
SHapley Additive exPlanation (SHAP). Different explainable methods
are suitable for different use cases.

Long Short Term Memory Network (LSTM) excels in capturing
and retaining historical information, a capability attributed to
unique loop structure and gate mechanism. This makes them
particularly adept at handling tasks related to time-series
regression (Chen et al., 2020). Nonetheless, in the realm of deep
learning, there tends to be a trade-off between a model’s
explainability and its performance. While LSTM boasts high
predictive accuracy, their intricate architecture renders them less
accessible for intuitive understanding. Employing XAI enables a
more intuitive grasp of its principles and bolstering trust. It would
not only facilitate the advancement and implementation of artificial
intelligence in soil temperature prediction, but also aid developers in
refining models and enhancing performance (Tjoa and Guan, 2020).

However, there is a dearth of precedent in utilizing explainable
methods to interpret soil temperature prediction models. Most of
the studies using XAI only use one explainability methods, so it is
difficult to judge the accuracy of its results. This study will address
these problems.

The aim of this study was to analyze multi-layer LSTM models
for soil temperature prediction using interpretable methods and to
compare the results of different methods. It delves into the feasibility
of utilizing deep learning for this purpose, the underlying
mechanisms, and the impact of various factors on the
predictions. However, this endeavor faces several challenges. The
LSTM model requires a specific input data format, distinct from
conventional models. There remains uncertainty regarding the
applicability of explainable methods to LSTM, including their
integration, data preprocessing techniques, and whether XAI is
apt for soil temperature forecasts. Moreover, the plethora of
explainable methods raises questions about potential variability in
outcomes and how such differences should be addressed. The study
seeks to ascertain the reliability of these results, their adherence to
physical laws and actual situation, and the conclusions that can be
drawn. These aspects constitute the core focus of this research.

In summary, the purpose of the experiment is to explore the
following three questions.

(1) Is XAI applicable in the field of soil temperature and how to
explain LSTM model

(2) How can XAI be explained in the field of soil temperature
prediction

(3) Whether the interpretation results of different methods are
consistent and reasonable

2 Literature review

This section discusses the literature on the prediction of soil
temperature and XAI.

2.1 The prediction of soil temperature

Soil temperature estimation methods can be classified into two
types: mechanism model and empirical model. For mechanism
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model, as early as 2002, Mihalakakou calculated the surface soil
temperature under bare land and short grass cover using a one-
dimensional heat transfer equation (Mihalakakou, 2002).
Meanwhile, the empirical model has been used more and more
over the years. In 2020, Chen et al. (2020) employed Convolutional
long short-term memory (Conv-LSTM) and improved Back
Propagation Neural Network (BPNN) to forecast short-term
wind speeds. In 2021, ElSaadani et al. (2021) investigated the
suitability of the Conv-LSTM algorithm for predicting soil
moisture in the southern Louisiana, USA study area. In 2022, Li
et al. (2022) applied the attention-based LSTMmodel to forecast the
soil moisture and soil temperature for 1 day and 7 days ahead,
yielding favorable outcomes. A significant portion of research in soil
sciences employs LSTM or its enhanced variants for predictive
purposes, with these models consistently demonstrating robust
performance (Zhang et al., 2021; Senanayake et al., 2022; Datta
and Faroughi, 2023).

2.2 Explainable artificial intelligence

XAI aims to elucidate the principles and logic underlying AI
systems, thereby enhancing user confidence and facilitating the
establishment of a secure and dependable regulatory framework
(Li et al., 2024a).

Explainable AI has been increasingly utilized to interpret deep
learning models across various fields, including medical prediction
(Miao et al., 2024) and agriculture (Naga Srinivasu et al., 2024). For
instance, in 2023, Jena et al. (2023) employed artificial neural
networks to estimate earthquake probabilities and utilized SHAP
to interpret the model’s output, highlighting key contributing factors
such as epicenter distance and depth density. In 2023, Liu et al.
(2023) use XGBoost to identify potential cancellers from customer
bases. In 2024, Jiang et al. (2024) propose a novel profit driven
weighted classifier to predict customer churn. And they all calculate
the Shapley additive explanation value to analyze key variables.

In 2024, to identify the general important features of the overall
Drug-induced liver injury predictions, Lee and Soyeon (2024) used
PI in the RF, LGBM, and LR models. Chen et al. (2024) proposed a
decision-aid system for subway microenvironment health risk
intervention based on the combination of back propagation
neural network algorithm and PI.

Additionally, Jia Yan et al. (2024) employed four data-driven
models, namely, back propagation artificial neural network,
support vector regression (SVR), Random forest (RF), and
Gradient Enhanced regression Tree, to estimate the shear
capacity of structural components. They further utilized shapley
additive explanation (SHAP) and partial dependence plot (PDP) to
quantitatively assess the impact of variables on the
predicted results.

Existing works tend to show how different factors affect the
outcome. Various interpretability methods are widely used, but the
most commonly used is SHAP.

3 Materials and methods

3.1 Data source

The data used in this study were mainly from the LandBench
toolbox (Li et al., 2024b).

The LandBench toolbox provides a baseline data set of land
surface variables from ERA5-LAND. It also includes various global
data from the European Centre for Reanalysis of Medium Range
Weather Forecasts 5 (ERA5), Global Grid Soil Information
(SoilGrid), Soil Water Storage Capacity (SMSC) and Moderate
Resolution Imaging Spectroradiometer (MODIS) datasets.
LandBench toolbox processes this data into 0.5°, 1°, 2°, and 4°

resolutions.
ERA5 provides reanalysis of global atmospheric, surface, and

ocean waves since 1950. It uses hourly output and adding
uncertainty estimates (Delhasse et al., 2020). ERA5-land was
obtained by recalculating the Land surface portion of
ERA5 reanalysis data from the European Centre for Medium-
Range Weather Forecasts (ECMWF) with global spatial coverage
and a time horizon since January 1950. The ERA5-LAND data set
shares much of the parameterization scheme with ERA5. It has a
finer spatial resolution (0.1 ° × 0.1 °) and provides a more accurate
description of water and energy cycles than ERA5 (0.25 ° × 0.25 °)
(Palazzolo et al., 2023).

Digital elevation model (DEM) is derived from MERIT DEM,
which is a global scale topographic DEM covering 60° south latitude
to 90° north latitude. Land type is derived from Friedl et al. (2010),
representing vegetation coverage.

In this study, we use 1-degree data to divide the world into
360*180 coordinate points. The training set uses data from 1990 to
2019, and the test set uses data from 2020.

3.2 LSTM

LSTM is a special type of Recurrent Neural Network (RNN). It
introduces a special memory storage unit on the basis of RNN,
which is originally designed to solve the problem of long
dependency. LSTM also solves the problem of gradient
disappearance and gradient explosion in RNN (Van Houdt
et al., 2020).

The cell structure of the LSTM is shown in Figure 1. Each cell has
three gates (Forget Gate ft, Input Gate it and Output Gate ot) and two
states (Long-term Memory Ct, Short-term Memory ht).

FIGURE 1
LSTM unit structure diagram.
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The forget gate ft determines whether the information is
discarded or retained. The input gate it decides to add new
information to the current cell state. The output gate ot
determines the final output at time t. The calculation process is
shown in the following formula.

f t � σ Wf · Xt , ht−1[ ] + bf( )
it � σ Wi · Xt , ht−1[ ] + bi( )

~Ct � tanh Wc · Xt , ht−1[ ] + bc( )
Ct � f t · Ct−1 + it · ~Ct

ot � σ Wo · Xt , ht−1[ ] + bo( )
ht � ot · tanh Ct( )

Where W represents the weight matrix, b is the bias, σ is the
sigmoid activation function, and tanh is the hyperbolic tangent
function. Xt is the vector at the t time step of the input sequence,
and ht is the hidden state at the t time step.

FIGURE 2
Experiment framework.

FIGURE 3
Comparison of model predicted value distribution (A) and true value (B).

FIGURE 4
RMSE of LSTM, BPNN and SVR
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3.3 Model explainability methods

3.3.1 SHapley additive exPlanation
SHapley Additive exPlanation (SHAP) is a game theory

approach that can be used to interpret the output of any
machine learning model. SHAP uses the Shapley value to
interpret the predicted value (He et al., 2023) and explore the
contribution value of each factor in the prediction. The main
idea of this theory is to interpret the predicted value of the

model as the sum of the attribute values of each input feature
(i.e., the Shapley value), so as to realize the interpretation of the
model. The Shapley value is proposed to measure the contribution of
multiple people when they collaborate to complete tasks, and its
calculation formula is as follows.

V i( ) � ∑
S⊆N\ i{ }

S| |! N| | − S| | − 1( )!( )
N| |! v S ∪ i{ }( ) − v S( )( )

where V(i) represents the shapley value of the i-th element, N
represents the set of participants, |N| represents the number of
elements of the set of participants, S is a subset ofN, |S| is the number
of subsets of N, and v (S) represents the value of combination S.

Assuming the i-th sample is Xi, the j-th feature of the i-th sample
is Xij, the model’s predicted value for this sample is yi, and the
baseline of the entire model (usually the mean of the target variables
of all samples) is ybase, then SHAP value obeys the
following equation:

yi � ybase + f Xi1( ) + f Xi2( ) + ... + f Xik( )
where f(Xij) is the SHAP value of Xi. When f(Xj1)>0, it indicates that
this feature improves the predicted value and has a positive effect.
Otherwise, it indicates that this feature reduces the predicted value
and has a reverse effect.

Traditional feature importance only tells which feature is
important, but it is not clear how the feature affects the
prediction result. The biggest advantage of SHAP is that it can
not only reflect the influence of each feature, but also show the
positive and negative effects. In this study, SHAP can be used for the
influence of various characteristics on the prediction results of soil
temperature prediction model.

3.3.2 Permutation importance
Permutation Importance (PI) can only be used after the model

has been trained. It is based on the idea of “replacement test” to
detect the importance of features. The permutation importance of
each variable is the increase in the mean square error of the model
when that variable is randomly shuffled in order (Aldrich, 2020).
The more RMSE decreased after a variable was disrupted, the worse
the prediction result, indicating that the variable is more important.
PI takes into account both the individual effects of each predictor

FIGURE 5
Compares the predicted value distribution (A) of the model with the actual value (B) after STL1, STL2, and STL3 are added to the input.

FIGURE 6
Feature importance ranking and positive and negative
impact summary.
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and the multivariable interactions with other predictors. Because the
method has certain randomness and instability, the importance of
the permutation variables of each feature is appropriate to take the
average value of multiple results.

3.3.3 Partial dependence plot
Partial Dependence Plot (PDP) shows the boundary effect of

one or two characteristic variables on the model prediction
results (Zhang et al., 2023). And it can visualize the
relationship between features and predicted outcomes. The
basic idea is to select a feature variable, substitute the values
of each point in a certain stage, observe the changes of the
predicted results, and explore the relationship between the
feature and the target feature. In this experiment, we can
obtain the relationship between the changes of each
characteristic and the predicted results in the prediction of
soil temperature by this method. This method is a powerful
method to study a single feature.

FIGURE 7
Feature importance ranking and positive and negative impacts summary of some locations.

FIGURE 8
Feature importance from PI.
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3.4 Experimental design

This study uses Keras framework for coding based on python3.6.
The experimental steps can be divided into four parts: 1. Data set
processing 2. Model training 3. Soil temperature prediction 4. Model
interpretation. The experimental framework design is shown
in Figure 2.

First, we process the data set to divide it into the training set
and test set that we will use. In this experiment, the training set
consists of data from 1990 to 2019, while the test set uses data from
2020. Subsequently, we normalize the data to accelerate
convergence.

Figure 2 showcases the architecture of the model, which is
structured with four LSTM layers, followed by an activation layer
that employs the RELU activation function, and a dropout layer
coupled with a fully connected layer for output. We use multiple
values for hyper-parameter to perform experiments separately.
Finally, the optimal choice is determined as follows. The hidden
layer neurons are 128, 64, 32 and 16. The dropout layer is
configured with a dropout rate of 0.15 to prevent overfitting.
Learning rate is 0.001 and the timestep is 7. The epoch is
set to 500.

Besides, the model utilizes the Adam optimizer to achieve
swift convergence. RELU is chosen as the activation function

because RELU has good robustness, low computational
complexity, and no gradient saturation or gradient
disappearance (Han et al., 2020). Adding dropout to
randomly ignore a certain number of neurons with a specific
probability in each training batch can significantly reduce
overfitting (Baldi and Sadowski, 2014).

After the training phase, the model’s predictive capabilities were
assessed using the test data set. The predicted results are then
reverse-normalized for direct comparison with actual soil
temperature data. R2, BIAS and RMSE were used to evaluate the
performance.

Subsequent to model training, SHAP analysis was
conducted to rank the features based on their influence on
soil temperature predictions. This offered insights into both
general trends and site-specific behaviors. Also, the PI method
was applied to corroborate the insights derived from the
SHAP analysis.

In the final stage, PDP analysis was performed on
individual features to explore their specific relationships
with the prediction outcomes. This provided a deeper
understanding of how each feature influences the model’s
predictions.

The characteristic predicted in this study is soil temperature
level 1 (STL1), which means the soil temperature of the first layer

FIGURE 9
Relationship between soil temperature and air temperature and precipitation.
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(0–7 cm). There are fourteen input variables used, including: air
temperature, wind in x-direction, wind in y-direction, precipitation,
surface pressure, specific humidity, surface solar radiation, surface
thermal radiation, surface net solar radiation, surface net thermal
radiation, sensible heat flux, latent heat flux, DEM, land type. DEM
and land type are two static variables. Explanations and abbreviations
of all these variables are added to the table in the Appendix.
Abbreviations are used in the figures.

4 Results

4.1 Model performance evaluation

R2, bias and RMSE were used as evaluation indicators in this
experiment.

R2 is the coefficient of determination, and its formula can be
expressed as.

FIGURE 10
SHAP values of air temperature at different periods in 2020.

FIGURE 11
SHAP values of surface solar radiation at different periods in 2020.
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R2 � 1 − ∑i ŷi − yi( )2∑i yi − yi( )2
Where y represents the actual value, �y represents the average of

the actual value, and ŷ represents the predicted value. The model is
judged according to the value of R2. Its value range is [0,1].
The closer the value is to 1, the better the model performance is
bias indicates the average of the absolute value of the difference
between the true value and the predicted value. A smaller value
indicates better performance.

RMSE is the mean square error root, which is the mean opening
root of the sum of squares of the difference between the data and the
true value, that is, the mean of the sum of squares of errors. The
smaller the RMSE, the higher the measurement accuracy.

The formula is expressed as:

RMSE �
�����������∑N

i�1 yi − ŷi( )2
N

√

Finally, the R of the model is 0.89, R2 is 0.7, RMSE is 2.4, and
bias is 2.0.

Figure 3A shows the predicted soil temperature 1 day later using
the model, and Figure 3B shows the actual measurement results.

In order to prove the applicability of LSTM in the field of soil
temperature prediction, we choose Backpropagation Neural
Network (BPNN) and Support Vector Regression (SVR) as the
benchmark model.

BPNN is the most widely used neural network at present. It
consists of an input layer, a hidden layer and an output layer. The
layers are completely connected to each other, and there is no
connection between the same layer. It had a learning rate of
0.001 and 128 hidden layer neurons using the Adam optimizer.
Support Vector Machine (SVM) is a commonly used supervised
learning algorithm. It is mainly used for classification and regression
problems. Based on the idea of structural risk minimization, the
classification or regression task is realized by finding an optimal
hyperplane in the feature space. SVR is the application of SVM to

FIGURE 12
PDP of soil temperature prediction.
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regression problems. In this experiment, the kernal is selected as
‘rbf’, which has the advantages of high efficiency and few
parameters.

For LSTM, BPNN, and SVR, we use the same training set and
test set, using RMSE as a metric to compare their performance. The
result is shown in Figure 4.

When predicting soil temperature, the RMSE of LSTM was
0.2 lower than that of BPNN and 1.6 lower than that of SVR. The
results show that compared with BPNN and SVR, LSTM neural
network model has lower error and higher precision in soil
temperature time series prediction. LSTM is more suitable for
soil temperature prediction.

At the same time, we tried to add the first three layers of soil
temperature STL1, soil temperature level 2 (STL2) and soil
temperature level 3 (STL3) into the input variables, and the
model performance was better. Its R value is 0.90 and R2 is 0.94.
The comparison is shown in Figure 5, (a) is the predicted value of
soil temperature, (b) is the actual value of soil temperature, red
represents high temperature, blue represents low temperature, unit
is Kelvin (K).

In our continued interpretation, we discovered that soil
temperature exhibits a high level of stability. Of all the factors
impacting soil temperature prediction, its own influence is the
most significant. The inclusion of STL1, STL2, and STL3 as input

variables greatly outweighs the influence of all other variables,
making it challenging to discern the effects of the other variables.
As a result, this study will concentrate on the model excluding STL1,
STL2, and STL3, with the interpretation of results after their
inclusion provided in the subsequent paragraphs.

4.2 Comparative analysis of results from
SHAP and PI

This section uses a summary plot to sort the importance of
global features with positive and negative impacts, based on the
SHAP method. After conducting numerous experiments, all
geographical coordinates across the globe were systematically
sampled. The findings are illustrated in Figure 6.

In Figure 6, the color of the shadow represents the size of the
feature value. The closer to red, the larger the value, and the closer to
blue, the smaller the value. The position of each feature on the graph
is sorted according to the absolute value of all the SHAP values of the
feature from largest to smallest. The higher the position is, the more
important the feature is.

Among the variables we analyzed, air temperature emerged as
the most critical forcing variable. Its PI value in predicting soil
temperature aligns with expectations, given the interdependent
relationship between air temperature and soil temperature. It
shows air temperature an indispensable factor. Following closely
are variables such as surface solar radiation, surface net thermal
radiation, and sensible heat flux, highlighting their significant but
lesser roles. Static variables like land type and DEM are positioned at
7th and 9th in terms of importance, respectively. This ranking
suggests that soil type and terrain, while relevant, exert a
relatively modest impact on soil temperature dynamics.
Conversely, variables related to wind speed (wind in x-direction
and wind in y-direction), precipitation, latent heat flux, and surface
pressure rank low in importance. Their minimal influence on the
predictive outcomes underscores their peripheral role in soil
temperature forecasting.

Using the variable air temperature, which holds the highest
significance, as an illustration, the more intense the red hue,
signifying a higher feature value, the greater the corresponding SHAP
value. Conversely, a shift towards blue signifies a lower feature value,
correlating with a decrease in the SHAP value, sometimes extending into
negative territory. It underscores a positive correlation between soil
temperature predictions and air temperature. As air temperature
increases, so does the soil temperature, with both positive and
negative impacts being markedly pronounced.

In contrast, for surface solar radiation, an increase in its feature
value leads to a rise in the SHAP value, while a decrease in the feature
value results in a lower SHAP value. This suggests a negative
correlation with soil temperature, a trend similarly observed with
surface net thermal radiation, which also exhibits a significant
negative correlation. Conversely, variables like sensible heat flux,
specific humidity, and surface thermal radiation demonstrate a
positive correlation with soil temperature predictions. Specifically,
a higher feature value in specific humidity amplifies the positive
correlation with the prediction outcomes. However, a decrease in the
feature value results in a less pronounced drop in the SHAP value,
indicating that the negative impacts are less significant.

FIGURE 13
Feature importance ranking and positive and negative impacts
summary after adding STL1, STL2 and STL3 into input.
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In 2005, Hu and Feng (2005) proved that there was a strong
positive correlation between surface air temperature and surface soil
temperature, and a weak correlation between precipitation
and surface soil temperature. This is consistent with our
interpretation.

Additionally, we chose four distinct locations across the globe
and extracted their SHAP values for comparative analysis alongside
the global findings. These locales encompass Greenland, renowned
for its perpetual coldness and vast ice-covered landscapes; the
Tibetan Plateau, distinguished as the world’s highest plateau,
subjected to intense solar radiation; the Nicaraguan Plain,
characterized by its sweltering heat and frequent rainfall; and
Chad, situated in central Africa, experiencing a scorching and
arid climate. These diverse geographical and climatic settings
make these locations highly representative on a global scale. We
chose these to examine their individual feature importance rankings,
aiming to ascertain whether the outcomes depicted in Figure 6
would undergo substantial alterations under various, more extreme
scenarios. Figure 7 presents the outcomes for various geographical
points: (a) corresponds to a location pinpointed on (e) within
Greenland; (b) represents results from a specific point on the
Tibetan Plateau, identified on (f); (c) showcases outcomes for a
point in Nicaragua, designated on (g); (d) illustrates results for a
point in Chad, marked on (h).

The results show that the ranking of variable importance in these
regions is consistent with global trends, with air temperature
consistently holding the top position with significant advantage.
The order of the next six features—surface solar radiation, surface
net thermal radiation, surface net solar radiation, sensible heat flux,
specific humidity, and surface thermal radiation—experiences
minor variations but they consistently remain within the top
seven, alongside air temperature. Surface thermal radiation
emerges as the second most important variable in the majority of
the sites. The positive or negative correlations associated with each
feature also display consistency across different global locations. Due
to the static nature of the variables DEM and land type, which
maintain consistent values at every time point within the same
location, it becomes impossible to generate SHAP charts for them.
Consequently, these variables fall outside the purview of
this research.

In predicting soil temperature in Greenland, when the surface
solar radiation characteristic value is high, its SHAP value becomes
negative and falls below the average level. Moreover, in other
regions, it exerts a more prominent negative influence on soil
temperature prediction. The topography of the Qinghai-Tibet
Plateau is intricate, and for illustrative purposes, we focus on a
specific point. At this location, only the SHAP value of specific
humidity aligns with the global scope, while the SHAP ranges of
other mean eigenvalues are narrower than the global extent.
Nicaragua resides in central Central America, where the climate
is notably shaped by oceanic influences. Notably, wind in y-direction
holds greater importance than wind in x-direction, while the
remaining factors show no significant deviation from the global
average. Chad, situated in central Africa, has a higher impact on the
forecast than wind in y-direction.

The principles and calculation methods of PI and SHAP may
differ, yet both approaches yield feature importance rankings. To
determine the significance of each feature, we assessed the RMSE

difference by reshuffling the order of features. Given that PI exhibits
more randomness and instability compared to SHAP, we derived the
average RMSE from multiple iterations of the shuffled results.

As illustrated in Figure 8, there was a notable change in the
RMSE of the predicted results before and after the disruption of air
temperature. This alteration underscores the substantial impact this
variable holds on the model’s soil temperature predictions.

Consistent with the global SHAP outcomes depicted in Figure 6,
air temperature features emerge as the most crucial, followed by
other variables in a slightly different sequence, yet generally aligned.
Notably, wind in x-direction, wind in y-direction, precipitation,
surface pressure, and latent heat flux appear to have lower
importance, ranking towards the bottom in both interpretation
methods. The interpretation outcomes of PI and SHAP can be
cross-validated to reinforce their credibility.

To explore the relationship between various features and soil
temperature, we selected six global land points and randomly chose
100 days’ worth of data from the validation set, which included air
temperature, precipitation, and soil temperature. Utilizing SHAP
and PI methods, we found that air temperature significantly
influences soil temperature variations, whereas precipitation has a
minimal impact. Figure 9 illustrates the correlation between air
temperature, precipitation, and the actual soil temperature values. In
this figure, the blue line denotes air temperature, the red line
represents precipitation, and the orange line indicates soil
temperature. It is evident that soil temperature and air
temperature exhibit a clear, consistent trend, whereas the
variations of precipitation appear relatively independent, showing
no significant correlation with soil temperature. This observation
confirms that our model’s interpretation through SHAP and PI
accurately mirrors real-world dynamics.

We can also obtain the distribution of various features in
different places around the world at different times through
SHAP. The SHAP value of the same feature is not only different
at each coordinate point, but also has different SHAP value at
different periods for the same coordinate point. Figure 10 shows the
distribution of SHAP values of characteristic air temperature in
different periods in 2020, with a interval of 30 days between each two
graphs. It can be clearly seen from the figure (a), (b) and (c) that
SHAP values in the northern hemisphere are mostly negative, while
those in the Southern Hemisphere are mostly positive, (d) (e) is a
transition state, and the changes in the northern hemisphere in (f),
(g), (h) and (i) are mostly positive, while most of the SHAP values in
the Southern Hemisphere are negative. After the transition of the
two figures (j) and (k) again, the (L) figure returns to a state where
the northern hemisphere is negative and the southern hemisphere is
positive. From the 12 graphs, we can see that the SHAP distribution
of air temperature has obvious timing.

SHAP analysis also enables us to discern the distribution of
various features across different global locations and times. The
SHAP value for a single feature not only varies across geographical
coordinates but also fluctuates over different periods at the same
location. Figure 10 depicts the temporal distribution of SHAP values
for the feature air temperature throughout 2020, with each graph
spaced 30 days apart. From figures (a), (b), and (c), it is apparent that
SHAP values are predominantly negative in the Northern
Hemisphere and positive in the Southern Hemisphere. Figures
(d) and (e) represent transitional states, with the Northern
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Hemisphere shifting to mostly positive SHAP values in figures (f)
through (i), while the Southern Hemisphere exhibits mostly negative
values. After another transition in figures (j) and (k), figure (L)
shows a return to the initial state with negative values in the
Northern Hemisphere and positive in the Southern Hemisphere.
This cyclical pattern across the 12 graphs highlights the temporal
nature of air temperature’s SHAP distribution. Figures (a), (b), and
(c) correspond to the Northern Hemisphere’s winter months, where
air temperature’s characteristic values are low, leading to negative
SHAP values. This suggests that air temperature significantly lowers
the model’s soil temperature predictions during this period.
Conversely, during the Northern Hemisphere’s summer months,
as seen in figures (f) through (i), air temperature’s values are high,
and its SHAP values are positive, indicating an amplifying effect on
soil temperature predictions.

Figure 11 explores the distribution of the feature surface solar
radiation, showcasing significant seasonal impacts in the Northern
Hemisphere and Antarctica. During the Northern Hemisphere’s
winter, SHAP values are mostly positive, contrasting with negative
values in Antarctica. As temperatures rise in the Northern
Hemisphere, SHAP values shift to negative, then to positive in
Antarctica, reflecting a seasonal inversion. By the end of summer,
this pattern reverses again. However, regions in the Southern
Hemisphere, excluding Antarctica, display no clear temporal
pattern, with consistently negative SHAP values throughout
this season.

4.3 Result analysis of PDP

PDP is an explainable method for the study of a single feature.
For the convenience of observation, we put multiple examples on the
same chart and take their average values to show them in the red
line, as shown in Figure 12. Figure 12 shows how the predicted soil
temperature results change as one variable increases. The horizontal
axis is the value of each variable, and the vertical axis is the predicted
value of soil temperature. The data of both have been normalized.
The green line represents the change in each instance, and here we
have 500 examples, each of which has 500 green lines. The red line is
the value we obtained by taking the average of 500 values, showing
the overall trend of the influence of this feature change on the result
prediction. The obvious increase indicates that the feature is
positively correlated with soil temperature, while the obvious
decrease indicates that the feature is negatively correlated with
soil temperature.

PDP offer an interpretable technique for analyzing the impact of
individual features. For clarity, we overlay multiple instances on a
single chart and depict their average with a red line, as illustrated in
Figure 12. This figure demonstrates the variation in predicted soil
temperature as a function of a single variable’s increase. The
horizontal axis represents the values of the variable in question,
while the vertical axis shows the corresponding predicted soil
temperatures, with both sets of data normalized for comparison.
The green lines trace the changes for each instance, with a total of
500 examples, resulting in an equal number of green lines. The red
line, derived from averaging these 500 values, reveals the general
trend of how changes in this feature affect prediction outcomes. A
noticeable uptick suggests a positive correlation with soil

temperature, whereas a clear downtrend indicates a negative
correlation.

Among the variables, air temperature exhibits the strongest
positive correlation, significantly driving up soil temperature as it
increases, with the rate of increase accelerating. This makes air
temperature the feature most closely associated with soil
temperature predictions. Other variables, including specific
humidity, sensible heat flux, surface thermal radiation, surface
net solar radiation, and another instance of sensible heat flux,
show a similar pattern to air temperature, where the predicted
soil temperature rises alongside increases in these variables.
Conversely, surface solar radiation and surface net thermal
radiation are observed to lower the predicted soil temperature as
they increase. Meanwhile, wind in x-direction, wind in y-direction,
precipitation, surface pressure, latent heat flux, and the two static
variables, DEM and land type, exert minimal influence on the
prediction outcomes, with the predicted values remaining largely
unchanged throughout their variations. When juxtaposed with the
SHAP analysis, it becomes evident that features critical to soil
temperature prediction manifest pronounced trends of increase
or decrease on the PDP chart. In contrast, features with
negligible impact on predictions display almost flat lines,
underscoring their limited influence.

5 Discussion

This research employs a multi-layer LSTMmodel to forecast soil
temperature, utilizing the dataset from the LandBench toolbox
spanning from 1990 to 2019 for training, and data from 2020 for
testing. The findings reveal the potential of deep learning in soil
temperature prediction. Notably, soil temperature was deliberately
excluded from the model’s input variables to sharpen the focus of the
study. Contrary to the conventional belief that deep learning models
must trade off explainability for predictive accuracy, our study
dispels this myth by showing that it is feasible to excel in both
areas simultaneously. Despite the model’s strong predictive
performance, we delved into its explainability through SHAP and
other methods. This not only laid a robust foundation for
understanding the model’s predictions but also significantly
improved its fairness and transparency.

Integrating explainability techniques into deep learning models
enhances their practical utility and facilitates their broader adoption
across various fields. This integration is instrumental in
continuously improving model performance. Consequently, deep
learning models become a powerful tool, offering critical insights
into agriculture, earth sciences, and beyond, representing a
substantial advancement in their application.

To interpret the model, we employed SHAP and PI
methodologies to assess the influence of each predictor on the
model’s output, identifying whether they increase or decrease the
predicted results. PDP were used to explore the relationship between
individual variables and the prediction outcomes over a range of
values, providing a nuanced understanding of how each feature
contributes to the model’s predictions.

Upon applying the explainability technique SHAP, it becomes
evident that air temperature is the most significant predictor. Its
predominant influence over other variables aligns with expectations,
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underscoring the substantial effect of air temperature on soil
temperature. Following air temperature, surface solar radiation
and surface net thermal radiation emerge as crucial factors. The
quartet of radiation variables—encompassing both long and short
wave radiation, alongside their respective downward and upward
differences—exerts a notable impact. Conversely, the contributions
of the two wind components, surface pressure, and precipitation are
comparatively modest. The study also incorporates two static
variables, land type and DEM, as input variables. However, their
impact on the prediction outcomes is relatively minor.

This conclusion is corroborated by alternative methodologies as
well. Within the feature importance rankings derived via the PI
method, air temperature emerges as a standout, exerting the most
substantial impact on prediction outcomes, with other features
aligning closely with SHAP analysis results.

By analyzing the SHAP summary plot, it becomes evident that
air temperature, sensible heat flux, specific humidity, surface
thermal radiation, land type, and surface net solar radiation have
a strong positive correlation with the prediction outcomes. This
means that as their eigenvalues increase, so does the magnitude of
the prediction results. Conversely, surface solar radiation and
surface net thermal radiation exhibit a marked negative
correlation with the predictive outcomes, indicating that larger
eigenvalues lead to a diminished influence on the prediction results.

Furthermore, we leveraged the PDP to assess how variations in a
single variable affect the predicted outcomes, corroborating these
findings with the SHAP summary plot. Utilizing the PDP method,
we analyzed over 500 examples from locations worldwide. The
analysis revealed that higher-ranked features exhibit more
consistent PDP curves, whereas lower-ranked features display
more variability, lacking in regularity, with flatter curves.

Notably, the PDP plot for air temperature generally shows an
upward trajectory, particularly demonstrating a sharp increase in the
predicted outcome as the eigenvalue grows beyond a positive
threshold. This trend aligns with the observations from the
SHAP cellular graph, where variables exhibiting a positive
correlation in the SHAP plot, such as sensible heat flux, similarly
show an upward trend in the PDP plot. Conversely, variables with a
negative correlation in the SHAP plot, like surface thermal radiation,
exhibit a downward trend in the PDP plot.

Moreover, the ranking of feature importance varies slightly
across different geographical coordinates. For instance, the
impact of specific humidity on the predicted outcomes in a
location of the Tibetan Plateau is significantly higher than the
global average. Meanwhile, the influence of surface solar
radiation on predictions in a location of Chad, Central Africa, is
notably lower.

The SHAP values for certain features exhibit clear seasonal
patterns throughout the year, with the air temperature
characteristic being the most pronounced. This feature typically
shows a positive SHAP value during the high temperatures of
summer and a negative value during the low temperatures of
winter. Specifically, in winter, the SHAP values for air temperature
in regions like Greenland, northern Africa, and the Arabian Peninsula
are notably lower compared to other areas. These values gradually
increase and then sharply decrease in Greenland and Antarctica with
the changing seasons, a phenomenon that is intricately linked to the
extensive ice and snow coverage in these regions.

We also conducted an additional supplementary experiment. In
this experiment, we incorporated soil temperatures (STL1, STL2,
and STL3) as input variables and utilized data from the preceding
7 days to forecast the soil temperature on the eighth day. The
findings indicate that these three variables are pivotal in predicting
soil temperature, with STL1 and STL2 (covering soil depths of
0–28 cm) being particularly critical. As illustrated in Figure 13,
STL1 and STL2 significantly outperform other variables in terms of
predictive power, whereas STL3 exhibits a marginally lesser impact
compared to air temperature. The ranking of the remaining
variables remains largely consistent.

6 Conclusion

This study introduces an interpretable multi-layer LSTM model
designed for predicting global soil temperatures, leveraging SHAP,
PI, and PDP methodologies for explanatory analysis. The main
conclusions can be summarized as follows: the application of
multiple explainability methods yielded consistent results,
validating the applicability of XAI in soil temperature prediction,
particularly in conjunction with LSTM models.

Our research utilized fourteen input variables, including two static
ones: DEM and land type. It was discovered that the variable exerting the
most significant influence on soil temperature prediction is air
temperature, whose SHAP values and PI feature values demonstrate
notable seasonality. As well, four radiation variables (surface solar
radiation, surface thermal radiation, surface net solar radiation and
surface net thermal radiation) were found to impact the prediction
outcomes to a certain extent, whereas the influence of the two static
variables (land type andDEM)was comparativelyminor.Other variables
such as total precipitation, wind speed (wind in x-direction and wind in
y-direction), surface pressure and latent heat flux had a negligible effect
on soil temperature. The study underscores temperature and radiation as
the primary determinants of soil temperature. Moreover, incorporating
soil temperature variables (STL1 and STL2) into the input significantly
affected the prediction, particularly the temperatures of the soil’s surface
layer (0–7 cm) and the subsequent layer (7–28 cm).

The employment of SHAP, PI, and PDPmethods yielded consistent
results across the board. SHAP and PI provided global explanations,
ranking the importance of the input variables and consistently
highlighting the significant role of air temperature. SHAP, in
particular, not only ranked the variables by importance but also
intuitively depicted the directional impact of each feature’s values on
the prediction outcome, allowing for inferences about positive or
negative correlations with the prediction target. PDP illustrated the
relationship between specific features and the prediction target by
varying a feature’s value. A comparison between SHAP and PDP
results demonstrated mutual corroboration, for instance, indicating a
positive correlation between air temperature and soil temperature, while
surface solar radiation and surface net thermal radiation showednegative
correlations, aligning with empirical observations.

The explanatory insights provided in this paper enhance the
transparency and credibility of the model, enabling users to grasp
the underlying predictive mechanisms. Research on the applicability of
XAI can help developers improve the performance of soil temperature
prediction models and can promote the recognition and acceptance of
deep learning in the field of soil temperature prediction. By knowing its
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internal principles, the market can easily establish a supervision system
for applications based on deep learning, which also lays the foundation
for a broader and safer application of deep learning in the future.
Overall, this study demonstrates the potential of XAI in elucidating
deep learning models, particularly in soil temperature prediction,
underscoring its importance for practical deployment and
application of deep learning.

This study also has some shortcomings. Firstly, this study only
reflects the influence of each feature on the result, and does not reflect the
interaction between the features. At present, there is no interpretable
method to show the interaction between more than two features at the
same time, and this will be a problem that needs to be solved in the
future. Secondly, the current research on explainabilitymainly focuses on
Post-hoc methods, mainly SHAP, and the Intrinsic methods are
relatively limited. It is hoped that more efficient and accurate
explainability methods can be developed in the future.
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Appendix

Explanations and abbreviations of variables.

Variables Description

soil temperature level 1 (STL1) Temperature of the soil in layer 1 (0–7 cm)

soil temperature level 2 (STL2) Temperature of the soil in layer 2 (7–28 cm)

soil temperature level 3 (STL3) Temperature of the soil in layer 3 (28–100 cm)

air temperature (T2M) Temperature of air at 2 m above the surface of land

wind in x-direction (U10) Eastward component of the 10 m wind

wind in y-direction (V10) Northward component of the 10 m wind

precipitation (TP) Daily precipitation

surface pressure (SP) Pressure (force per unit area) of the atmosphere on the surface of land, sea and in-land water

specific humidity (Q) Mixing ratio of water vapor

surface solar radiation (SSRD) Amount of surface solar radiation

surface thermal radiation (STRD) Amount of surface thermal radiation

surface net solar radiation (SSR) Amount of surface solar radiation minus the amount reflected by the Earth’s surface

surface net thermal radiation (STR) Net thermal radiation at the surface

sensible heat flux (SSHF) Transfer of heat between the Earth’s surface and the atmosphere

latent heat flux (SLHF) Exchange of latent heat with the surface

DEM Digital elevation model

land type (LAND) Land cover type
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