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Extreme high and low temperatures both exert impacts on terrestrial ecosystems.
However, current research still lacks a precise assessment of the risk of vegetation
loss under simultaneous consideration of different temperature stresses and lag
effects. To this end, we propose a methodology for assessing the risk of vegetation
loss under temperature stress that incorporates lag effects, based on weekly
normalized difference vegetation index and temperature data. Quantified risk
probabilities of different terrestrial ecosystems to warming and cooling stresses in
Heilongjiang Province, China. The results of the study revealed a strong association
between vegetation and temperature change during the growing season, reaching
the most sensitive state around 9weeks and 23weeks lag, respectively, with high
spatial consistency. The study identifies the eastern and western edges of the study
area as high-risk zones for vegetation loss, while the risk is comparatively lower in the
northwestern and central regions. The probability of risk increased by about 0.5% for
every 1°C of warming in average temperatures and by about 0.7% for every 1°C of
cooling. This indicates that cooling has a greater impact on vegetation thanwarming.
Farmland ecosystems had a higher change in risk to temperature stress and forest
ecosystems had the least. This study provides new perspectives for understanding
the specific impacts of temperature extremesondifferent ecosystems andprovides a
scientific basis for developing adaptive management measures.
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1 Introduction

Amidst global change, climate warming has provoked global concern, especially
regarding its potential impacts on terrestrial ecosystems. Warmer temperatures may
lead to impaired plant physiology and dysfunctional ecological balance, which may
have far-reaching impacts on biodiversity (Khan et al., 2013), soil and water
conservation (Jia et al., 2022), and the global carbon cycle (Hoover et al., 2022). On the
other hand, vegetation serves as an indicator of global climate change, not only maintaining
the Earth’s biodiversity but also regulating atmospheric carbon dioxide levels. It is a key
component in sustaining the Earth’s life systems (National Research Council, Division of
Behavioral, Policy Division, Board on Environmental Change, Committee on the Human
Dimensions of Global Change, and Committee on Global Change Research, 1999; Rani
et al., 2020). Therefore, assessing and understanding the response of vegetation to climate
change under the backdrop of global warming, particularly the potential risk of vegetation
loss, is crucial for predicting and mitigating the impacts of climate change.
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The response of vegetation to environmental changes often
exhibits a temporal lag, and this lag effect may lead to an
underestimation of vegetation’s response to extreme climatic
events. In many instances, vegetation may require an extended
period to manifest physiological and ecological responses to
environmental changes (Becklin et al., 2016; Gillison, 2019). For
example, extreme high temperatures may affect plant
photosynthesis immediately, but changes in plant growth and
community structure may not be apparent until several
subsequent seasons or even years later (De Boeck et al., 2011).
Additionally, rising temperatures may further affect vegetation
status by altering soil moisture evaporation and plant
transpiration processes, which can also exhibit delayed effects.
Conversely, extreme low temperatures can significantly affect
multiple physiological processes in vegetation (Reyer et al., 2013).
Low temperatures decrease the activity of enzymes within plants,
thereby slowing metabolic rates and leading to reduced growth rates
(Bhattacharya, 2022). Particularly under conditions of extreme low
temperatures, the structure of plant cells may be directly damaged,
leading to cell death. However, current research focuses more on
high temperature conditions and ignores the effects of low
temperatures on vegetation. Therefore, this study addresses both
warming and cooling conditions and their impacts on vegetation,
aiming to comprehensively assess and quantify the lag effects of
different temperatures on vegetation and the probability of
associated risks.

Indeed, in areas with scarce precipitation and higher latitudes,
temperature is a key factor influencing vegetation growth (Fu et al.,
2014; Zhao et al., 2018). Wang et al., 2021 research found that
compared to vegetation in humid regions, vegetation in semi-arid
areas responds more quickly to precipitation changes. Deciduous
broadleaf forests exhibit a response lag of approximately 1 month to
temperature changes, and as this lag time increases, the correlation
coefficient also rises (Lu et al., 2020). These studies provide valuable
references for understanding vegetation dynamics and their
response to temperature changes, but they predominantly focus
on the monthly scale interactions between vegetation and
temperature variations. In fact, different types of vegetation
exhibit variations in the lag time of their response to temperature
changes, which may manifest on decadal, weekly, or even daily
scales. It remains difficult to characterize the lagged effect of
vegetation on temperature change on finer time scales.

Based on this, this study selected Heilongjiang province (HLJ),
which has the highest latitude in China. Not only does it experience
significant annual temperature variations, but its rich diversity of
ecosystems also provides favorable conditions for studying
responses to temperature changes. Particularly, as HLJ serves as
China’s largest commodity grain base (ZHOU and CHENG, 2015),
assessing the risk of vegetation loss due to temperature changes is
especially urgent and critical. To this end, we develop a risk
assessment model for vegetation loss that takes into account
temperature lag effects. Using high-resolution climate and
vegetation data, we have developed a framework that
comprehensively evaluates the risk of vegetation loss under
conditions of both warming and cooling stress. The research
methodology and results are expected to provide a more accurate
tool for relevant sectors such as agriculture and risk management to
help them better understand and manage potential risks to

vegetation under temperature change. This will in turn help to
develop effective ecological conservation and climate adaptation
strategies.

2 Materials and methods

2.1 Study region

The HLJ is located in the northeast of China, is China’s
northernmost and highest latitude province, with a total area of
473,105 km2 (Figure 1). The HLJ belongs to the cold temperate and
temperate continental monsoon climate. It is characterized by low
temperatures and dryness in spring, hot and rainy summers, prone
to flooding and early frost in autumn, and cold and lengthy winters
with a short frost-free period. The regional climatic differences
across the province are significant. The annual average
temperature in HLJ ranges from −4–5°C, with average
precipitation exceeding 500 mm. The climate transitions from
temperate in the south to cold temperate in the north, and
exhibits distinct monsoonal characteristics. The province hosts a
diverse array of vegetation types, with forests and agricultural
ecosystems constituting a significant proportion (Liu and Li,
2024). In addition, the HLJ is located in one of the world’s three
largest black land areas, with the largest arable land area in the
country (Pan et al., 2018). Studying the effects of temperature
change on vegetation is key to securing food production.

2.2 Data

The daily maximum temperature data are sourced from the
Climate Prediction Center Global Unified Temperature dataset,
with a spatial resolution of 0.5° on a daily scale (https://psl.noaa.
gov/data/gridded/data.cpc.globaltemp.html). The gridded daily
Normalized Difference Vegetation Index (NDVI) is derived from
the National Oceanic andAtmospheric Administration) Climate Data
Record of Advanced Very High Resolution Radiometer NDVI
Version 5 (https://www.ncei.noaa.gov). The data features a spatial
resolution of 0.05°. To better align with the temperature data, we have
interpolated the NDVI data to a resolution of 0.25°. In addition,
considering the climatic period of vegetation growth within the year,
only data from the growing season (NDVI from the 15th to 39th week
of the year) were selected for this study. Ecosystem delineation data
fromResource and Environmental ScienceData Platform’s 2020 1 km
resolution (https://www.resdc.cn/DOI/DOI.aspx?DOIID=131).

2.3 Methodology

To comprehensively assess the impacts of both warming and
cooling on vegetation, the Spearman correlation between
temperature and NDVI was calculated at various lag times.
Additionally, the optimal lag times for both periods were
determined by identifying the maximum and minimum
correlation coefficients. Further, a copula function was employed
to jointly model the temperature and NDVI variables at their
optimal lag times for both periods. A copula function is a flexible
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method for representing multivariate joint distributions,
unconstrained by the marginal distributions of random variables
or the types of their joint distribution functions. This avoids
assumptions about linearity or underlying probability
distributions (Sklar, 1959; Nelsen, 2006). For any two random
variables and, the corresponding joint distribution is expressed
as follows

F x, y( ) � C u, v( ) (1)
where C represents the cumulative copula distribution function; u
and v represent the marginal distribution functions of the random
variables x and y, respectively.

Further, the kernel functions are employed to fit the marginal
distributions, as described in Eq. 2. Given the properties of different
types of copula functions and the fact that this study is mainly
concerned with the risk scenarios of warming and cooling on
vegetation loss. We used Clayton (Eq. 3) and Gaussian copula
functions (Eq. 4) to fit the joint probability distribution, respectively.

fh x( ) � 1
nh

∑n
i�1
K

x − xi

h
( ) (2)

where x1, x2, . . . xn are random samples from an unknown
distribution, n is the sample size, K is the kernel smoothing
function, and h represents the bandwidth (Han et al., 2023a).

Cθ u, v( ) � max u−θ + v−θ − 1[ ]−1
θ , 0( ), θ ∈ 0,+∞( ) (3)

∫ϕ−1 u( )

−∞
∫ϕ−1 v( )

−∞
1

2π






1 − θ2

√ exp −s
2 − 2θst + t2

2 1 − θ2( ){ }dsdt, θ ∈ −1, 1( ) (4)

where θ is the Copula parameters, and θ value gained by the
maximum likelihood estimate method in this study.

Based on the joint distribution of the two copula functions
constructed, the Bayesian conditional probability approach can then
be used to assess the conditional probability of the risk of vegetation
loss under temperature stress. In this study, scenarios combining
temperature and vegetation are configured using percentile-based
measures. Given the extensive and patterned nature of the scenario
outcomes, we focus here on the vegetation loss scenarios at the 40th
and 10th percentiles during cooling at the 40th, 30th, 20th, and 10th
percentiles. For better comparison, the warming corresponds to the
60th, 70th, 80th, and 90th percentile scenarios, respectively. In this
case, the conditional probabilities P of temperature and vegetation
can be calculated separately for the combined cooling (Eq. 5) and
warming (Eq. 6) scenarios.

P Y≤y X≤ x|( ) � C FX x( ), FY y( )( )
FX x( ) � C u, v( )

u
(5)

P Y≤y X> x|( ) � FY y( ) − C FX x( ), FY y( )( )
1 − FX x( ) � v − C u, v( )

1 − u
(6)

3 Results and discussion

3.1 Lag effect of NDVI on temperature

In general, vegetation growth is subject to a combination of
climate change and environmental factors. Especially for vegetation
at higher latitudes, the effect of temperature is relatively more

FIGURE 1
Location of the study area and ecosystem delineation.
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pronounced (Huang et al., 2017). Vegetation will vary in its
sensitivity to temperature with different lag times, especially
during the growing season period of vegetation (Wu et al., 2015).
Figure 2A shows the variation of correlation coefficients between
vegetation and temperature changes in HLJ at different weekly time
scales. It is apparent that the maximum positive correlation (r = 0.56,
p < 0.01) and the minimum negative correlation (r = −0.57, p < 0.01)
are achieved at 9 weeks and 23 weeks, respectively. Figures 2B,C
show in detail the changes of NDVI versus temperature in
Heilongjiang Province with a lag of 9 and 23 weeks. In the
period of positive correlation, NDVI shows a synchronous and
stable trend as the temperature increases and decreases. The negative
correlation period shows the opposite change. Relative to changes in
temperature, the variations in NDVI were more pronounced around
the year 2014, beginning with a notable increase from that
year onward.

On the spatial scale, the positive and negative correlation two
periods (Figures 3A,B) showed significance at the 0.05 level for
almost all image elements. They exhibit similar spatial distribution
characteristics, with lower correlation coefficients (regardless of the
direction of correlation) in the central region of HLJ. In the western
and eastern regions, there is a higher level of correlation (direction of
correlation not considered). However, the differences in lag times

are more pronounced. During the period of positive correlation
(Figure 3C), most of the lag times are concentrated within 10 weeks.
In contrast, during the period of negative correlation (Figure 3D),
most lag times exceed 20 weeks, with a noticeable acceleration in lag
as latitude increases. Furthermore, the strong sensitivity between
NDVI and temperature forms the foundation for constructing
bivariate Copula functions, where the direction of correlation
directly influences the outcomes of vegetation loss risk under
various temperature stresses. Therefore, the changes in
correlations illustrated in Figures 2, 3 also provide a good
opportunity to explore the risk of vegetation loss under different
warming and cooling scenarios.

3.2 Risk assessment of vegetation loss under
different levels of temperature stress

Given the complexity and stochastic nature of risk loss (Blauhut,
2020), we have conducted detailed analyses of the probabilities of
vegetation loss at various levels under different temperature stresses
during periods of both positive and negative correlation. During the
period of positive correlation, changes in the probability of
vegetation loss risk as temperatures decrease are displayed

FIGURE 2
Correlation coefficients between NDVI and temperature at different lag times (A), along with changes in NDVI (B) and temperature (C) at
extreme values.
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(Figure 4). It can be observed that as the degree of temperature
reduction intensifies, the risk probability of vegetation loss at the
40th percentile exhibits a significant increasing trend, with the color
deepening to dark red. On the other hand, when the degree of
vegetation loss was at the 10th percentile, it increased with
temperature stress. Although the probability of risk also tended
to increase, it was significantly lower than the probability at the 40th
percentile. Overall, the spatial distribution of risk probabilities under
different scenarios shows a high degree of consistency during the
period of positive correlation. In particular, it tends to have higher
probability values in the eastern and western parts of HLJ, and lower
probability values in the northwestern and central parts of HLJ.

During periods of negative correlation, an increase in temperature
will inhibit vegetation growth. For this reason, we also discussed the
changes in the risk probabilities of vegetation loss due to increases in
temperature (Figure 5). Similar to the results during the period of
positive correlation, as the degree of temperature stress intensifies, the
risk probability of vegetation loss shows an increasing trend.
Moreover, the higher the extent of vegetation loss, the lower the
risk probability becomes. Additionally, the risk probability values
across different scenarios exhibit a high degree of spatial similarity,

mirroring the spatial variations observed in Figures 3A,B. This suggests
that in areas where vegetation is more sensitive to temperature
changes, the risk of loss due to temperature stress is greater. When
we further compare the risk probabilities between the two periods, it is
evident that cooling has a more substantial impact on vegetation than
warming, and the extent of this impact intensifies as the level of
temperature stress increases. Particularly, when cooling reaches the
10th percentile and warming reaches the 90th percentile, the average
difference in the risk probability of vegetation loss at the 10th percentile
is as high as 17%. Risk probability values are greater than 50% for
eastern and western HLJ during cooling. As a result, vegetation growth
conditions in the region are significantly affected by temperature,
warranting increased attention and heat prevention in the area.

3.3 Effects of warming and cooling changes
on ecosystems

In fact, although Figures 4, 5 provide detailed representations of
vegetation loss risk under various scenarios. However, for
government officials and farmers, they might be more concerned

FIGURE 3
Correlation coefficients between NDVI and temperature under periods of positive (A, C) and negative correlation (B, D) and their spatial variation in
lag time.
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about the specific magnitude of temperature changes and their impact
on vegetation. Therefore, we further quantified the risk changes of
vegetation loss at the 40th percentile within each pixel, when
temperatures increase or decrease by 1°C–4°C based on the mean
temperature change (Figure 6). For each 1°C increase in temperature,
the average risk probability increases by approximately 0.5%, while
each 1°C decrease in temperature reduces the risk by about 0.7%. This
indicates that cooling has a greater impact on vegetation thanwarming.
Furthermore, the areas most affected by both warming and cooling are
on the eastern and western sides of the study area, with the smallest
impact observed in the northwest and central regions. These findings
are highly consistent with earlier conclusions and serve to indirectly
validate the accuracy and reliability of this study.

Moreover, we conducted detailed risk analyses for farmland, forest,
grassland and wetland ecosystems separately (Figure 7). Pixel counts for
remaining ecosystem types constitute only about 5% of the total in the
study area, and hence were not considered in this analysis. In both
scenarios, distinct differences in the risk of loss due to temperature stress
are evident across different ecosystems, exhibiting highly consistent
patterns. Among these, the sensitivity to temperature changes ranked
from highest to lowest is farmland, wetlands, grasslands, and forests. The
risk probabilities for each ecosystem increase in a linear fashion.
Simultaneously, this indicates that farmland has the lowest resilience
to temperature stress, while forests exhibit the highest resilience. It has
been shown that farmland ecosystems tend to have low carbon
sequestration capacity and biodiversity, and a relatively weak resilience
in the face of extreme climate events (Seddon et al., 2021). In contrast,

systems such as forests have a higher carbon sequestration capacity and
richer biodiversity. They aremore resilient to climate change, especially in
terms of climate andwater regulation (Roy et al., 2022), and thus relatively
less exposed to risk. These difference not only reveals the vulnerability of
different ecosystems to future climate change, but emphasizes the need to
consider the characteristics of different ecosystems when proposing
measures or strategies such as climate change adaptation.

3.4 Reliability and limitations of the risk
assessment framework

Traditional methods of assessing vegetation risk are common, but
they often rely on deterministic approaches and single-scenario
methods. In contrast to other natural variables such as soil moisture,
runoff, and groundwater, vegetation dynamics are severely dependent
on unilateral changes in precipitation or temperature. For example,
lower precipitation and higher temperatures tend to cause a decrease in
the above variables, thus exacerbating the risk (Han et al., 2021; Han
et al., 2023b). However, vegetation can adjust its state in response to
environmental changes, thus adapting to the evolution of natural
conditions. To this end, this study proposes a model for assessing
the risk probability of vegetation loss from warming and cooling
changes. The risk probability of causing a certain level of vegetation
loss under any temperature stress can be accurately quantified.

Further, we randomly selected a pixel (123.875°E, 46.375°N) and
assessed the reliability of the framework by applying Gaussian and

FIGURE 4
Changes in risk probability of causing different levels of vegetation loss under different levels of temperature stress during the positive correlation
period. Here, X and Y represent temperature and NDVI, respectively, and P denotes the average risk probability value.
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FIGURE 5
Changes in the risk probabilities of vegetation loss at various degrees under different temperature stresses during periods of negative correlation.

FIGURE 6
Changes in risk at the 40th percentile of vegetation loss for warming and cooling of 1°C–4°C compared to average temperatures.
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Clayton copulas to theNDVI and vegetation for both periods (Figure 8).
It can be seen that the distribution ofmost observations and simulations
results is more consistent, i.e., during periods of positive (negative)
correlation, the modelled point changes also show positive (negative)
correlation. More importantly, based on the properties of the copula
function, it can be seen that the Calyton copula function has a more
sensitive lower tail characteristic. Thus, the loss of vegetation under the
cooling scenario can be better captured (Figure 8B). However, several
limitationsmust also be acknowledged in this study. Firstly, althoughwe
chose different copula functions for different scenarios. However, the
uncertainty inherent in the copula model itself also affects and is passed
on to the assessment of the probability of risk (Leng and Hall, 2019).
Secondly, we will only focus on the effect of temperature on vegetation
and lack of consideration of other environmental factors. Therefore,
more environmental factors as well asmore appropriatemethods can be
considered in future studies.

Overall, this study quantifies in detail the effects of warming and
cooling on vegetation loss. It also explores the variability in the response
of different ecosystems to changes in temperature. These provide new
insights into the status of vegetation loss under temperature stress.

4 Conclusion

In this study, two copula functions with Bayesian conditional
probabilities were used to assess the probability of risk to
different vegetation losses under temperature stress in
HLJ. While accounting for lag effects, this study quantified the
impact of temperature increases and decreases of 1°C–4°C on
vegetation loss across different ecosystems. The research
identified that lag effects play a critical role in the risk of
vegetation damage, with varying lag times leading to different

FIGURE 7
Changes in risk at the 40th percentile of ecosystem loss for different ecosystems for warming (A) and cooling (B) 1°C–4°C.

FIGURE 8
Comparison of observed combinations of air temperature and NDVI with simulated random variables using Gaussian (A) and Clayton copula (B),
respectively. Where the red circles and green dots indicate the results of observations and simulations, respectively.
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sensitivities and risks of vegetation loss due to temperature
changes. This study shows that at around 9 weeks and
23 weeks of lag, there is a maximum positive correlation and a
minimum negative correlation with temperature, respectively.
The correlation and risk loss scenarios in HLJ have a similar
spatial distribution. The eastern and western parts of the
province are the most sensitive areas in terms of vegetation
response to temperature and are also at high risk of loss.
Further analysis of the risk changes under warming and
cooling stresses indicates that cooling has a greater impact on
vegetation than warming. Different ecosystems exhibit varied
probabilities of risk under temperature stress, with agricultural
ecosystems showing lower resistance to temperature stress, while
forest ecosystems demonstrate higher resilience.

These findings emphasize the practical importance of integrating
the lagged effects of temperature stress for accurate assessment of
vegetation damage in the context of global climate change.
Additionally, future research should delve deeper into the
interactions between different types of vegetation and their intrinsic
mechanisms for climate adaptability. This would enable a more
comprehensive understanding and prediction of vegetation
responses to temperature stress. Such efforts will provide a scientific
basis for the sustainable management and conservation of ecosystems.
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