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Landslide susceptibility mapping (LSM) is essential for determining risk regions
and guiding mitigation strategies. Machine learning (ML) techniques have been
broadly utilized, but the uncertainty and interpretability of these models have not
been well-studied. This study conducted a comparative analysis and uncertainty
assessment of five ML algorithms—Random Forest (RF), Light Gradient-Boosting
Machine (LGB), ExtremeGradient Boosting (XGB), K-Nearest Neighbor (KNN), and
Support Vector Machine (SVM)—for LSM in Inje area, South Korea. We optimized
these models using Bayesian optimization, a method that refines model
performance through probabilistic model-based tuning of hyperparameters.
The performance of these algorithms was evaluated using accuracy, Kappa
score, and F1 score, with accuracy in detecting landslide-prone locations
ranging from 0.916 to 0.947. Among them, the tree-based models (RF, LGB,
XGB) showed competitive performance and outperformed the other models.
Prediction uncertainty was quantified using bootstrapping and Monte Carlo
simulation methods, with the latter providing a more consistent estimate
across models. Further, the interpretability of ML predictions was analyzed
through sensitivity analysis and SHAP values. We also expanded our
investigation to include both the inclusion and exclusion of predictors,
providing insights into each significant variable through a comprehensive
sensitivity analysis. This paper provides insights into the predictive uncertainty
and interpretability of ML algorithms for LSM, contributing to future research in
South Korea and beyond.
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1 Introduction

Landslides are natural disasters that can potentially cause
considerable damage to infrastructure facilities, people’s lives, and
properties. Therefore, a correct evaluation of landslide susceptibility
is of utmost importance for natural hazard management and
mitigation (van Westen et al., 2008; Maes et al., 2017). One of
the solutions to minimize the negative impacts that landslides may
cause is the LSM of vulnerable areas. LSM is the process of
identifying areas more susceptible to landslides by analyzing a
range of factors, such as geomorphological or geological, that
influence the likelihood of landslides (Pardeshi et al., 2013).

Landslides can be categorized according to their causes, for
example, shallow landslides, deep-seated landslides, and rockfalls.
Different combinations of conditions cause each type of landslide
and often require specific approaches to predict susceptibility. For
example, shallow landslides are mainly caused by soil erosion, slope
instability, and saturation (Jiang and Huang, 2016; Jiang and Huang,
2018; Thang et al., 2022), while deep-seated landslides are usually
triggered by the underground movement of soil and rock (Abella and
Westen, 2008). The factors that affect landslide susceptibility are diverse
and include geological factors (e.g., rock type, soil type, the structure of
the rock layers), geomorphological characteristics (e.g., slope angle,
aspect, curvature), hydrological factors (e.g., precipitation, drainage,
groundwater), or climatic factors (e.g., temperature, vegetation, land
use) (Shano et al., 2020). These components have different levels of
importance, depending on the type of landslide and location.

Traditional methods for LSM include the analytical hierarchy
process (Yalcin, 2008), logistic regression (Ayalew and Yamagishi,
2005), weights of evidence (Islam et al., 2022), and frequency ratio
(Aditian et al., 2018; Hoa et al., 2023). These methods often require
expert knowledge and the use of qualitative data, which may be
difficult to obtain (Reichenbach et al., 2018). Additionally,
traditional methods usually have limitations when dealing with
large datasets and identifying complicated relationships in the
dataset (Liu S. et al., 2023).

ML is an area of artificial intelligence that enables computers to
extract information from the input without being specifically
instructed (Ghasemian et al., 2022; Le and Le, 2024). It is
frequently utilized in various applications, including bias
correction (Nguyen et al., 2023) and streamflow prediction (Hien
et al., 2023). ML approaches have been increasingly applied in LSM
in recent years because of their ability to identify complex
relationships in the dataset and make highly accurate predictions
(Ado et al., 2022; Huang et al., 2024b). Several types of ML methods
have been used in LSM, such as supervised learning (Khalil et al.,
2022), unsupervised learning (Fang et al., 2021), and deep learning
(Liu M. et al., 2023). Supervised learning is the most prevalent
technique for LSM as it uses a labeled dataset in which input and
output variables are known. For example, Peethambaran et al.
(2020) compared supervised learning algorithms for LSM in part
of the Indian Himalayas. Pham et al. (2016) evaluated the landslide
susceptibility for the Uttarakhand area of India. They reported that
the SVM algorithm outperforms other techniques such as Network
Bayesian, Naive Bayes, and Logistic Regression (LR). Merghadi et al.
(2020) examined and compared several ML approaches for a study
in Algeria. The authors concluded that the RF algorithm provides
reliable performance in LSM. Another investigation conducted in

Ardanuc, Turkey, by Akinci and Zeybek (2021) confirmed the
superiority of ML techniques such as RF, SVM, and LR in
generating LSMs compared to traditional statistical methods.

Unsupervised learning has also been used in LSM for risk
assessment and management (Zhu et al., 2020). These algorithms
are used to identify patterns or areas with similar characteristics and
group them. Moreover, they are often used with supervised learning
to improve LSM (Liang et al., 2021; Su et al., 2022). Deep learning-
based LSM has recently become an increasingly prominent research
area (Bui et al., 2020). In the study by Hamedi et al. (2022), they
employed a convolutional neural network and long short-term
memory to detect landslide-prone locations in the Ardabil area
of Iran. Dao et al. (2020) introduced a deep neural network to
predict landslide susceptibility in Vietnam’s Muong Lay region
based on a record of 217 landslide events collected. The studies
listed above have illustrated the advantages of ML algorithms in
processing large data sets and making highly accurate predictions,
especially in LSM. However, the predictions made by these models
are often associated with an uncertainty that needs to be quantified
and evaluated (Huang et al., 2022). Furthermore, there have not
been many studies on uncertainty analysis of ML algorithms in LSM
up to date.

For ML models, uncertainty analysis is an essential step in
evaluating their performance and understanding the confidence
level of the predictions (Abdar et al., 2021; Mohammadifar et al.,
2022). In the context of LSM, the uncertainty of the predictions can
be caused by various sources, for instance, different landslide
boundaries (Huang et al., 2022), the variability of the input
dataset (Gaidzik and Ramírez-Herrera, 2021; Huang et al.,
2024a), the complexity of the algorithm, or the limited sample
size of the data (Tang et al., 2023). There are several methods for
uncertainty analysis of ML algorithms, such as bootstrapping,
Monte Carlo simulation, and Bayesian model averaging.
Bootstrapping is a resampling strategy that generates numerous
samples from the original dataset before fitting the model to each
one (Gewerc, 2020). Monte Carlo simulation is a method that
produces multiple scenarios by randomly sampling the input
variables, and then the model is applied to each scenario (Han
et al., 2011). Bayesian model averaging is a method that combines
multiple models to produce a final prediction, and the uncertainty is
evaluated based on the weights assigned to each model.

This research will concentrate on the uncertainty analysis of ML
models using bootstrapping and Monte Carlo approaches.
Bootstrapping is a non-parametric method that does not assume
any specific probability distribution for the data (James et al., 2013).
Monte Carlo simulation is a stochastic method that can handle
complex models and non-linear relationships (Grana et al., 2020).
These methods provide a way to estimate the uncertainty of the
predictions by creating many tests from the data and model. They
are two popular uncertainty analysis techniques inMLmodels (Guo,
2020). Despite this, the comparison of these methods in LSM is still
limited. Therefore, the primary motivation of this study is to
generate LSMs using various ML models, followed by an in-
depth analysis of the uncertainty and interpretability of these
models. The following are the specific objectives of this study:

• To develop LSMs using five ML algorithms, including KNN,
SVM, RF, XGB, and LGB. These models have been selected
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based on their diverse methodologies and proven track records
in LSM. They are trained on a dataset of landslide occurrences,
and their hyperparameters are tuned by Bayesian
optimization.

• To benchmark the performance of five models using metrics
like accuracy, Kappa coefficient, and F1 score. This
benchmarking will serve as a baseline to assess the efficacy
of each algorithm.

• To compare the performance of the bootstrapping and Monte
Carlo techniques in estimating the uncertainty of the ML
models. The investigation into the uncertainty aspect involves
a detailed examination of the stability and consistency of
model predictions across multiple simulations.

• To conduct a sensitivity analysis of the input variables,
determining their individual and combined influence on
the model outcomes. This includes assessing the impact of
both the inclusion and exclusion of predictors, thus
establishing a holistic understanding of their significance.

• To analyze the interpretability of the ML algorithms through
SHAP (SHapley Additive exPlanations) values, providing an
understanding of individual feature contributions to the
model’s decision-making process. This analysis is crucial
for explaining the model outcomes and ensuring that the
LSMs are transparent and justifiable.

In the study, we selected the Inje area in Gangwon Province of
South Korea as the area for LSM and quantification of ML
algorithms. Due to the steep mountainous terrain, the Inje area is
landslide-prone (Lee et al., 2016). By achieving these objectives, this
study aims to improve the reliability and interpretability of ML
models in LSM and provide a comprehensive understanding of the
roles different predictors play in the model’s predictive capabilities.
The findings from this study will contribute valuable insights for the
LSM in South Korea and set a precedent for similar studies in the
domain of geospatial predictive modeling.

2 Materials and methods

2.1 Data and study area

Inje County is situated in the eastern part of the Korean
Peninsula, in Gangwon Province of South Korea. It has a humid
continental climate influenced by the monsoons, with hot and wet
summers and cold and dry winters (Kadavi et al., 2019). With a total
area of 1,172 km2 and a low population density compared to other
regions in South Korea, Inje County is surrounded by mountain
ranges. It is known to be one of the snowiest areas in the country
(Lee C. et al., 2015). The yearly rainfall in the area ranges from
1,300–1,900 mm, primarily concentrated in the mountainous
regions (Lee S. et al., 2015). Inje also experiences a wide range of
temperatures, with the average temperature ranging from 6.6°C to
13.1°C. January has the lowest average maximum daytime
temperature of −1°C, whereas August has the highest average
maximum temperature of 23°C.

Characterized by its steep mountainous terrain, Inje County is
particularly vulnerable to landslides, which pose significant risks to
infrastructure, transportation networks, and local communities (Le

et al., 2023). Landslide morphology in this region varies widely,
ranging from shallow debris flows on steep slopes to deeper-seated
landslides in more stable but geomorphologically sensitive areas
(Korea Forest Service, 2021). These landslides are typically triggered
by intense rainfall events during monsoon seasons or rapid
snowmelt, and their occurrences are exacerbated by the
geological composition of the region (Lee et al., 2009), which
includes friable sedimentary layers interspersed with more
resistant igneous and metamorphic rocks (Lee et al., 2021). This
geological variability contributes to differential erosion rates and
structural weaknesses that predispose the landscape to slide events.
Therefore, LSM for the Inje area is essential in managing and
mitigating adverse impacts caused by landslide disasters. Figure 1
depicts the geography of Inje County.

This investigation utilizes high-resolution geospatial data, with a
grid size of 10 m × 10 m, effectively capturing the intricate
topographical details crucial for LSM. The study area, spanning
dimensions of 3,148 × 2,699 cells, covers a comprehensive range of
landslide-prone landscapes in the Inje area. The data sources
included ten key parameters that are commonly used to assess
landslide potential, as recommended and provided by the National
Institute of Forest Science, South Korea. These parameters are
described in Table 1. In addition to these factors, landslide
occurrence data from 2005 to 2019 were carefully and long-term
collected from the database of the Korea Meteorological
Administration. The high-resolution raster format of this dataset
enables precise identification of landslide sites, ensuring a thorough
representation of landslide-prone areas in the study.

2.2 Data pre-processing

As mentioned, the geospatial dataset of factors that may affect
landslide risk in Inje was retrieved based on the recommendation of
the National Institute of Forest Science, South Korea. The pre-
processing of the landslide and environmental datasets is a multi-
stage process. Firstly, the landslide inventory, collated from various
sources, including aerial imagery, drone surveys, and field
assessments, is rasterized to align with the 10 m × 10 m grid cell
size of the environmental factors. This high-resolution approach
allows for detailed mapping, where each landslide event is
represented across multiple adjacent grid cells, reflecting the
actual scale and impact of the event. After rasterization, cells
affected by landslides are identified and cataloged. This involves
a detailed inventory of landslide occurrences marked on the
rasterized grid. The ten factors are then layered onto the
digitized landslide data. This process creates a comprehensive
dataset, extracting information from all layers for each cell. The
last step categorizes these cells as either “landslide” or “non-
landslide” based on their properties. These factors are depicted
in Figure 2.

After the data were processed and analyzed, it revealed that
14,377 grid cells recorded landslide sites, a considerably smaller
number than the number of cells that did not record any landslide.
This imbalance between the two groups of data is a common issue in
practice, which may result in biased techniques that fail to work when
applied to the minority group. This is because ML algorithms tend to
classify the majority class correctly but ignore the minority class or
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classify it inaccurately. In order to address this issue and enhance the
performance of the ML techniques, we resampled the original data
using several methods, like the Tomek Links (Tomek, 1976) and the
Near Miss (Zhang and Mani, 2003). The data processing resulted in a
final dataset with 28,754 samples (cells), consisting of 14,377 non-
landslide samples and 14,377 landslide samples.

The total dataset comprised 28,754 instances, each
represented by ten predictive features. These instances are
labeled into two classes, indicating the presence (1) or absence
(0) of a landslide, which are almost equally distributed. This
dataset was partitioned into training and testing subsets with a
stratified split of 80% training and 20% testing, resulting in
23,003 instances in the training set and 5,751 in the testing
set. Stratification was crucial here to ensure that the class
proportions in both subsets accurately mirrored the overall
dataset, with approximately equal representation of the two
classes (1 and 0) in the testing set (2,876 and 2,875 instances,
respectively). This methodological choice is vital for preserving
class distribution parity between the training and testing phases,
thereby enabling a fair assessment of model performance across

both subsets. Before modeling, the feature values were
normalized using the MinMaxScaler, ensuring that the feature
scaling from 0 to 1 did not introduce bias into the distance
computations used in algorithms like KNN and maintained
consistency across all models. The models were then trained
on the scaled training data and subsequently assessed on the
scaled testing data.

2.3 Model selection and tuning

2.3.1 Random Forest
RF is an ensemble algorithm for classification that generates

more accurate and robust predictions by integrating the predictions
from various decision trees (DTs) (Breiman, 2001). This method is
based on creating an ensemble of DTs, and each is constructed using
a distinct data sample and a set of input variables selected at random
(Tin Kam, 1998). RF produces the final prediction for classification
tasks by aggregating the votes given by each DT (see Figure 3A). This
approach is powerful, effective, and applicable to various datasets

FIGURE 1
Location of the studied region and distribution of landslide sites.

TABLE 1 Information on several factors that cause landslides.

No. Factor Description

1 Soil depth The thickness of the soil layer on the surface

2 Forest condition Status of the vegetation in the area, including the type and density of the trees

3 Tree diameter The average diameter of trees in the area

4 Bedrock The solid rock that underlies the soil layers

5 Curvature The shape of the terrain, including its slope, contour lines, and gradient

6 Azimuth The direction of the slope

7 Slope The angle at which the terrain rises from the bottom to the top of a slope

8 TWI The degree of saturation of the soil

9 Catchment area The total area of the drainage basin

10 Catchment length Length of the drainage basin

Here, TWI, means the topographic wetness index.
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while resisting overfitting. Additionally, RF can handle high-
dimensional data and identify non-linear relationships in the
data, making it a popular choice for multiple applications.

2.3.2 XGB
XGB is a popular gradient-boosting framework that uses DTs as

the base model. Its efficiency and scalability suit large, high-
dimensional datasets (Chen and Guestrin, 2016). This algorithm
incorporates a regularized model formalization to prevent
overfitting. It also includes enhancements such as a second-order
approximation of the Taylor series of the loss function and weight-
based DT pruning (see Figure 3B). These improvements make XGB
a powerful tool for various ML tasks, including classification,
regression, and ranking. Its ability to handle diverse data types
and both categorical and numerical features further adds to its
appeal and versatility.

2.3.3 LGB
Similar to the XGB algorithm that employs tree-based

learning, LGB is developed to be effective and scalable. It is
especially suitable for massive or high-dimensional datasets
(Meng et al., 2016). LGB also uses DTs as the base model and

builds an ensemble of trees to make predictions. However, LGB
introduces several enhancements to the traditional gradient
boosting framework, such as using a histogram-based
algorithm for faster training and leaf-wise tree growth for
better accuracy. LGB applies leaf-wise tree growth in contrast
to XGB, which applies level-wise tree growth (Ke et al., 2017) (see
Figure 3C). Additionally, LGB can handle categorical features
natively and has built-in parallel and GPU computing support.
This makes LGB an efficient and powerful tool for various ML
tasks, including classification and regression.

2.3.4 KNN
KNN is a classification technique using instance-based learning

(Cover and Hart, 1967). The classification of new data is decided
based on how similar it is to existing data in the training sample. The
algorithm uses the distance metric, such as the Euclidean distance, to
determine how far apart the new data point is from each point in the
dataset. The K-nearest points are subsequently selected, with K
being a user-specified parameter. The group with the highest
frequency among the K nearest points is then given the new
point (Figure 3D). KNN is a simple approach that is effective
across various data. However, when the training data is

FIGURE 2
Several variables cause landslides. (A) Soil Depth, (B) Forest Condition, (C) Tree diameter, (D) Bed Rock, (E) Azimuth, (F)Curvature, (G) Slope, (H) TWI.
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significant, it may become computationally expensive since the
distance between the new point of data and existing points must
be calculated. Despite this, KNN remains a popular choice for
classification tasks due to its efficiency across diverse input types.

2.3.5 SVM
SVM is a classification technique that tries to identify the

optimal decision boundary, or hyperplane, in the feature space
for separating classes (Cortes and Vapnik, 1995). It works this by
utilizing support vectors, which are data points nearest to the
hyperplane, to define the location of the decision boundary (see
Figure 3E). SVM produces an evaluation demonstrating the
probability of the data falling into one of two classes. Although
this algorithm demonstrates versatility and robustness, it may
require significant computational resources to process on a
large scale.

2.3.6 Hyperparameter tuning using Bayesian
optimization

Hyperparameter tuning is one of the crucial processes in
developing ML models because it helps to optimize the
performance of the algorithms. This procedure aims to identify
the most suitable combination of hyperparameters for a given task.
This research used Bayesian optimization to tune hyperparameters
for five ML models. Bayesian optimization is a probabilistic model-
based optimization method that uses Bayesian inference to balance
exploration and exploitation in the optimization process (Frazier,
2018). It has been successfully employed to optimize the
hyperparameters of five ML algorithms in this study, where the
objective was to maximize the classification accuracy of landslide
predictions. This method builds a surrogate model, usually a
Gaussian Process, to approximate the objective function, which
in this case is the accuracy score of a validation set. The

FIGURE 3
Illustration of five ML algorithms. (A) RF, (B) XGB, (C) LGB, (D) KNN, (E) SVM.
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surrogate model is updated iteratively as new observations
(hyperparameter combinations and their corresponding
accuracies) are made.

The Bayesian optimization process involves two main
components: the surrogate model and an acquisition function.
The surrogate model provides a belief about the objective
function (model accuracy) landscape and is updated as new data
points are evaluated. The acquisition function guides the selection of
the next set of hyperparameters for assessing and balancing
exploration of the hyperparameter space (testing new and
potentially better regions) and exploitation (refining areas that
have shown promise). The probabilistic nature of Bayesian
optimization provided a significant advantage in handling the
non-linear and non-convex nature of hyperparameter tuning
landscapes, ultimately leading to more effective and efficient
model tuning compared to grid or random search methods,
especially in high-dimensional spaces (Sameen et al., 2020).

In the case of this study, the hyperparameter optimization was
conducted separately for each model—KNN, SVM, RF, XGB, and
LGB. Each model’s hyperparameters were optimized over specified
ranges using the Bayesian optimization framework, which efficiently
navigated the high-dimensional space to find optimal settings. The
following table (Table 2) presents the details of the optimized
hyperparameters for each model:

2.4 Bootstrapping andMonte Carlomethods

2.4.1 Bootstrapping method
Bootstrapping is a statistical method that involves generating

multiple samples from the original dataset with replacements to
estimate the variability of a statistic (Efron and Tibshirani, 1994).
This method is commonly used in various ML applications,
especially for exploring uncertainty in models sensitive to small
training data changes. By analyzing the variability of the predicted
results, bootstrapping provides a robust way to evaluate the stability
and robustness of the algorithm (Gewerc, 2020). In LSM,
bootstrapping can be utilized to estimate the uncertainty in the
model predictions by repeatedly sampling the training data and
fitting a new model to each sample. For this work, the bootstrapping
technique was employed for 1,000 simulations to derive a range of
performance metrics and to quantify the overall uncertainty through
statistical measures like mean and standard deviation.

2.4.2 Monte Carlo method
The Monte Carlo simulation is a statistical approach for evaluating

model uncertainty and sensitivity. This technique generates multiple
random simulations from a set of assumptions and analyzes the outputs
to understand the variability of the model predictions. The basic idea
behind the Monte Carlo method is to simulate the problem of interest

TABLE 2 Optimized hyperparameters for ML models using Bayesian optimization.

Model Optimized hyperparameters Hyperparameter ranges Optimal values

KNN n_neighbors (number of neighbors) 2–200 3

p (power parameter for the Minkowski metric) 1–2 1

SVM C (regularization parameter) 1–1,000 940.916

gamma (kernel coefficient) 0.1–1.0 0.946

RF n_estimators 10–1,000 16

max_depth 1–50 48

min_samples_split 2–20 2

min_samples_leaf 1–20 2

XGB n_estimators 10–1,000 732

max_depth 1–50 24

learning_rate 0.01–1.0 0.02265

min_samples_split 2–20 17

min_samples_leaf 1–20 18

subsample 0.1–1.0 0.197

LGB num_leaves 5–200 80

max_depth 5–200 75

learning_rate 0.01–1 0.336

n_estimators 2–200 39

min_child_samples 5–20 9

subsample 0.5–1.0 0.706

colsample_bytree 0.1–1.0 0.961
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using random numbers and then use the results of these simulations to
estimate the solution (Brownlee, 2019). This method operates on the
assumption that if a sufficient number of random samples are drawn
from a given probability distribution, the average of these samples will
approach the distribution’s expected value (Guo, 2020). The Monte
Carlo simulation is utilized in this work to assess the model uncertainty
by generating 1,000 simulations from the input data. This provides a
comprehensive understanding of the robustness and stability of the
model predictions.

2.5 Evaluation metrics

The assessment measures used for this work include accuracy,
Kappa score, and F1 score. Accuracymeasures the proportion of correct
predictions, while the Kappa score considers the agreement between the
forecasts and the actual data. It adjusts for chance agreement and runs
from−1 to 1, with 1 indicating an excellent agreement and−1 indicating
no agreement beyond chance. The F1 score, on the other hand, is a
balance between precision and recall, which measures the model’s
capacity to classify positive events while avoiding false positives
accurately. These metrics offer a thorough understanding of the
model’s effectiveness and are used to compare the results of ML
models in LSM. Let TN (true negative), TP (true positive), FN (false
negative), and FP (false positive) be the four main components in a
confusion matrix. The following is a description of these parameters
Eqs 1–3:

Accuracy � TP + TN

TP + FP + TN + FN
(1)

Kappa � OA − EA

1 − EA
(2)

F1 Score � 2 · Precision · Recall
Precision + Recall

(3)

Where OA (Observed Agreement) is the proportion of times
that the two raters agree on the classifications; EA (Expected
Agreement) is the expected agreement between the two raters
based on their categories; Precision is the proportion of TP to the
total number of TPs and FPs; and Recall is the proportion of TPs to
the total number of TPs and FNs.

3 Results and discussion

3.1 Performance of ML algorithms

The effectiveness of ML models in LSM is measured through
statistical criteria such as accuracy, Kappa score, and F1 score. These
results are listed in Table 3 and visualized in Figures 4, 5.

From Table 3 and Figure 4, it can be observed that all five
algorithms perform well, with accuracy and F1 scores ranging from
0.916 to 0.947, while the Kappa values have a lower range (0.837–0.894).
Among algorithms, the highest accuracy value was recorded by XGB
and LGB, at 0.947, followed by RF with a score of 0.941. KNN and SVM
showed a slightly lower accuracy than the other techniques but were still
high at about 0.92. The Kappa score, which measures the agreement
between the predictions and the actual observations, depicts that the
XGB and LGB algorithms have the highest Kappa score of 0.89,
followed by RF with 0.88. The KNN and SVM algorithms have
slightly lower values of 0.84. A similar trend is also seen in the case
of the F1 score, which is used to evaluate the balance between recall and
precision. KNN and SVM exhibit significantly lower performance than
the other three models, with values of only about 0.92. XGB, LGB, and
RF algorithms demonstrate better effectiveness as their F1 scores are
approximately 0.94. The results indicate that all algorithms have high
accuracy in classifying landslide events and have a good balance in
precision and recall.

Generally, the algorithms used for comparison show their
effectiveness, reflected in the reported statistical criteria. The
accuracy of all models in classifying landslide risk is higher than
0.92. Besides, it can be seen that tree-based algorithms (XGB, RF,
LGB) generally performed better compared to KNN and SVM
algorithms. The accuracy score, Kappa score, and F1 score of
these models were higher than those of KNN and SVM. Among
them, XGB and LGB offer a slight performance advantage over RF;
however, the difference in performance is minimal (see Figure 4).

TABLE 3 Performance statistics of ML algorithms.

Metrics KNN SVM RF XGB LGB

Accuracy Score 0.924 0.918 0.941 0.947 0.946

Kappa Score 0.848 0.837 0.881 0.894 0.892

F1 Score 0.921 0.916 0.939 0.946 0.945

FIGURE 4
Classification performance of five algorithms.

FIGURE 5
Performance of five algorithms (Precision and Recall values) in
terms of landslide class.
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This trend suggests that tree-based models may be better suited for
classification tasks in this particular scenario. One of the reasons for
the improved performance of the tree-based algorithms is their
ability to model non-linear relationships and handle missing data
more effectively than other algorithms. Additionally, these models
often can handle high-dimensional information, making them well-
suited for complex datasets.

Figure 5 provides the classification performance of five models in
the landslide category. The precision score reflects the algorithm’s
ability to correctly recognize the positive cases among all the cases it
has labeled as positive. In this case, SVM has the lowest value of 0.945,
whereas the remaining models have competitive precision, with values
higher than 0.961. A high precision score indicates that the algorithm
can accurately identify positive events. In contrast, a low precision score
may indicate that the model has a high false positive rate. In addition,
the recall score, which measures the algorithm’s ability to identify
positives out of all actual positives correctly, exhibits an opposite trend
in precision. KNN and SVMhave the lower recall scores among the five
algorithms. These recall values range from 0.884 for KNN to 0.926 for
XGB. A high recall score suggests that the algorithm can capture most
positive cases, whereas a low recall score shows that the model has a
high false negative rate.

3.2 Comparison of the uncertainty estimates

This study utilized the Monte Carlo and Bootstrapping
techniques to estimate statistical values (mean and standard
deviation) to measure the uncertainty of five ML algorithms used

in LSM. After producing 1,000 predictions for the testing dataset,
equivalent to performing 1,000 samplings on the training set for
each method, the outcomes are detailed in Table 4 and Figure 6.

Table 4 presents the performance statistics of fiveML algorithms
in estimating the uncertainty of LSM using both Monte Carlo and
Bootstrapping methods. The results indicate that all five algorithms
achieved high mean accuracy scores, ranging from 0.909 to 0.945 for
both ways. Specifically, XGB presented the highest mean accuracy of
0.945, followed closely by LGB at 0.944 and RF at 0.942. The KNN
and SVM models displayed mean accuracy scores of 0.923 and
0.919, respectively. All the algorithms exhibited relatively low values
for the standard deviation, suggesting a limited level of variance in
their performance. In particular, SVM had the lowest standard
deviation among the five algorithms, standing at 0.0009 for the
Monte Carlo method and 0.0015 for the Bootstrapping method. This
reflects SVM’s ability to yield more consistent results than the other
models. In contrast, KNN presented the highest standard deviation
values of 0.0026 for the Bootstrapping method and 0.0012 for the
Monte Carlo simulation.

Comparing the results between the two uncertainty estimation
methods, it’s evident that the mean accuracy scores produced by the
Monte Carlomethod are slightly superior for most of the algorithms.
Regarding standard deviation, the Monte Carlo method consistently
returned lower values than the Bootstrapping method. This
indicates that the Monte Carlo simulation might be more adept
at producing precise and consistent uncertainty estimates than
Bootstrapping. The distinctions between the two methods are
further illustrated in Figure 6, where box plots display the
statistical data and the distribution of the uncertainty estimations.

In a broader context, although both the Monte Carlo and
Bootstrapping methods are utilized for uncertainty analysis, their
fundamental mechanisms differ. The Monte Carlo approach relies
on random sampling from a defined distribution to generate
outputs, whereas Bootstrapping involves resampling directly from
the dataset. In terms of consistency and accuracy, the slight edge of
the Monte Carlo method in this study may underline its suitability
for estimating the uncertainty in LSM.

3.3 Sensitivity analysis

In order to offer a thorough perspective of the importance of
predictors and examine their influence on model performance, this
study performed a sensitivity analysis of these variables. The
importance of predictors is quantified by shuffling their values

TABLE 4 Performance statistics of uncertainty estimate methods for accuracy metric.

Model Mean Standard deviation

Monte Carlo Bootstrapping Monte Carlo Bootstrapping

KNN 0.923 0.909 0.0012 0.0026

SVM 0.919 0.918 0.0009 0.0015

RF 0.942 0.938 0.0012 0.0018

XGB 0.945 0.941 0.0012 0.0017

LGB 0.944 0.938 0.0016 0.0019

FIGURE 6
Box plots of methods for estimating the uncertainty of
algorithms.
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and observing the impact on model accuracy. This technique is
referred to as important for permutation features. The results
quantifying the effect of ten input variables for ML algorithms
are summarized in Table 5 and Figure 7.

The numbers in Table 5 and Figure 7 represent the average
feature importance calculated from the models during training. The
results show that the predictor variables play different roles in each
ML algorithm. Soil depth is the most important predictor for
algorithms except for SVM and XGB. In the SVM algorithm, Soil
depth has a relatively high importance score of 0.159 compared to
the other predictors. Meanwhile, in the XGB model, Soil depth ranks
second in importance, scoring 0.137. The corresponding values for
the KNN, RF, and LGB algorithms are 0.180, 0.167, and 0.148,
respectively. Similar to Soil depth, TWI is also a crucial variable that
contributes to the effectiveness of MLmodels. Its importance ranked
first among the SVM and XGB algorithms with a value of 0.185 and
second in the remaining algorithms (KNN, RF, and LGB) with
values ranging from 0.076 to 0.015.

Other variables such as Forest condition, Tree diameter, Bedrock,
and Slope also play essential roles in the models, but their
importance levels vary. A similar trend can be seen in the case of
Curvature and Azimuth, where these predictors contribute

significantly to the accuracy of tree-based algorithms compared
to KNN and SVM. Both Catchment area and Catchment length have
relatively low importance in all algorithms, which suggests that they
might not be critical factors in this study area.

A notable discrepancy is observed in the importance
assigned to Curvature, particularly in the KNN model.
Curvature, which contributes significantly to the accuracy of
tree-based algorithms like RF, XGB, and LGB, has a lower impact
in the KNN model, scoring only 0.017. This divergence in
importance can be attributed to the intrinsic operational
differences between the algorithms. KNN’s methodology,
which relies on proximity in feature space, does not
inherently model complex interactions between features as
effectively as tree-based models. Instead, KNN treats
distances uniformly across all dimensions unless explicitly
weighted, possibly underplaying Curvature’s predictive power,
which is sensitive to local changes in topography. In addition,
KNN’s performance may be particularly sensitive to the choice
of distance metric and the scale of features, which can result in
lesser emphasis on curvature if it varies smoothly compared to
more abrupt changes in other features.

The experimental results generally reveal that different ML
models have varying degrees of sensitivity to various variables.
Despite this, several parameters such as Soil depth, TWI,
Curvature, and Azimuth have a more pronounced influence on
the models, especially tree-based models such as RF, XGB, and LGB.
As a result, it is essential to consider various algorithms to obtain an
in-depth comprehension of the impact that predictors have on the
likelihood of a landslide happening.

3.4 Interpretability of ML models

In addition to the importance of the permutation feature, the
interpretability of theMLmodels was further explored by examining
the SHAP values. SHAP values provide a robust framework for
interpreting predictions of ML algorithms. They quantify the extent
to which each feature contributes to the prediction of a given sample.
The impact of features interpreted by SHAP values for each ML
algorithm is illustrated in Figure 8 (cases a-e).

From Figure 8, the distribution range for each feature’s SHAP
values reflects the diversity of its impact, with wider spreads
indicating more significant variability in influencing the model
outcomes. In addition to the findings presented in Subsection
3.3, SHAP values corroborated the considerable influence of
specific predictors, such as Soil depth and TWI, across different
ML algorithms. However, unlike the average impact scores obtained
previously, SHAP values present more nuanced information,
revealing the variability and distribution of feature impacts for
each prediction. For instance, while Soil depth consistently
appeared to be a leading factor in both analyses, SHAP plots
uncovered its varying levels of influence across different cases
within the models, highlighting its pivotal role in model
decisions. Similarly, for features like Curvature and Azimuth, the
SHAP plots provided additional insights into their contribution,
which were not fully captured by the permutation feature
importance scores, especially in their interaction with
other variables.

TABLE 5 The importance of predictors in ML models.

Variable KNN SVM RF XGB LGB

Soil depth 0.180 0.159 0.167 0.137 0.148

Forest condition 0.074 0.033 0.044 0.018 0.022

Tree diameter 0.047 0.023 0.026 0.009 0.013

Bedrock 0.043 0.037 0.035 0.021 0.030

Curvature 0.017 0.065 0.120 0.122 0.107

Azimuth 0.067 0.015 0.108 0.124 0.135

Catchment area 0.000 0.000 0.073 0.004 0.043

Catchment length 0.001 0.022 0.049 0.024 0.040

TWI 0.076 0.185 0.165 0.185 0.143

Slope 0.044 0.033 0.073 0.055 0.048

FIGURE 7
Variable importance of five algorithms.
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Moreover, the SHAP analysis offered a fresh perspective on the
relative importance of features that permutation importance had
deemed less influential. Catchment area and C. length, which
appeared to have a lesser role in the sensitivity analysis, exhibited
instances of higher impact within specific models when observed
through the SHAP value plots. In the case of tree-based algorithms
such as RF, XGB, and LGB, SHAP values emphasize the non-linear
and complex interactions of features in the models, consistent with
the observed trends in the importance of permutation.

The detailed analysis through SHAP values not only models
understanding but also strengthens confidence in model predictions
by shedding light on their reasoning. It also emphasizes themultifaceted

nature of model interpretability, where each algorithm uniquely
navigates the feature space. It also accentuates the multi-dimensional
nature of model interpretability, where each algorithm uniquely
navigates the feature space. Therefore, an in-depth and systematic
approach is needed to evaluate the model in LSM.

3.5 Assessment of individual predictors on
ML models

Building upon the previous analyses, the study explored the
intricate dynamics of how individual predictors modulate the

FIGURE 8
SHAP summary plots for ML algorithms. Features positioned higher on the y-axis will have amore significant influence on themodel output. Positive
SHAP values, extending to the right, indicate a positive correlation with the model’s prediction likelihood. (A) KNN, (B) SVM, (C) RF, (D) XGB, (E) LGB.
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performance of five distinct ML algorithms using two independent
evaluation methods. The first method involved training ML models
with various combinations of predictors, ranging from a single
variable to all ten, and using Bayesian optimization to fine-tune
the parameters. The comparative Kappa scores for each model are
presented in Figure 9. The second method systematically excluded
one predictor at a time, retraining and optimizing the models with
the remaining variables, with findings summarized in Figure 10.
These figures display the Kappa scores, providing insights into the
variable significance across different algorithms.

Figure 9 illustrates the Kappa scores obtained when different
predictors are added sequentially, offering insights into how the
inclusion of each variable enhances model performance.
Initially, the Kappa scores for all models were identical when
only the Soil depth predictor was included, each scoring 0.754.
Adding TWI had a negligible effect, marginally increasing the
scores to 0.755. The inclusion of Azimuth and Curvature
predictors resulted in a notable increase in Kappa scores
across all models, with values reaching approximately
0.793 and 0.801, respectively.

A significant performance leap was observed with the addition
of the Slope predictor, where the Kappa scores for KNN and SVM
increased to 0.855 and 0.861, respectively, while the RF, XGB, and
LGB models showed scores around 0.848 to 0.858. Forest condition
further enhanced the Kappa scores, particularly for XGB and RF
models, reaching 0.909 and 0.902, respectively. The inclusion of Tree
diameter and Bedrock maintained this upward trend, with XGB
achieving a high score of 0.938.

However, the inclusion of the C. area predictor caused a notable
deviation. While KNN, SVM, RF, and LGB models continued to show
improvement or stable Kappa scores, XGB’s Kappa score decreased
significantly from 0.938 to 0.915. This decrease can be attributed to the
potential multicollinearity or redundancy introduced by the C. area
variable, which may have disrupted the interaction effects captured by
the XGB model. Such sensitivity to specific variables underscores the
complexity of the gradient boosting framework, which constructs
additive trees in a sequential manner and can be prone to
overfitting with less relevant predictors.

Figure 10 provides an intriguing reverse analysis, demonstrating
the impact of the absence of each predictor on the model’s Kappa
score. This means the number of predictors in this case is nine
compared to the ten predictors considered in our study. When Soil
depth was excluded, the Kappa scores remained relatively high
across all models, indicating its lesser individual impact than
other predictors. The exclusion of TWI and Azimuth showed
minimal effects on the overall performance, maintaining high
Kappa scores around 0.945 for XGB and LGB models.

Conversely, the exclusion of Slope and F. condition resulted in a more
noticeable drop inKappa scores, especially for theKNNandSVMmodels.
Excluding Tree diameter and Bedrock, which had varying impacts, the
XGB model consistently retained high Kappa scores, demonstrating its
robustness and ability to leverage remaining predictors effectively.

The most significant observation was the inclusion and
exclusion of C. area and C. length. While the inclusion of these
predictors adversely affected the XGB model in Figure 9, their
exclusion in Figure 10 did not significantly reduce the Kappa
scores, suggesting that these variables might introduce noise or
redundancy rather than valuable information. This emphasizes the
need for careful predictor selection and the potential benefits of
feature engineering in optimizing model performance.

The detailed analysis of Figures 9, 10 enhances the
understanding of the individual and collective impact of
predictors on LSM. It underscores the importance of adopting a
holistic view that considers both the inclusion and exclusion of
variables, thereby enhancing the robustness and interpretability of
ML models. In addition, these findings provide a comprehensive
view of the roles that different predictors play in LSM.

3.6 Discussion

The efficacy of ML algorithms in LSM documented in this study
confirms the robustness of tree-based methods, particularly RF,
LGB, and XGB, over KNN and SVM. This reflects a broader
consensus in the field where tree-based algorithms are favored
for their capacity to handle complex, non-linear relationships
within large-scale geospatial datasets (Kalantar et al., 2020;
Merghadi et al., 2020; Solanki et al., 2022).

FIGURE 9
Kappa score analysis across models with individual predictors
included. This figure depicts the change in ML model performance
when the number of variables is added sequentially from left to right,
varying from 1 to 10.

FIGURE 10
Comparative Kappa scores with individual predictor exclusion in
models. This figure evaluates the particular influence of each feature
on the model’s overall performance when absent. A low Kappa score
means the absent variable has a significant effect and vice versa.
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Incorporating high-resolution data in this research provides a
significant advantage over previously utilized lower-resolution
datasets in South Korea, leading to more precise delineation of
at-risk areas (Panahi et al., 2020). The heightened detail available
through high-resolution data enhances the ability of ML models to
capture subtle variations in topography and environmental
conditions that are crucial for accurate LSM (Lee et al., 2004;
Gaidzik and Ramírez-Herrera, 2021).

This study’s integration of quantitative uncertainty assessments
using Monte Carlo and Bootstrapping methods contributes to the
growing discourse on the need for robust uncertainty quantification
in environmental modeling (Nguyen et al., 2021). The consistency
and reduced variability in uncertainty estimates achieved through
the Monte Carlo simulations particularly enhance the reliability of
the LSM results, corroborating the findings from Hien et al. (2024)
on the method’s effectiveness in environmental applications. This
robust uncertainty quantification is essential for building trust in
predictive models and can significantly influence policy decisions
related to disaster risk management.

The sensitivity analysis and the assessment of individual predictors
reveal that Soil depth and TWI are pivotal in influencing model outputs
across all algorithms. These findings resonate with global studies
emphasizing the significant role these factors play in determining
landslide susceptibility (Nsengiyumva et al., 2019; Chen and Li,
2020). Furthermore, the exploration of predictor importance
through both inclusion and exclusion approaches underscores the
nuanced contribution of each variable to model performance. For
instance, the removal of predictors like C. area and C. length
demonstrated their relative dispensability in specific models, which
contrasts with their perceived importance in traditional sensitivity
analyses. This insight is crucial for optimizing data collection efforts,
especially in resource-limited settings where comprehensive data
acquisition may not be feasible.

Moreover, the application of SHAP values for interpretative
analysis provided a sophisticated tool for understanding the
complex dependency patterns between predictors and model
outcomes, as suggested by Lundberg and Lee (2017). This
technique revealed how features like Curvature and Azimuth
impact models differently, offering insights not fully captured by
traditional importance scores. These findings echo the necessity for
advanced interpretative techniques in LSM, as demonstrated by the
complex interdependencies detailed in the model evaluations.

Future studies should consider integrating additional predictive
variables, such as soil moisture and land use, which have been
identified in recent research as potentially significant in enhancing
the accuracy of LSM (Gorsevski et al., 2006; Juliev et al., 2019).
Moreover, the exploration of newer ML algorithms and more
sophisticated uncertainty quantification methods could further
refine the predictive capabilities and reliability of LSM models.

4 Conclusion

This paper systematically compared the performance of five ML
algorithms in landslide susceptibility mapping (LSM),
demonstrating that tree-based algorithms (XGB, RF, and LGB)
outperform KNN and SVM in classification tasks. Tree-based
models effectively handle multi-dimensional data and non-linear

relationships, making them well-suited for the complex datasets
typical of landslide studies.

In addition, this study also evaluated and analyzed the
uncertainty of ML algorithms using Monte Carlo and
Bootstrapping methods. The Monte Carlo has higher mean
accuracy values and a lower standard deviation than the
Bootstrapping method. This means the Monte Carlo technique is
more stable in estimating the uncertainty of ML models for
this study.

Sensitivity analysis and SHAP value interpretations identified
key predictors such as Soil depth and TWI as fundamental to
accurate landslide prediction. The analysis also highlighted the
potential for optimizing models by excluding less influential
predictors like Catchment area and C. length, thereby improving
model efficiency without significant loss of accuracy.

Thesefindings are significant for advancing LSMmethodologies and
environmental informatics by providing a framework for integrating
high-resolution data and robust uncertainty quantification techniques.
The comprehensive approach to model construction and predictor
selection emphasized in this study can guide future research efforts,
leading to more precise and actionable insights.

This work only exploited a limited number of factors commonly
used in LSM. Several other factors can affect landslide susceptibility,
such as soil moisture or land use, which have not been considered.
Therefore, using more extensive predictor variables in future studies
may lead to more accurate predictions.
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