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Understanding and monitoring sea surface salinity (SSS) and temperature (SST)
is vital for assessing ocean health. Interconnections among the ocean,
atmosphere, seabed, and land create a complex environment with diverse
spatial and temporal scales. Climate change exacerbates marine heatwaves,
eutrophication, and acidification, impacting biodiversity and coastal
communities. Satellite-derived ocean colour data provides enhanced spatial
coverage and resolution compared to traditional methods, enabling the
estimation of SST and SSS. This study presents a methodology for extracting
SST and SSS using machine learning algorithms trained with in-situ and
multispectral satellite data. A global neural network model was developed,
leveraging spectral bands andmetadata to predict these parameters. Themodel
incorporated Shapley values to evaluate feature importance, offering insight
into the contributions of specific bands and environmental factors. The global
model achieved an R2 of 0.83 for temperature and 0.65 for salinity. In the Gulf of
Mexico case study, themodel demonstrated a root mean square error (RMSE) of
0.83°C for test cases and 1.69°C for validation cases for SST, outperforming
traditional methods in dynamic coastal environments. Feature importance
analysis identified the critical roles of infrared bands in SST prediction and
blue/green colour bands in SSS estimation. This approach addresses the “black
box” nature of machine learning models by providing insights into the relative
importance of spectral bands and metadata. Key factors such as solar azimuth
angle and specific spectral bands were highlighted, demonstrating the potential
of machine learning to enhance ocean property estimation, particularly in
complex coastal regions.
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1 Introduction

Sea surface salinity (SSS) and sea surface temperature (SST) are
both essential climate variables for monitoring ocean health Reul
et al. (2020). This is particularly important for the global coastal
ocean, which impact coastal communities through provisioning,
regulating, supporting, and cultural ecosystem services. Ocean,
atmosphere, seabed and land (also ice in high latitudes) are all
interconnected in the coastal ocean. This creates a complex and
highly variable environment, the dynamics of which operate over a
wide range of spatial (mms to 100 km) and temporal (seconds to
centuries) scales, Malik and Harmel (2016), Melet et al. (2020).
Global warming is leading to an increase in intensity and frequency
of marine heat waves, eutrophication and acidification events which
not only affect biodiversity but also impact coastal communities
through food, human health and economic activities, Oliver et al.
(2018), Paul et al. (2012), Minnett et al. (2019), Breitburg et al.
(2018). These can result in: disruption to marine ecosystems
including, fish migration, coral bleaching and habitat loss; algal
blooms, followed by oxygen depletion zones; and decarbonisation of
foundational mollusc species. All of which have knock on effects on
those communities which rely through food or economy on these
ecosystems.

Existing monitoring strategies, primarily reliant on in situ
observations from buoys and depth profiles, have limitations in
capturing the full spatial and temporal variability of SSS and SST,
especially in coastal areas, Jin Woo and Park (2020), Mann et al.
(2017). While these methods provide accurate results for mean
conditions and diurnal variability, they struggle to depict sub-
mesoscale processes like river plumes, coastal eddies, and algal
blooms, Dickey and Bidigare (2005), Muller-Karger et al. (2018).
Moreover, remote sensing techniques, such as microwave and
infrared satellite observations from platforms like Soil Moisture
Ocean Salinity (SMOS) and Soil Moisture Active Passive (SMAP),
offer broader spatial coverage but lack sufficient resolution for
coastal monitoring, particularly in regions with salinity
variations, Font et al. (2010), Babin et al. (2004), Dickey (2008).
Satellite-derived ocean colour provides the opportunity to estimate
sea surface properties with significantly improved spatial coverage
compared with in-situ monitoring, and with pixel resolution on the
ten to hundred metre scale compared to traditional microwave
remote sensing kilometric to decakilometric scale, Hadjal
et al. (2022).

Ocean colour estimation of temperature, salinity and other sea
surface properties involves inferring the water properties from the
spectral signature emitted by the water leaving radiance Lw(λ)
Groom et al. (2019). Temperature and salinity can be derived
from ocean colour satellites by algorithms relating the spectral
band signature absorbed at the satellite to validated SST/SSS data,
from in-situ, modelled or other sources, D’Sa et al. (2006).
Temperature is key to understanding the variability of other
ocean colour products, e.g., Chl-a (Dunstan et al. (2018)) but is
seldom estimated from the ocean colour itself. The different
absorption and scattering properties of coloured dissolved
organic matter (CDOM), are often used to estimate SSS through
the inverse relationship between organic freshwater and salinity,
Chen and Hu (2017), IOCCG (2008), Salisbury et al. (2011).
SeaWIFS was able to estimate SSS in the Clyde sea using the

empirical relationship between the spectral radiance of the
freshwater influx, dissolved organic matter (DOM) and salinity,
Binding and Bowers (2003). Empirical algorithms can estimate SST,
SSS other products such as Chl-a, but the band coefficients have to
be tuned even within the same estuary, Le et al. (2013). Other inputs
into the training of the SSS algorithms, as well as radiance spectra,
are: SST, Chl-a or other satellite derived products; in-situ
determined water optical properties, such as absorption
coefficient or turbidity; or external parameters such as, tidal
information, evaporation, precipitation as well as longitude,
latitude or bathymetry Geiger et al. (2013).

Accurate retrieval of water-leaving reflectance from satellite
imagery requires robust atmospheric correction techniques. These
techniques, including scene-based measurements, empirical line
approaches, and radiative transfer models, are essential for
extracting accurate water-leaving reflectance values from satellite
data, Gao et al. (2014). However, performing atmospheric correction
in coastal zones presents unique challenges due to non-Lambertian
surfaces and complex atmospheric effects such as cloud masking,
sun glint, and aerosol variability, He and Pan (2003), or from
radiance outside the field of view of the pixel (adjacency effects).
Moreover, accurate atmospheric correction often necessitates
information on in-situ aerosol size and particle behavior, which
can be challenging to obtain, particularly in inaccessible regions,
Frouin et al. (2019). Six publicly available ATM correction
algorithms Acolite, C2RCC, iCOR, l2gen, Polymer and Sen2Cor,
were tested in coastal and inland waters, Warren et al. (2019). All
were found to have high uncertainties particularly in the red and
near-infrared bands.

Work has been done on estimating SST and SSS from ocean
colour satellite images with no atmospheric corrections Medina-
Lopez (2020). Using Sentinel 2 Level 1-C TOA (Top of Atmosphere)
data as the input to a Neural network, 2.4 showed an improvement
over the Bottom of Atmosphere (BOA) 2-A data product which was
corrected by the Sen2Cor processor. The BOA data was shown to be
only accurate in open waters, possibly due to the poor coastal
applicability of the ocean atmospheric correction models. This
improved accuracy of TOA products could be due to the
information content lost when applying typical atmospheric
correction models to satellite data. A machine learning algorithm
with increased training and test data is generally more accurate, with
the caveat of training data quality. This poses an interesting question
as to the necessity of atmospheric corrections for SST or SSS ocean
colour inference, the increased information content of TOA and lack
of poor atmospheric corrections in coastal waters, sun glint and
whitecaps versus the selection of water leaving radiance from the
overall irradiance at the satellite sensor.

Therefore this paper introduces a methodology to extract SST
and SSS from multispectral ocean imagery, linking top-of-
atmosphere radiance to these variables. Global in situ data
records of SST and SSS from the Copernicus marine in situ
database as well as the Gulf of Mexico and UK are matched with
Sentinel-2 satellite information. Several machine learning
algorithms, including gradient boosting, decision tree regressors
and neural networks, are used to estimate the sea surface parameters
with Sentinel-2 spectral bands and metadata properties as input to
the models. The machine learning algorithms were tested regionally
and globally to predict SST and SSS from the spectra independently.
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Finally, feature weighting methods are used to understand the
importance of various inputs in the models predictions.

2 Materials and methods

2.1 In-situ sea surface temperature and
salinity data

This section introduces dataset statistics for two independent
datasets from the UK and the Gulf of Mexico, as well as global SST
and SSS from the Copernicus in-situ monitoring system, CMEMS
TAC Data Team (2021). These datasets are used as the training data
for the final machine learning algorithms. The globally sourced data
encompasses a wide range of coastal environments, including
nearshore regions, estuaries, and coastal shelf seas. These provide
insights into the variability of SST and SSS across different latitudes.
This enables the regional-dependent variations in these parameters,
such as the influence of ocean currents, atmospheric circulation, and
coastal geography, to be examined. Moreover, this work provides
coverage at a higher spatial resolution, providing benefits for coastal
regions or regions with high spatio-temporal variability not captured
by current remote sensing technologies. Although the global data is
useful to provide increased match-ups and data, the UK and Gulf of
Mexico were chosen due to their proximity to shore and estuarine
conditions, as well as the variable temperature and salinity
distributions that they provide.

2.1.1 UK smart buoy data
The UK estuary data provides a temperate water study region,

made up from buoys in Liverpool Bay, Dowsing, West Gabbard and
the mouth of the Thames (Southend-Sheerness) (Figure 1). The
rivers in these locations have less freshwater input compared to
major European rivers (like the Rhine or the Danube) and
Amazonian rivers, Blöschl et al. (2019). However, Liverpool Bay,
in particular, exhibits clear freshwater influence, Howarth et al.
(2005), making it an ideal location to study small-scale ocean
dynamics and their implications for coastal ecosystems. UK
smart buoy data is obtained from the Centre for Environment,
Fisheries and Aquaculture Science of the UK (Cefas),Cefas (2024).
As there is no overlap between the global data and the UK data, this
works well as a test case. It also provides a good juxtaposition with
the study in the Gulf of Mexico, which experiences 15–20° warmer
temperatures on average and has very different tidal dynamics
(averaging 0.3–0.6m tidal range), impacting the magnitude of
saltwater intrusions, Mejia-Olivares et al. (2020), Robins
et al. (2016).

2.1.2 Gulf of Mexico coastal observing system
The Gulf of Mexico, particularly the Florida Keys region, is an

important environmental ecosystem with unique and diverse
marine life. However, it is vulnerable to problems ranging
from eutrophication, overfishing and loss of habitat, Guiry
et al. (2021), Paerl and Otten (2013), Halpern et al. (2008).
This has further impacts on coastal erosion and increased
vulnerability to extreme weather events, Pennings et al.
(2021), such as tropical cyclones, without the protection from
mangroves or other natural barriers, Alongi (2008). The Gulf of

Mexico was chosen as a study for its varied waters, including
shallow coastal bays and deeper offshore regions, which provide
an excellent opportunity to study the dynamics of coastal
ecosystems. These areas are characterized by their proximity
to land, complex bathymetry, and diverse marine habitats. The
Gulf of Mexico Coastal Observing System (GCOOS) uses NOAA
cruises and stations to monitor estuaries in the Gulf of Mexico
Coastal Ocean Observing System (2024). The large number of
estuaries and tributaries from the Mississippi affect the Gulf,
making it useful training data for temperature and salinity
ranging from 0 to 35° and freshwater to fully saline at
35.5 PSU. The model data produced will enable assessments of
SST and SSS temporal variability, which has impacts on the
health of coral reefs, mangroves, and other sensitive habitats,
as well as aiding monitoring complex ecosystems in the region
that will be affected by large changes in temperature and salinity.

Figure 2 shows the range of temperature and salinity values for
the Gulf of Mexico. This presents large variations, showing the
average value for each buoy reading, from the cooler fresh water
near the coast to the warmer saline ocean water. This is an
interesting case study because it seems to show that
temperature and salinity are inversely linked. However, it is
important to note that this relationship is just based on the
average reading for the Gulf, this relationship will change
seasonally and is dependent on other conditions. To avoid
seasonal imbalances the number of match-ups was checked to
ensure it was consistent throughout the year. Furthermore, as the
model inputs included the Reflectance Correlation Coefficient
(RCC) metadata, this can be used as a proxy for seasonality and
the model could learn patterns due to seasonal shifts. This
approach enhances the model’s ability to generalize across
diverse seasonal and regional conditions, mitigating the effects
of data imbalance. Temperature and salinity are measured
separately, which is why there are different number of data
points and distributions for each of the variables.

2.1.3 Global Copernicus marine environment
monitoring service (CMEMS)

The global dataset comes from the Copernicus in situ Marine
Environmental Monitoring Service (CMEMS) (with datasets
coming from over 100 countries,. CMEMS provides datasets
from various observing systems, including Argo float profiles,
and observations from ships, moored buoys, drifting buoys, fixed
platforms, gliders, ferry-boxes, and coastal observations. These
datasets encompass a variety of oceanographic parameters such
as temperature and salinity, SeaDataNet. All in-situ data was selected
from the Copernicus marine database within the criteria of being less
than 1m depth and having both SST and SSS continuous
measurements. Figure 3 also shows the global spatial distribution
of the Argo floats that were matched with a satellite image. There is
higher frequency of observations in the nearshore regions with fewer
open ocean buoys. This corresponds to the tasking path of the
Sentinel-2 satellite discussed in Section 2.2. Sentinel-2 is primarily a
land monitoring satellite European Space Agency (2019) which also
captures the coastal zone with some values recorded over open
ocean. This will skew our training data, however open ocean is a lot
more homogeneous than coastal shelf seas. This also poses the
question about the training data fed to the model: how valid is the
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feeding of open ocean data to the model? Is this altering the training
distribution of SSS and SST values and making the model tend to
predict “better fitting” points which match this open ocean but not
the coastal waters? Furthermore the algorithms in this paper will
only be applied in these coastal regions as in open ocean there is no
need for higher spatial resolution than already available products,
Chassignet and Xu (2021).

Figure 3C shows temperature and salinity value distributions.
The SST distribution is skewed with a mean temperature above 22°C,
and salinity showing twin peaks of 35 PSU in open ocean and 0 PSU
corresponding to freshwater readings. A significant percentage of
these buoys are located in the global north and particularly on the
coast of North America and around Europe (the North Atlantic and
Mediterranean), see Figure 3D.

2.1.4 Data processing and quality inspection
All of the in-situ data were pre-processed using their respective

quality flags and testing procedures. For the Copernicus data, only
points with the quality QC1 flag were used relating to “good quality”
data, CMEMS TAC Data Team [2021]. There is also extensive

testing for each GCOOS data point, Gulf of Mexico Coastal
Ocean Observing System (2024). UK smart buoy data are
maintained by Cefas and regularly checked for bio-fouling. Data
are subject to a full quality assurance procedure which assigns flags
to poor quality data (e.g., for sensor malfunction, drift)
Sivyer (2016).

Furthermore, statistical and environmental measures were
employed for data cleaning purposes. As the distributions were
non-normal, Median Absolute Deviation (MAD) was used to reject
outliers which had a deviation from the median over 4 times the
median of the all median deviations. Outliers beyond acceptable
ranges were identified and rejected by defining boundaries based on
historical data or climatological norms for each region. This
involved analysing past observations to establish typical ranges of
values for the variables of interest. Time-based anomaly detection
was also used to identify anomalies or sudden spikes that may not be
captured by traditional outlier detecting methods. Seasonal
decomposition of the data into trend, seasonal and residual
components allowed visualisation and analysis of the residuals
with removal of fluctuations relating to anomalies.

FIGURE 1
(A) Distribution of temperature and salinity parameters for the UK smart buoy dataset: 800 and 400 data points for the SST and SSS distributions,
respectively. (B) Locations of UK Smart Buoys, Cefas (2024).
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FIGURE 2
(A) Range of temperature values for Gulf of Mexico. (B) Range of salinity values for Gulf of Mexico. (C) Distribution of temperature and salinity
parameters for the Mexico datasets (8,000 and 5,000 points, respectively, for SST and SSS).

FIGURE 3
Map of matched Argo data points. (A) Temperature. (B) Salinity. (C) Distribution of temperature and salinity parameters for the global dataset
(12,000 points). (D) Distribution of the buoys with respect to latitude.
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2.2 Satellite imagery

The satellite utilized in this study is the European Space Agency
(ESA) Sentinel-2 multispectral satellite system. Consisting of two
satellites, Sentinel-2A and Sentinel-2B, it offers a revisit time of
approximately 5 days at the equator, enabling frequent monitoring
of Earth’s surface. Operating in a polar orbit, these satellites cover
the entire globe, capturing high-resolution imagery for various
applications. The Sentinel-2 data comprise 13 spectral bands,
each represented as 16-bit unsigned integers (UINT16) and
scaled by a factor of 10,000 to obtain top-of-atmosphere (TOA)
reflectance values. The spectral bands include: coastal aerosol
(443 nm), red edge detection (705 nm) and near infrared band
(842 nm), and a full list is available here: European Space
Agency (2023).

Sentinel-2 was selected due to its high spatial resolution of
10–60m, which enables high quality monitoring of the highly
spatial variations seen in coastal regions. Sentinel-2 is part of the
Copernicus monitoring programme, which is specifically looking at
land monitoring. However, its high resolution, wide swath and
spectral range enables monitoring of vegetation and water cover
as well as coastal observations, European Space Agency (2019).

2.2.1 Satellite metadata
Sentinel-2 also provides metadata taken from the image

collection. Including metadata such as reflectance conversion
correction, incidence zenith angle, incidence azimuth angle, mean
solar azimuth angle, and solar irradiance into the model inputs
offers several advantages. Firstly, the reflectance conversion
correction factor accounts for variations in Earth-Sun distance,
ensuring that the reflectance measurements are consistent across
different solar angles. This correction enhances the accuracy of the
spectral data by allowing it to be normalised across standard
condition, mitigating the effects of varying solar illumination
angles. Secondly, the inclusion of incidence zenith and azimuth
angles provides valuable information about the angle and direction
of sunlight relative to the observed area. Moreover, the mean solar
azimuth angle and solar irradiance offer insights into the intensity
and direction of sunlight incident on the Earth’s surface during
satellite observations. These parameters all influence the spectral
response of surface features. Integrating metadata into the model
inputs allows us to leverage additional information about
environmental conditions and solar geometry, enhancing the
interpretability and predictive performance of the machine
learning algorithms. Since top-of-atmosphere spectral data is
used, focusing on these metadata parameters aids in decoding the
relationships between solar irradiance, atmospheric conditions, and
observed reflectance values from the water columnwithout explicitly
modeling radiative transfer processes.

To streamline the input features and avoid redundancy, the
band-specific metadata values were averaged into a single value.
Giving a total of 18 inputs to the model, 13 spectral bands and five
metadata features (mean solar azimuth angle, reflectance conversion
correction, mean incidence zenith angle, mean incidence azimuth
angle, solar irradiance). This process, known as feature aggregation,
offers several benefits. First, it reduces the dimensionality of the
input space, improving computational efficiency and mitigating the
curse of dimensionality. Second, it helps smooth out noise or

variability in the data, leading to more robust model predictions.
Third, by capturing collective behavior or trends in the data, feature
aggregation enhances the model’s generalization to new instances
and unseen scenarios. Additionally, the aggregated features promote
model interpretability by focusing on essential patterns and
characteristics in the data. All the models included this metadata
as well as the pixel spectral data.

2.3 Matching process

All of the in situ datasets underwent the same matching process
with the multispectral satellite images. The Sentinel-2 data was
processed on the Google Earth Engine Python API platform.
This allows geospatial analysis and processing of satellite images
on Google Cloud computers, using scalable, high performance
computing resources. However, there is additional data transfer
costs and the inherent risks from depending on a third party
provider, Google Earth Engine (2023). Latitude, longitude and
time of measurement are taken for each in-situ data point. The
Sentinel-2 image collection is filtered to the tiles that contain the
point on the day and time when the measurement was taken, within
1 hour of Sentinel-2 overpass. One hour was chosen to improve
accuracy, especially in the coastal zones where tidal effects and river
flows can vary significantly over the course of hours.

The matched images for those points are clipped in 3 × 3 pixel
windows about the in-situ data point, to retain the high resolution
benefits from the Sentinel-2 satellite. The whole 3 × 3 pixel window
is taken to avoid any random noise reflectance, wave effects or sun-
glint errors occurring at the pixel level. The median value of the
window for the spectral bands and metadata is then selected for the
matched point. Time difference is also recorded between the in-situ
measurement and satellite image, if there are multiple images within
1 h of the in-situ point the smallest time difference is selected. The
output is a table containing all satellite data (spectral bands and
metadata properties) with the corresponding salinity and
temperature data. As mentioned in previous sections, for the
Gulf of Mexico and UK data, SSS and SST were recorded
separately and therefore the satellite match ups for each
parameter are different.

2.3.1 Satellite data cleaning
The matched satellite image data was also subject to data

cleaning and quality checks. Firstly, any satellite image with

TABLE 1 Number of satellite match ups before and after cloud and
statistical in-situ data cleaning.

Dataset Before After

Copernicus Global 34,036 12,356

Mexico SST 23,944 8,589

Mexico SSS 15,666 5,287

UK SST 2,677 825

UK SSS 2,427 491

Overall 78,750 27,548
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metadata ‘CLOUDYPIXELPERCENTAGE’ (percentage of the
overall satellite image covered in cloud) above 60% was rejected
on the grounds that there would be likely contamination of the
reflectance values by cloud and increased atmospheric effects for the
overall image. Then, bitwise masking was applied to the image using
the binary values of QA60 cloud detection pixels in an image to
selectively include or exclude them. This removed any cloudy pixels
that would have been accepted into the training dataset. The effect of
the cleaning of this satellite matched data reduced the match up data
points (already filtered to within 1 h timematch up) significantly, see
Table 1 for details.

2.4 Machine learning techniques

Machine learning (ML) is the ability of an algorithm to learn and
find out information and relationships in data, Pedro Domingos
(2012). Machine learning offers significant potential in various
aspects of remote sensing and specifically the field of
oceanography. One key advantage lies in its ability to handle
large and complex datasets, extracting valuable insights from vast
amounts of Earth observation data collected by satellites like
Sentinel-2. The more input and training data an algorithm has
access to, the more it can learn about the properties of that data,
Sonnewald et al. (2021), Ali et al. (2020). Satellite data, with its
constant monitoring, provides a large temporally varying dataset,
with large spatial and data variability, highly suitable for machine
learning purposes, Belgiu and Drăguţ (2016).

2.4.1 Gradient boosting models
Gradient Boosting models offer a powerful tool for analysing

complex datasets. Gradient Boosting models operate by iteratively
combining weak learners, such as decision trees, to improve
predictive accuracy. These models focus on minimizing errors by
sequentially adding trees, each addressing the residual errors of the
previous ones, Friedman (2001). XGBoost (eXtreme Gradient
Boosting), is an example of a specific scalable distributed
gradient-boosted decision tree (GBDT) structure. It can further
enhance model performance through regularization techniques,
handling missing data, and parallel computation, Chen and
Guestrin (2016). By aggregating the strengths of individual trees,

each leaf improving the residual errors, XGBoost is able to capture
intricate patterns and non-linear relationships within the data. Its
popularity arises from its scalability, speed, and robustness, hence its
attraction in applications including remote sensing and
environmental modeling, Hosseiny et al. (2022).

2.4.2 Neural networks
Neural networks are layered structures linking the input

variables via interconnected neurons to an output estimate or
class, through a number of hidden layers, as shown in Figure 4.
At each layer of the network, neurons learn the weights from the
outputs of a logistic regression. The advantage of such a structure is
that by a combination of these interconnected layers, the network
can find non-linear relationships between variables to a high order.
Neural networks are excellent for the environmental challenges with
large amounts of data and to uncover complex relationships,
Hsieh (2009).

Neural networks have been used to estimate SST and SSS in
coastal waters. Using neural networks removes the need to find or
define specific inherent optical properties, andf therefore SSS and
SST can be directly estimated from apparent optical properties,
removing the need for specialised radiative transfer models. The
factors in the accuracy and successful test validation are the quantity
and quality of training data, and the tuning of the networks
hyperparameters such as hidden layer number, loss functions and
inputs selected. A grid search method was employed to determine
optimal hyperparameters such as learning rate, batch size, and
number of hidden layers. Learning rates were tested in the range
of 0.001–0.01, and batch sizes of 32, 64, and 128 were experimented
with. The final chosen hyperparameters of 0.1 learning rate and
batch size 128 were based on minimizing validation loss while
avoiding overfitting. Three such neural networks for the
estimation of SSS are discussed here and details compared in
Table 2. All of these except Medina-Lopez and Ureña-Fuentes
(2019) require SST as an input to the model to predict SSS.

Neural networks can learn complicated relationships, producing
SSS and SST purely from satellite and location information,
however, care must be taken when selecting inputs and training
data to capture the full variance of values. Furthermore, including
location to inputs can limit generalisation of model to new regions,
as well as the model learning the “wrong” relationships. Therefore,
in this instance, latitude and longitude are not taken as inputs to the
model, certain locations are excluded from the training set to
validate true generalisation, and, in the k-fold validation care was
taken to ensure the samples were geographically stratified. Overly
complex architectures may exacerbate overfitting. Additionally,
adjustments to parameters like learning rate and batch size can
impact training convergence and efficiency. Therefore, careful
tuning and validation are essential to strike the right balance
between model complexity and generalization performance.

2.4.3 Algorithm comparison
The algorithm development methodology was the same for all

the datasets. First, simpler regression algorithms were applied to see
if there was any correlation between spectra and ocean properties,
then decision tree, gradient boosting and XGBoost models were
tested for each dataset. Hyperparameterisation was explored to
maximise models performance and behaviour, such as increased

FIGURE 4
Neural Network architecture - with three hidden layers, five
inputs and one output node. Each individual neuron in each layer is
formed by the sum of all the neurons in the previous layer (with
separate weights) convolved with some non-linear
activation functions.
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“max depth” in decision trees, which controls the complexity of the
decision tree. This can help capture more intricate patterns in the
data, potentially leading to better performance. However, this can
lead to overfitting on training data if “max depth” is too large,
causing the model to capture noise or outliers. Training time and
computational resources also increase with a higher number of
estimators, making the model slower to train and predict. Learning
rate was also adjusted, with smaller rates facilitating smoother
convergence by controlling step size, effectively acting as a
regularisation, with usual caveats for computation cost and
slower convergence and training time.

The DecisionTreeRegressor (DTR) performed better than
simpler regression models due to its ability to capture non-linear
relationships. By increasing the max depth parameter, the model
could capture more intricate patterns. However, a larger max depth
risks overfitting, as the model may start to fit noise or outliers. Best
performance was achieved with max depth = None, allowing the tree
to grow fully and improve fit, while avoiding significant overfitting
due to the nature of the dataset.

The Gradient Boosting Regressor, (GBR) consistently
outperformed the DTR due to its ensemble learning approach,
which combines weak learners to produce a stronger model.
With max depth = 10 and n estimators = 50, the model captured
complex patterns in the data without significant overfitting. The
learning rate = 0.1 ensured smooth convergence, acting as a
regularization mechanism to prevent the model from making
overly aggressive updates. The combination of weak learners
allowed the GBR to generalize well, balancing model complexity
and performance. The AdaBoost Regressor (ABR), performed well
with n estimators = 300, allowing it to combine a high number of
weak learners. However, like the DTR, this approach risks overfitting
when weak learners try to fit noise in the data. Despite this risk, the
ABR showed good performance by improving its predictive power

through ensemble learning, though it required more regularization
than GBR to prevent overfitting. The XGBoost model (XGB), with
max depth = 6 and n estimators = 100, struck a balance between
complexity and generalisation. Its ability to handle missing values,
optimize gradient boosting algorithms, and regularize during
training made it particularly well-suited for this dataset. The
relatively smaller max depth (compared to GBR) and more
controlled number of estimators helped prevent overfitting while
maintaining strong predictive capabilities. XGBoost’s advanced
optimization techniques and flexibility allowed it to deliver
competitive results with relatively efficient training times.

Finally, neural networks were employed to use the non-linearity
behaviour to capture the complex second order relationships, as well
as methods to understand uncertainty in the predictions. In this
study, a feed-forward neural network architecture with multiple
hidden layers (10) was designed, with a Tanh activation function to
for propagating non-linearities. As before, 18 nodes were used for
the neural network initial layer to match the input data of bands and
metadata. Dropout regularisation helped prevent overfitting, while
early stopping, based on validation set performance, further ensured
that the model did not overtrain on the noise in the data.
Additionally, the max-pooling layers, improved model ability to
extract relevant information and improve generalisation
performance. Training the network with stochastic gradient
descent (SGD) and optimizing with mean squared error (MSE)
allowed for more efficient convergence over the course of
1,000 epochs, resulting in a model that outperformed traditional
methods like gradient boosting and XGBoost. The neural network’s
ability to capture complex, non-linear dependencies between
features made it the most effective approach for this study.

All the models were trained with a 70% training 30% test data
split, then subject to k-fold cross validation where k = 5, where the
model was trained on four folds and validated on the remaining fold,

TABLE 2 Comparison of Neural Network structures for predicting SSS. Based on satellites: MODIS AQUA (Parkinson (2003)), SEAWIFS (Gregg et al. (1997)),
Sentinel-2 (European Space Agency (2019)) and Geostationary Ocean Colour image (GOCI) (Ryu et al. (2012)).

Study Geiger et al.
(2013)

Chen and Hu (2017) Medina-Lopez and Ureña-Fuentes
(2019)

Kim et al.
(2020)

Satellite MODIS AQUA MODIS and SEAWIFIS Sentinel 2 GOCI

Region Mid-Atlantic Coastal Gulf of Mexico Global East China Sea

Training data 9,000 points 3,640 points 4,600 points 92 images

Inputs Lat, Lon, SST, RRS SST, 5 RRS bands 13 spectral bands metadata RRS bands, SST,
Lat, Lon

Number of
inputs

12 6 43 9

Number of layers 3 (1 hidden layer) 3 (1 hidden layer) 20 hidden layers 2 hidden

Loss function Log loss Levenberg-Marquart optimization (damped
least squares)

Logcosh

Activation
function

Softmax Sigmoid (input) Tanh ReLu

Spatial
Resolution

1 km 1 km 100m 500m

RMSE PSU 1.4–2.29 1.2 0.4 1.33
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rotating through all folds. The models were all trained using RMSE
as the error metric and were validated on RMSE as well as RME,
MAE andMPSE. Finally for each regional model as well as the global
model certain buoy locations were withheld from the model
allowing it to perform validation on unseen locations.

3 Results and discussion

The structure of this section will consider each of the dataset
studies individually with a comparison and discussion on general
applicability at the end. Table 3 shows the Root-Mean-Square Error
(RMSE) and other metrics for each of these algorithms developed for
SST. Every algorithm used 18 inputs as previously described, the
13 spectral bands and five averaged metadata values. The XGBoost
model was also tested on purely spectral bands to better visualise
how important metadata inclusion is to model performance and to
increase understanding of the band and surface properties
relationships.

In the UK, where training data is relatively limited compared to
other regions, the models exhibit varying levels of performance. The
Linear Regression model shows moderate accuracy with a Test RMSE
of 2.786, suggesting reasonable predictive capability despite the

simplicity of the model. Conversely, more complex models like
Decision Tree Regressor and Gradient Boosting Regressor, while
achieving lower Test RMSE values (3.251 and 2.323 respectively),
also demonstrate potential overfitting due to the small dataset size.
This indicates a need for caution in interpreting their results, as they
may not generalize well to unseen data.

In contrast, linear regression failed to capture even true training
data information and could not predict test datasets for the other
cases. Particularly in the global dataset with such varied input
ranges. The predictive models for Mexico and the global dataset
show more consistent performance, with Test RMSE values ranging
from 1.593 to 3.5638. The higher Test RMSE values in global data
compared to the Gulf of Mexico, contrasting with their similar SST
distributions show the impact on the model on such diverse oceanic
conditions and environmental factors in global data. Despite the
AdaBoostRegressor had the best test RMSE of all the algorithms with
1.59 in Mexico. This was discarded in favour of the XGB model (test
RMSE 1.70) due to the computational training and running times
the XGB having over a 20 time faster runtime.

Figure 5 shows scatter plots of actual vs the XGB model
predicted SST (from Tables above) for the test datasets (data not
seen by the model during training) for the UK, Mexico and global.
Most of the predictions show generally good correlation with certain

TABLE 3 Sea surface temperature prediction Errors for Different Machine Learning Algorithms. Model results for linear regression, decision tree and
gradient boosting regressors. Results for the Global Copernicus, the UK Smart buoy and Gulf of Mexico datasets. Coefficient of determination R2, Root
mean squared error RMSE, Mean average percentage error (MAPE).

Algorithm Training R2 Test R2 Train RMSE Test RMSE MAPE

Global Copernicus results SST

Linear Regression 0.721 0.547 4.430 4.351 0.310

Decision Tree Regressor 0.999 0.681 0.014 3.817 0.150

AdaBoost Regressor 0.999 0.867 0.168 2.246 0.070

Gradient Boosting Regressor 0.992 0.857 0.590 2.583 0.090

XGBoost Model (Spectral bands only) 0.846 0.653 2.844 4.209 0.308

XGBoost Model (Bands and Metadata) 0.948 0.871 1.470 2.414 0.067

UK Smart Buoy results SST

Linear Regression 0.752 0.697 2.098 2.245 0.150

Decision Tree Regressor 1.000 0.667 0.000 2.353 0.167

AdaBoost Regressor 0.998 0.843 0.121 1.613 0.100

Gradient Boosting Regressor 0.999 0.116 0.030 1.735 0.110

XGBoost Model (Spectral bands only) 0.840 0.474 1.941 2.563 0.120

XGBoost Model (Bands and Metadata) 0.995 0.841 0.273 1.569 0.093

Gulf of Mexico results SST

Linear Regression 0.686 0.664 2.268 2.350 0.090

Decision Tree Regressor 1.000 0.750 0.001 1.974 0.167

AdaBoost Regressor 0.999 0.885 0.067 1.400 0.100

Gradient Boosting Regressor 0.990 0.884 0.288 1.442 0.110

XGBoost Model (Spectral bands only) 0.840 0.474 1.941 2.664 0.120

XGBoost Model (Bands and Metadata) 0.963 0.871 0.776 1.429 0.049
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FIGURE 5
XGBoost model scatter plots of predicted vs actual temperature values for unseen validation data. (A) Gulf of Mexico (B) UK Smart buoy and (C)
Global Copernicus data.

FIGURE 6
XGBoost model scatter plots of predicted vs actual salinity values for unseen validation data. (A) Gulf of Mexico, (B) UK Smart buoy and (C)
global data.
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outliers for each case. There is obvious sparsity and smaller range in
the UK data, corresponding to less buoymatch ups and cooler waters.

Across the three scenarios, the prediction of SSS presents unique
challenges compared to SST (Figure 6). In the global dataset, which
encompasses diverse oceanic conditions, themachine learningmodels
exhibits poor performance in predicting SSS. The UK Smart Buoy
dataset stands out with very high accuracy in RMSE errors for all
algorithms including linear regression due to its relatively small range
of SSS values. However, while these results are promising for the UK
Smart Buoys, it is essential to recognize that the model’s performance
may not generalize well to datasets with broader ranges of salinity
values. This discrepancy between SST and SSS prediciton capabilities
may be attributed to the availability of suitable spectral bands for each
parameter. Temperature estimation can leverage shortwave infrared
(SWIR) and infrared bands.

3.1 Testing algorithm in specific platforms

In this section, we focus on analyzing the seasonal cycles evident
in the temperature data collected from various locations. By testing
the XGBoost (XGB) model on these sites, we aim to understand how
well it captures the seasonal variations in temperature. Exploring the
temporal patterns and seasonal variations in the residuals between
actual and predicted SST values could provide valuable insights into

the model’s ability to capture underlying trends and improve its
predictive accuracy over time.

Figure 7A Shows the results of an XGB model tested on the
Liverpool buoy location, (data not used for training). There is good
coherence between predicted (blue) and real (orange) data points,
and seasonal cycles are captured (RMSE 0.421). Figure 7B shows the
buoy location with the most datapoints for Mexico, NOAA.NDBC:
GBIF1 and predicted SST results for the platform. Figure 7C shows
the XGB global model performing on platform Wee1 at (latitude
25.23, longitude −80.99, off the coast of North America).

Figure 8 shows the predicted vs real estimates for SSS in the same
unseen buoy locations as tested for SST before. Interestingly, the
platform in Mexico and the buoy in the global data pick up their
representative underlying seasonal signals (fresh water influence in
winter), despite the high RMSE shown in Table 4. Figure 8D shows
the RMSE for locations for the global dataset, showing strong model
performance in North America and Europe (location withmore data
points) and weaker in areas with lower data availability, such as the
Arabian Gulf.

3.2 Neural network application

For the global neural network algorithm, temperature was
predicted with a coefficient of determination (R2) of 0.83 and

FIGURE 7
Temperature platform plots for unseen locations. (A) UK model tested on Liverpool buoy data (trained on the other three locations). (B) Mexico
model Platform NOAA.NDBC:GBIF1. (C) Global platform WWEF1 at (latitude 25.23, longitude −80.99). (D) Mean RMSE for the global platforms for
temperature.
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salinity with R2 of 0.76. In the specific case study in the Gulf of
Mexico, root mean square error (RMSE) for temperature was
0.83°C for test cases, and 1.25°C for validation. For salinity the
global RMSE was 2.57PSU and 2.19PSU in the Mexico case study
region. In order to provide more accurate and useful predictions of
SST and SSS, it is often important to include an estimate of the
uncertainty range associated with the predicted values. This can be
particularly valuable when using the output as a data product for
future analysis or when incorporating the predictions into climate
models, Land et al. (2018). The approach used here includes
uncertainty estimates for these outputs through the use of a
neural network with a specialized loss function. This can
produce an probability distribution output with a mean and
standard deviation for each value. This can be used to generate
plots of the uncertainty in the predicted values, with a higher
uncertainty relating to a broader distribution. It should be noted,
however, that this method assumes that the SST and SSS follow a
normal standard distribution, which as seen before, is not the case,
especially for SSS, which has the double peak observed in values at
0 and 35PSU. This can bias the uncertainty readings, and lead to
underestimation of uncertainty in the tails of the distribution.
Figures 9, 10 show the imaged results of the model applied to a
satellite image over the Mississippi delta region. Figure 9A shows
the freshwater influence from the Missippi river, with 9 (b)
showing the cooler freshwater, and 9 (c) shows the spatial
variability of uncertainty, in fact reduced where there is clear
turbid water and spiking in very close to land.

Figure10 shows the bounded region in Figure 9. 10 (a) shows the
SSS plot, with the resolution of the product this now allows front and
eddy features on the 100m scale to be identified, and the saline water
feature close to land in the top right. 10 (b) shows the temperature
gradient and front location that could not be seen at the coarser
resolution.

Thermal and passive microwave sensors achieve higher accuracy
when estimating temperature- the NASA Moderate Resolution
Imaging Spectroradiometer MODIS and Advanced very-high-
resolution radiometer (AVHRR) (RMSE of 0.43°C and 0.68°C,
respectively, when validated against ferry observations on open
ocean waters). However, neither of these sensors can observe
coastal sites sampled by the coastal in-situ buoys used in this
study due to land adjacency and resolution, and their resolutions
at 4 km are very different to the decametric resolution of the model
presented in this paper, making them unsuitable for a direct
comparison with the methodology developed in this study. This
highlights the need for future datasets designed specifically for
coastal and near-shore environments to enable better validation
of machine learning models in these areas. SSS was predicted in the
global case study with a 15% uncertainty, at 10 m resolution. In
highly variable coastal waters (0-36PSU range) this is sufficient to
show seasonal or annual warming trends and detect key salinity
fronts (such as river plume boundaries). The validation data was also
split temporally by month without losing accuracy, implying the
model learning seasonal variations well from the RCC metadata. As
a comparison metric, the satellites Soil Moisture Ocean Salinity

FIGURE 8
Salinity platform plots for unseen locations. (A)UK Liverpool bay buoy. (B)Gulf of Mexico platformNOAA.NDBC:GBIF1. (C)GlobalWWEF1 buoy, as in
previous figures. (D) Mean RMSE platform errors for the global dataset.
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(SMOS) and Soil Moisture Active Passive (SMAP) performwell with
open ocean data (0.25PSU uncertainty), but this is only tested in
open ocean waters with salinity values ranging from 34 to 36PSU,
and coastal regions are excluded due to insufficient
resolution (40 km).

Accuracy could be improved by implementing model selection
based on water type classification, more varied observations of
different global regions, and closer matched satellite and in-situ
data points. The algorithm is not trained on historical data to inform
the present or future SST or SSS variables to save computational
time. To therefore ensure that the model is learning from long term
trends particularly with regards to ocean warming care must be
taken to continually update the training data.

3.3 Algorithm explainability

The use of machine learning algorithms, such as XGBoost and
neural networks used in this paper, has become increasingly popular
in various fields, including oceanography, to predict oceanic
parameters. However, one of the drawbacks of these models is
the lack of transparency, often referred to as the “black box”
problem, where it is difficult to understand how the model

arrived at its predictions. This can pose significant problems in
model’s acceptance and uptake by the ocean science community
who distrust the opaqueness of purely data based models without a
strong physical parameterisation basis. Feature selection offers a
solution to this problem by identifying the most important features
used to predict the target variable. Typically used in reducing the
dimensionality of the data, feature selection not only improves the
model’s performance and mitigates the risk of overfitting, but can
also provides crucial insights into the underlying relationships
within the data. This has an advantage over common feature
reduction methods such as Principal Component Analysis (PCA)
by retaining the original features not producing new orthogonal
dimensions. An example is the XGBoost feature importance. This
measures the relative importance of each feature in the XGBoost
model by calculating the average gain of each feature across all
decision trees in the ensemble. The gain of a feature is the
improvement in the objective function (e.g., reduction in loss
function error) attributed to that feature when a split is made on
that feature. The higher the gain, the more important the feature is
viewed. While this approach is useful to determine influential
features by ranking on feature importance scores, which can be
used as a pre-processing step to select the N most important
features, it suffers from limitations as it provides only general,

TABLE 4 Sea surface salinity prediction Errors for Different Machine Learning Algorithms. Model results for linear regression, decision tree and gradient
boosting regressors. Results for the Global Copernicus, the UK Smart buoy and Gulf of Mexico datasets. Coefficient of determination R2, Root mean
squared error RMSE, Mean average percentage error (MAPE).

Algorithm Training R2 Test R2 Train RMSE Test RMSE MAPE

Global Copernicus results SSS

Linear Regression 0.701 0.574 3.76 6.366 0.22

Decision Tree Regressor 1.000 0.675 0.005 4.420 0.167

AdaBoost Regressor 0.999 0.867 0.175 2.833 0.1

Gradient Boosting Regressor 0.980 0.847 1.076 3.033 0.11

XGBoost Model (Spectral bands only) 0.732 0.5279 7.25 6.953

XGBoost Model (Bands and Metadata) 0.869 0.851 3.930 4.877 0.11

UK Smart Buoy results SSS

Linear Regression 0.826 0.771 0.480 0.579 0.01

Decision Tree Regressor 1.000 0.800 0.000 0.541 0.07

AdaBoost Regressor 0.998 0.893 0.02 0.399 0.1

Gradient Boosting Regressor 0.999 0.876 0.006 0.425 0.1

XGBoost Model (Spectral bands only) 0.8404 0.474 1.541 1.964

XGBoost Model (Bands and Metadata) 0.995 0.885 0.043 0.413 0.083

Gulf of Mexico results SSS

Linear Regression 0.696 0.694 2.678 2.720 0.09

Decision Tree Regressor 0.855 0.502 5.590 8.217 0.17

AdaBoost Regressor 0.999 0.895 0.284 6.536 0.12

Gradient Boosting Regressor 0.969 0.642 1.942 6.587 0.18

XGBoost Model (Spectral bands only) 0.736 0.372 3.941 6.564 0.120

XGBoost Model (Bands and Metadata) 0.905 0.886 3.45 3.708 0.0952
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averaged values. Consequently, it fails to offer localized or point-wise
information about specific bands or metadata features in individual
locations, including any potential interactions between them.

3.3.1 SHAP values

SHapley Additive exPlanations (SHAP values) Lundberg and
Lee (2017) offer a solution to these problems by providing a better
understanding of how different features contribute to the final
prediction. We will explore the use of SHAP values for feature
extraction in model creation and how they can provide a better
understanding of the underlying physics involved in predicting SST
and SSS from multispectral satellite images. SHAP values offer both
global and local interpretability. Not only do they indicate the
importance of each feature in making predictions, but they also
reveal whether a feature has a positive or negative impact on those
predictions. Unlike other techniques that provide only aggregated
results over the entire dataset, SHAP values enable us to calculate
feature contributions for individual predictions.

Beeswarm plots offer a unique visualization technique that
provides insights into explaining the directional nature of the
features. Figure 11 shows the beeswarm results for the inputs to
the SST models, e.g., high reflectance correction coefficient (RCC)
signifies winter (in northern latitudes) which gives a negative impact
on the model output as seen before in Mexico and the UK. This
directional insight aids understanding the underlying model
computations, enhancing interpretability. Although RCC was the

dominating input for both the UK and Mexico data, the Beeswarm
plot distributions shows more UK values in the tails. The absolute
SHAP values are different for each location due to the differences in
temperature range: the UK with a range of around 15° shows
accordingly less SHAP impact.

In Mexico, specifically, the plots indicated a cooling effect
associated with high values of B9 and a warming effect linked to
positive values of B8A on SST estimation. These findings suggest
that variations in these specific bands have a discernible impact on
SST dynamics in the region. An explanation for this could be as B9 is
sensitive to water vapor absorption in the atmosphere. High values
of B9 may indicate increased water vapor content in the atmosphere,
leading to cooling effects on the sea surface temperature. Conversely,
B8A, being in the near-infrared range (0.85–0.87 microns), is
sensitive to reflectance properties of surface features, including
vegetation. Positive values of B8A may indicate higher reflectance
from surfaces or vegetation, resulting in increased heating of the sea
surface due to greater solar radiation absorption.

These relationships are different dependent on location: in the
UK, B10 (SWIR) has positive relationship with temperature,
tracking the link between thermal radiation and warmer surface
temperatures. While it is also positive in Mexico, it has a far less
importance ranking, possibly due to higher prevalence of cloud in
the warmer regions. They can also be opposing one another: B3 (the
green part of the spectrum) in the UK has a positive correlation with
SST. In the UK regions with abundant phytoplankton or suspended
sediments, higher values of B3 may indicate increased absorption of
solar radiation, leading to warmer surface temperatures. However, in

FIGURE 9
Neural Network image results from theMississippi river in theGulf of Mexico, land ismasked out as white. (A) SSS (B) SST and (C)Uncertainty given by
the standard deviation. The outlined bounding box is the subregion explored in Figure 10.
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FIGURE 10
Subregion of the Missippi delta river. (A) SSS plot (B) SST, showing a front boundary (C) Uncertainty, spatial variation.

FIGURE 11
Beeswarm values for the SST models (A) Mexico (B) Uk and the (C) Global Copernicus data.
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Mexico, where the negative correlation occurs, divergence from the
UK data could be due to differences in coastal ecosystems, water
clarity, or phytoplankton abundance. Factors such as higher
turbidity or phytoplankton blooms might lead to increased
scattering and reduced absorption of solar radiation.

The mean SHAP values were calculated to determine the average
absolute impact of selected features on the model’s predictions across
all observations in the validation set (Figure 12). This metric provides
insight into the overall contribution of each feature to the model’s
predictions, irrespective of the direction of the effect. In analysing the
Mean SHAP values, it was observed that different spectral bands
exhibited varying degrees of importance in estimating SST and SSS
across different water temperatures. In SST, specifically, in warmer
waters, bands B9 and B11 demonstrated the most significant
contribution to SST estimation, while in cooler waters, bands B11,
B8A, and B6 emerged as crucial factors. The identification of these key
bands underscores the importance of considering the spectral
characteristics in enhancing the model’s accuracy, particularly
under varying water temperature conditions. For the global SST
estimation, the mean solar azimuth angle emerged as the most
influential feature, as evidenced by its substantial mean SHAP
value of 3.42. This was followed by bands B9 and B8A, which
exhibited mean SHAP values of 1.7 and 1.06, respectively. For the
Gulf of Mexico and the UK, RCC (representing the Earth-Sun
distance metric) was the dominate input, linking to the strong
seasonality in these regions opposed to the global data which is
training on northern and southern hemispheres simultaneously.

For the SSS models, the mean incidence zenith angle (indicative
of the time of day), andmean incidence azimuth angle were the most
important features. The salinity SHAP values were also evenly
spread over most inputs. Comparatively, the infrared bands (B7-
B10) were less important than in the SST models, however, RGB
bands were the most important spectra underlying the strong

relationship between SSS and organic matter, e.g., chlorophyll.
Mean B4 for global SSS was 1.5 compared to 0.14 for SST.

Conducting SHAP analysis on multiple regions can unveil
patterns and trends in the importance of spectral bands and
metadata features for SST and SSS estimation. When employing
clustering techniques on the regional model, SHAP values could
then identify similarities among water types, facilitating the
development of more generalized models suitable for global
applications. Additionally, investigating temporal changes in SHAP
values, especially in regions exhibiting seasonality, can offer insights
into the dynamic nature of predictions. Analysing how the
importance of spectral bands and metadata features fluctuates
overtime can enhance the understanding of seasonal variations in
SST and SSS. Comparing SHAP values between temperature and
salinity predictions can provide insights into the common and unique
drivers influencing these variables. This understanding can be used to
enhance the predictive capability of the models and shed light on the
underlying physical processes governing ocean properties.

4 Conclusion

This paper has demonstrated the feasibility of estimating sea
surface temperature and salinity from ocean colour satellite imagery.
With SST predicted with a coefficient of determination (R2) of
0.83 and SSS with R2 of 0.65. In the specific case study in the Gulf of
Mexico, root mean square error (RMSE) for temperature was 0.83°C
for test cases and 1.25°C for validation. Estimating sea surface
temperature from spectral data allows it to be mapped at a
higher spatial resolution than available thermal instruments. Our
results for both temperature and salinity are produced at the highest
resolution of any ocean colour product, 10m2 compared to 100m2 or
1 km. Secondly, the global nature of our algorithm allows it to be

FIGURE 12
Mean Shap values for (A) SST and (B) SSS.
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tuned to different regions, offering flexibility and adaptability.
Furthermore our models are trained over extremely diverse
datasets, with results for the mean average percentage error of
6% and 11% for SST and SSS respectively, outperforming similar
ocean colour model performances. These are similar to open ocean
model results, whilst operating in the complex coastal zones. Using
top of atmosphere (uncorrected) radiance data for the inputs to the
neural network model allowed for the atmospheric information
content in the radiance (affected by these atmospheric effects) to also
be included in the machine learning model. This is particularly
useful in those coastal near shore regions where radiative transfer
correction models struggle with such varied surfaces, with the neural
network model incorporating atmospheric correction into the
estimation procedure. Additionally solely using satellite spectral
and metadata as inputs to the model, with no reliance on inputs
derived from climate models, or physical parameterisation increases
the ease and flexibility of application as well as saving computational
cost. Furthermore, using freely available satellite TOA data means
these ocean colour algorithms can be applied without need to have
specialised knowledge of atmospheric or radiometric corrections
and increases product data accessibility. However, this comes with
the caveat of being unable to flag sun glint, whitecaps and other pixel
level errors which can be detected in BOA correction data. Finally,
the inclusion of uncertainty estimates in the final neural network
predictions, especially in regions with high variability and little to no
previous coverage, increases the utility of the model outputs,
providing valuable information for downstream applications,
such as climate modeling and environmental monitoring.

The use of SHAP values in this study provided valuable insights
into the significance of spectral bands and metadata features for
predicting both SST and SSS. The exploration revealed spatial
variations in feature importance, shedding light on the underlying
dynamics of oceanic properties across different locations. Leveraging
this information holds promise for enhancing model accuracy by
identifying key drivers for SST and SSS and allowing for a better
understanding of the relationship between the two. For instance,
identifying seasonal trends and variations in metadata values and
subsequent feature importance, such as solar irradiance and zenith
angles, could inform predictive models of temperature fluctuations.
There is also the potential for calculating the SHAP values of
additional environmental variables beyond ocean colour images in
more complex climate models, e.g., including wind direction, speed
and cloud cover as inputs in the predictive model and improving our
understanding of the interaction between these physical parameters,
the spectral signature and SST and SSS.

The methodology shown here can be used as a foundation to
scaling to global model. However, the size of training data and
selection of local vs global models play an essential role in the
accuracy of models used for these efforts. Data availability remains a
challenge, especially in remote regions, including polar regions,
which have different distributions of SST and SSS due to the
freshwater influence from the cryosphere, high latitude rainfall
and climate. All of which can affect model performance due to
variation from training data distributions. This would also require
significant computational resources for processing and model
training, particularly in the case of cloud-based platforms. Ocean
colour also struggles in regions with high cloud coverage due to
scarcity of observations compounded with the lack of training data,

decreasing accuracy in these regions, such as the tropics with high
cloud, large rainfall and the subsequent flooding or other land
impacts on the coast. Machine learning through interpolation is
helping to improve these points, but there is still a limiting degree of
certainty. Future developments in sensing technology, such as
hyperspectral satellites and geostationary satellites, hold promise
for better temporal monitoring and improved coverage of different
zones and the model accuracy improvements that increased data
availability can bring.

4.1 Future steps

The methodology developed here can be applied to other
multispectral or hyperspectral satellites as well as Sentinel-2 to
further increase temporal and spatial coverage and better improve
the accuracy of the SST and SSS products. Offering potential fusions
with Sentinel-3 (with 300m resolution but daily revisit times) and
NASA’s Landsat series. The development of NASA’s Plankton,
Aerosol, Cloud, ocean Ecosystem mission (PACE), NASA, is an
exciting stage in the global ocean colour coverage, Groom et al.
(2019). This methodology could be further tested and refined using
the upcoming PACE data, which is expected to provide enhanced
spectral resolution and improved observations of global ocean colour.
By leveraging the data from PACE, this approach has the potential to
significantly improve the accuracy and spatial-temporal resolution of
sea surface temperature (SST) and salinity (SSS) estimates.
Additionally, future missions that build on the real-time processing
and machine learning capabilities demonstrated here may focus on
integrating advancedmodels for faster andmore reliable monitoring of
global ocean properties. Other work of interest is the combination of
historical and present satellites across hyper and multispectral bands,
(Barnes et al. (2015); Burggraaff (2020)), to produce long-term time
series at high resolution to monitor the changing ocean and impact of
anthropogenic activity. Furthermore, improving uncertainty
quantification in model predictions can be achieved through
Bayesian neural networks, offering probabilistic outputs that
provide valuable insights into prediction reliability. This uncertainty
quantification offers valuable insights into themodel’s confidence in its
predictions, particularly in regions where the data are sparse or noisy.
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