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Introduction: Industrialization, urbanization, wars, and conflicts have caused
farmland abandonment and exacerbated food security issues, posing a major
challenge to global food security. Therefore, it is of great significance to monitor
the status of crop abandonment inmajor grain-producing areas. Most of previous
studies using remote sensing technology to extract abandoned farmland have
small scale and low accuracy, and therewas lack of large-scale studies using GF-1
image. Particularly in the Jiangxi Province, as the main grain-producing area of
China, the situation of farmland abandonment is still unknown.

Methods: In this paper, GF-1 WFV remote sensing images are used as the main
data source. A binary decision tree process based on the object-oriented
technology classification and vector similarity function change detection
methods are adopted to extract abandoned farmland information in Jiangxi
Province during 2020–2022 and to describe its spatial pattern.

Results: The results show that the overall accuracy of GF-1 remote sensing image
extraction based on object-oriented technology is 93%, and the Kappa
coefficient is 0.89. The abandoned farmland in Jiangxi Province covers an
extensive area of 3.41 × 105 hm2, with an abandonment rate of 9.87%.
Abandonment is greater in the north and less in the south, with a spatial
distribution pattern characterized by sparse coverage in mountainous areas
and aggregation in plains areas. Farmland abandonment is most severe in the
areas surrounding the northern Poyang Lake Plain, and the degree of farmland
abandonment varies significantly among various prefecture cities as well as
among different counties. The highest rate of farmland abandonment in
prefecture cities was 13.18% and the lowest was 7.13%. The highest rate of
farmland abandonment in the county was 24.22%, and the lowest was 1.99%.

Discussion: The results are helpful in understanding the status of abandoned
farmland in major grain-producing areas. It is believed they are significant for
farmland protection and real-time national food security strategy.
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Highlights

• Abandoned farmland rate and area of Jiangxi Province were
9.87% and 3.41 × 105hm²

• Abandoned farmland in Jiangxi Province is more in the north
and less in the south

• Abandoned farmland area has vast variations between cities
and counties across the province

• Feasibility of extraction abandoned farmland using GF-1
imagery on large-scale was proved

1 Introduction

Farmland abandonment has been one of the major land use
changes worldwide in recent years, and it is also a direct
manifestation of farmland marginalization (Liu et al., 2022;
Wang et al., 2020; Zheng et al., 2023). The economic benefits of
agriculture continue to decline due to the impact of urbanization
and industrialization, and many rural labourers are transferred to
non-agricultural industries, which eventually leads to the large-scale
abandonment of farmland (Wang et al., 2023). Although a reduction
in farmland area plays a positive role in ecological restoration
(Lasanta et al., 2015), increased biodiversity (Rey Benayas and
Bullock, 2012), and regional carbon storage (Henebry, 2009),
food security issues such as a decrease in food production
(Khanal and Watanabe, 2006), regional food shortages (Feng
et al., 2005), and external dependence on food (Kc and Race,
2020) caused by the abandonment of farmland have become
increasingly severe. Among them, major grain-producing regions
often bear the sole responsibility of supplying the nation and even
the world with food. The large-scale abandonment of farmland in
these regions poses a significant threat to regional food security,
attracting widespread attention from scholars domestically and
internationally, as well as from various governments (Wang
et al., 2022). Therefore, timely monitoring of the status of
farmland abandonment in major grain-producing areas and
insight into the spatial distribution of abandoned farmland are
crucial for ensuring national food security.

The degree of economic activity strongly affects the generation
of and change in abandoned farmland. Historically, Europe has been
a hot spot of long-abandoned farmland. During the rise of
industrialization, as early as the middle of the 19th century,
several scholars studied the phenomenon of farmland
abandonment in Western Europe. In the 1990s, due to the
economic and political turmoil brought about by the collapse of
the Soviet Union, a large amount of abandoned farmland appeared
in Central and Eastern Europe, and scholars turned their attention to
the spatial monitoring of abandoned farmland in the former Soviet
Union. The abandonment of farmland in advanced economies such
as in North America also attracted the early attention of academic
circles. The existing research of Asia mainly focuses on developed
countries, but there are few studies on farmland abandonment in
developing Asian countries such as China. Overall, studies on
farmland abandonment in developing countries need to be
supplemented.

Traditionally, two main methods were used to investigate
abandoned farmland: field investigation and remote sensing

identification. The field investigation included farmer household
surveys and statistical surveys. The advantage of the former is that
they can better explore the driving forces and mechanisms of
farmland abandonment and play a key role in determining and
evaluating the trends of abandonment. However, due to the
subjectivity and privacy of farmers and the relatively limited
number of survey objects, the survey results may not accurately
reflect the actual situation of local farmland abandonment. A
statistical survey is generally carried out by government leaders;
although the coverage is wide, the processing time is long, the cost of
capital is high, and the survey results often have a certain degree of
bias. Overall, field investigations have low efficiency, high cost and
weak real-time performance and cannot depict the spatial
distribution pat-tern of abandoned farmland on a large scale.
Remote sensing, on the other hand, has the advantages of low
cost and short duration, which can better compensate for the
drawbacks of field investigations. In recent years, scholars have
used different remote sensing images, mainly from MODIS
(Ramírez-Cuesta et al., 2021), Landsat (Wei et al., 2021),
Sentinel-2, and GF-1, to extract abandoned farmland. MODIS
remote sensing data and Landsat remote sensing data are open-
access, with wide coverage and consistent updates and have been
widely used in large-scale farmland abandonment research.
However, resolution is low, and extraction resolution can be
poor. In contrast, Sentinel-2 imagery has high accuracy and is
favoured in small-scale study areas. Due to complex image
processing and incomplete coverage in some areas, single-source
remote sensing images often need to be combined with other remote
sensing images. GF-1 is a remote sensing image product from China
that can be obtained free of charge and has a simple image
processing process. Its WFV product has a wide imaging
amplitude and wide coverage area, serving as a new remote
sensing data source for monitoring large-scale Earth surface
parameters. However, few studies have applied GF-1 images to
relevant abandoned farmland research, and whether GF-1 images
can be used to extract abandoned farmland on large-scale needs to
be verified.

In previous studies, visual interpretation was the traditional
method for land recognition of remotely sensed images. Although
the traditional visual interpretation can provide more accurate
extraction results, it requires researchers to have professional
knowledge, is inefficient and strongly subjective, and is not
suitable for large-scale identification and extraction. With the
advances in remote sensing extraction technology, feature-based
recognition has become the main recognition method used currently
by scholars (Yu et al., 2024). At present, these methods can be
divided into two categories: traditional pixel-based methods and
object-oriented image processing methods. The traditional pixel-
based methods takes the image pixel as the basic unit and uses the
spectral information of the image to extract information. Supervised
classification techniques, such as maximum likelihood (ML),
minimum distance (MaD) and parallelepiped (Pa), based
unsupervised classification techniques, such as ISODATA and
K-means, have been widely used in ground class recognition (Jie
et al., 2018; Cheng et al., 2018; Qi et al., 2017). However, this
approach uses only spectral information as the basis for
classification, resulting in a ‘salt and pepper’ effect due to spectral
differences within the class, which affects the classification accuracy.
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The object-oriented recognition method only considers the spectral
features of images but also incorporates texture, geometry and
spatial features into classification rules, which can greatly
improve classification accuracy and effectively avoid the ‘salt and
pepper’ effect.

Currently, research on abandoned farmland has made progress
in identification, accuracy, and spatial patterns but there is still room
for improvement. Firstly, previous studies on abandoned farmland
have mainly focused on the medium and micro scale, while few
large-scale studies have been conducted. The identification of
abandoned farmland based on macro perspective should be
further explored. And the issue determining spatial pattern of
abandoned farmland on large-scale urgently needs to be
addressed urgently. Secondly, there are few studies on abandoned
farmland in Chinese main grain-producing areas. As a major grain
producing area in China, the quantity and spatial pattern of
abandoned farmland in Jiangxi Province are still unclear. Thirdly,
previous studies have rarely used Chinese GF-1 images as the main
data source on a large scale, and whether GF-1 images can be used to
extract abandoned farmland on large-scale needs to be
further verified.

Here, Jiangxi Province, which is a major grain-producing area in
China, was selected as the research area and GF-1 remote sensing
images were used as the main data source to extract large-scale

abandoned farmland information. The purpose of this study is as
follows: 1) Determining the status of abandoned farmland in Jiangxi
Province of China and revealing the spatial pattern of abandoned
farmland; 2) Recommending potential driving forces for abandoned
farmland; 3) Verifying the feasibility of GF-1 imagery in extraction
abandoned farmland on a large scale, and exploring a set of specific
processes and methods. The main contributions of this study are as
follows: 1) Taking Jiangxi Province of China as an example to carry
out large-scale monitoring of abandoned farmland, enriching the
scale and empirical cases for the extraction of abandoned farmland;
2) Using China’s GF-1 images as the main data source, this study
applied images to the detection of abandoned farmland, broadening
the application range of GF-1 images.

2 Study area and data

2.1 Study areas

Jiangxi Province of China is the research area. Jiangxi Province is
located in southeast China on the southern bank of the middle and
lower reaches of the Yangtze River, between latitudes 24°29′14″ and
30°04′43″ north and longitudes 113°34′18″ and 118°28′56″east. The
total area of the province is 1.669 × 107 km2, with jurisdiction over

FIGURE 1
(A) Geographical location of the Jiangxi (orange polygon) in the national context; (B) City boundaries and heights of the Jiangxi Province.
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11 prefecture cities, 27 municipal districts, 12 county-level cities,
61 counties, and a total of 100 county-level divisions. The whole
territory is dominated by mountains and hills, accounting for 36%
and 42%, respectively, of the total area. The province is surrounded
by mountains on three sides, namely, to its east, south and west,
while the central and northern areas have plains with a north-
opening basin topography (Figures 1, 2). Jiangxi Province has a
subtropical monsoon climate. In 2022, the average temperature of
the province was 19.3°C, the annual precipitation was 1,567.7 mm,
and the annual sunshine duration was 1,641.2 h. The main soil types
in Jiangxi Province are red soil, yellow soil, mountain soil and sandy
soil, which are mainly distributed in the southern, central, north
central and northern regions, respectively. The crop cycles are
biannual. Spring sowing occurs mainly in mid-late March, and
the harvest lasts from June to July. Winter sowing ranges from
July to August, and the harvest time ranges from September to
October. Since the founding of the People’s Republic of China
74 years ago, Jiangxi Province has been one of two provinces in
the country and the only province in the southern region that has
continuously supplied commercial grain; it is also the main grain-
producing area (mainly rice and wheat) of China. The total grain
output in 2022 is 2.15 × 107 t. There are four major grain-producing
areas in the province, namely, the Poyang Lake grain-producing
area, the Ganfu Plain grain-producing area, the Jitai Basin grain-
producing area and the West Jiangxi grain-producing area. Among
them, the Poyang Lake grain-producing area and the Ganfu Plain
grain-producing area belong to the Poyang Lake Plain. The main
rivers in Jiangxi Province are the Ganjiang River, the Fu River, the

Xinjiang River, the Xiu River and the Rao River, of which the
Ganjiang River is the second largest tributary of the Yangtze River,
running south to north through the province. Moreover, Poyang
Lake is the largest freshwater lake in China and is located northwest
of the Yangtze River. Most of the rivers in the province flow into the
Yangtze River through Poyang Lake, which is an important
transportation hub for the Yangtze River route.

By the end of 2022, the province’s permanent resident
population was 4.53 × 107, of which 2.81 × 107 were living in
urban areas and 1.72 × 107 in rural areas, and the urbanization
rate of the permanent resident population was 62.07%. The annual
GDP of Jiangxi Province in 2022 was 3.2 × 1012 CNY. In recent
years, due to the rapid development of economically prosperous
tertiary industries such as tourism, finance, transportation and
accommodations in Jiangxi Province, much of the rural
population has flooded into cities to earn a living or have
directly engaged in service industries such as tourist
accommodations in rural areas, resulting in the shrinking of the
agricultural industry and expansive farmland abandonment.

2.2 Data source and preprocessing

In this paper, we use GF-1WFV remote sensing image data with
a spatial resolution of 16-m obtained from the China Centre for
Resources Satellite Data and Application (http://www.cresda.com).
The GF-1 satellite was launched on 26 April 2013 and features two
cameras with a 2-m resolution panchromatic sensor/8-m resolution

FIGURE 2
Image composition maps for 2020 (A) and 2022 (B).
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multispectral sensor (PMS) and four cameras with a 16-m resolution
multispectral sensor (WFV). The swath width can reach 800 km,
and the revisit cycle is 4 days. The other parameters are shown in
Supplementary Table S1. In addition, we used 30-m resolution

STRM elevation data obtained from the China Geospatial Data
Cloud (https://www.gscloud.cn/). China’s administrative boundary
data were obtained from the China State Bureau of Surveying
and Mapping.

FIGURE 3
The work flow chart.
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The phenology of local crops should be considered first when
selecting the study period. Due to the large area of Jiangxi Province,
there are differences in the natural environment, so the crop
phenology is not completely consistent, and the planting date is
not the same. Rice is the most important crop in Jiangxi Province.
Spring is the most important planting season in Jiangxi Province,
with spring sowing in March and harvest in June-July. If a farmland
is still unsown in April, it will no longer be tilled in the spring. In
April, rice is in its early growth stage, with relatively short plant
height, allowing it to be easily distinguished from other vegetation.
Rice grows quickly, its plant height has already increased
significantly by May. At this time, the spectral characteristics of
rice are quite similar to those of other vegetation, making it prone to
interference from other vegetation types during the classification
process. Therefore, we took April as the research period and selected
a total of 23 remote sensing images from April 2020 and 2022
(Supplementary Table S2).

ENVI5.6 software and ArcGIS10.8 software were used for data
preprocessing. Radiometric calibration, atmospheric correction,
orthographic correction, image stitching and histogram
correction were performed with ENVI software. After geometric
correction, the image root mean square error is 0.5 pixels. ArcGIS
software was used to project elevation data and calculate slope. The
workflow for this study is shown in Figure 3.

3 Methods

3.1 Processes of identifying
abandoned farmland

Farmland abandonment means that farmers stop farming in a
certain period of time, resulting in the farmland being deserted or
idle (Ma et al., 2017). Due to the different research fields and
research objectives, there is no unified standard for the time
judgment threshold of abandoned farmland in academia, which
mainly includes multiple judgment thresholds such as single season,
1 year, 2 years and 5 years (Wang et al., 2022; Zhao et al., 2023).
However, a single season or year of farmland is likely to be fallow, so
these two thresholds are not appropriate (Liu and Song, 2023). Many
researches refer to the two-year threshold set by the 2011 the
International Symposium on Land Consolidation and Land
Storage. This is the same standard of judgment used by the
Jiangxi provincial government and other local governments (Luo
andMoiwo, 2022). Therefore, this study takes 2 years as the standard
to judge the time of farmland abandonment. From the perspective of
land cover, many abandoned farmland in previous researches were
eventually transformed into grassland, bare land and wood (Fayet
et al., 2022; Zhu et al., 2021). Through field investigation, we found
that the abandoned farmland in Jiangxi Province was primarily
transformed into bare land. Additionally, some bare land was
transformed into grassland over time. The policy of returning
farmland to grassland is mainly implemented in the north of
China, but rarely in the South. Therefore, from the perspective of
land cover, we classified the land that was farmland turned into bare
land and grassland in 2 years as abandoned farmland. However,
returning farmland to wood is an active environmental protection
behavior, rather than a negative conversion due to idle farmland.

Thus, from the perspective of land cover, we classified the land that
was farmland turned into bare land and grassland in 2 years as
abandoned farmland.

The identification process in this research is mainly divided into
five steps: 1) Based on the object-oriented classification method, the
multi-scale segmentation of two periods of GF-1 remote sensing
images is carried out to obtain the objects; 2) Using the binary
decision tree classification method, the objects of the 2022 remote
sensing image are classified to obtain the land use classification
results for that year and then conducting an accuracy assessment of
the land use classification results for 2022; 3) Using the vector
similarity function to detect changed areas and unchanged areas.
Based on this, the binary decision tree classification method is
applied again to classify the changed areas of 2020 imagery. 4)
Merging this result of the changed areas in 2020 with that of the
unchanged areas in 2020 which is same as unchanged areas in
2022 land use classification result. 5) Overlaying the land use
classification results of 2020 and 2022, we extract the plots that
were classified as farmland in 2020 but have changed to bare land
and grassland in 2022, designating them as abandoned farmland.
The specific identification process is described in the flow chart.

3.2 Object-oriented image analysis
technology

The object-oriented classification method makes use of the
homogeneity of the spectral and spatial features of image,
comprehensively considering their semantic information, shape
and texture characteristics and neighboring relations, and
combining the basic classification unit (object) of neighboring
pixels with similar characteristics. Land classification based on
objects can avoid the problems associated with encountering the
“same object with different characteristics” and a “foreign object
with the same characteristics.” The main steps include multiscale
segmentation, classification hierarchy construction, classification
rule setting and information extraction. We used
eCognition10.3 software to implement object-oriented classification.

3.2.1 Multiresolution segmentation
Multiresolution segmentation is the core of object-oriented

classification. To ensure the consistency of image segmentation
object boundaries in the two periods, remote sensing images in
2020 and 2022 are segmented at the same time to avoid the
generation of undetectable tiny objects in the segmentation
process, thus affecting the classification accuracy.

Multiresolution segmentation involves merging objects step by
step from bottom to top via the fractal network evolution algorithm
(FNEA). This is a growth segmentation method that combines
individual pixels into multiple smaller-sized objects and groups
them into larger objects by comparing the heterogeneity among
objects. The criterion for judging object heterogeneity by eCognition
software is that the weighted average heterogeneity of objects should
be minimized, which is measured by spectral heterogeneity and
shape heterogeneity (Baatz and Schäpe, 2000; Benz et al., 2004). The
spectral heterogeneity was represented by the weighted sum of the
spectral standard deviations of each band belonging to the object.
There are two indexes for evaluating shape heterogeneity:
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compactness heterogeneity and smoothness heterogeneity. The
compactness heterogeneity measures the compactness of an
object’s shape. The closer an object’s shape is to a circle or
rectangle, the more compact it is and the smaller its compactness
heterogeneity. Smoothness heterogeneity indicates the smoothness
of an object’s shape. The more fragmented the object boundary is,
the less smooth it is and the greater the smoothness heterogeneity.

The segmentation scale and heterogeneity factor weights jointly
affect the segmentation results. The fusion value is obtained by
weighted calculation of the segmentation scale and heterogeneity
factor values and compared with the manually-set fusion threshold
to determine whether two adjacent objects are merged (Tong et al.,
2012). An inappropriate segmentation scale will affect the
segmentation outcome. An excessively large segmentation scale
(under-segmentation) will decrease the internal homogeneity of
the object, resulting in the confusion of ground objects and
affecting the classification accuracy. A segmentation scale that is
too small (over-segmentation) will cause an overly fragmented
segmentation, and too many objects will reduce the
computational classification efficiency. The multilevel
segmentation scale method can select different segmentation
scales for different land use types to better balance the
segmentation accuracy, and the number of segmentation objects
and avoid the internal confusion of segmentation objects and
fragmentation of segmentation results caused by the use of a
single segmentation scale.

In this paper, the land use types of Jiangxi Province are divided
into six categories: farmland, wood, grassland, water, impervious
surface and bare land. After extensive tests, the segmentation scale of
water body was set to 1,000; that of impervious surfaces and bare
land to 450; and that of farmland, grassland and wood to 200. The
shape factor weight was set to 0.8 to optimize segmentation. After
several repeated attempts, we believe this set of parameters can
better reflect the actual situation of uneven terrain and mixed land
types in Jiangxi Province (Figure 4).

3.2.2 Classification method based on a binary
decision tree

Binary decision tree classification is a multilevel classification
method that follows the classification principle from easy to difficult:
it involves establishing multiple classification nodes, uses
classification characteristics to divide objects into two subsets in
each classification node, and classifies them step by step until each

subset contains only one land use type. The two subsets under each
classification node are complementary and contain all the
classification objects of the node. The binary decision tree
classification design is flexible and can set a variety of
classification feature rules based on different research areas. The
selection of threshold values for classification features is relatively
simple, and this approach effectively improves classification
efficiency. Moreover, this approach can effectively reduce the
transmission of classification errors, so it is widely used in land
use classification. In this study, the images are first divided into
water body and non-water body, then non-water body are
subdivided into vegetation areas and non-vegetation areas, then
vegetation areas are subdivided into farmland and non-farmland
areas while non-vegetation areas are subdivided into impervious
surfaces and bare land, and finally non-farmland is subdivided into
wood and grassland areas (Figure 5).

3.2.3 Selection of the classification index and
determination of the threshold value

The eCognition software provides two classification algorithms:
the nearest neighbour classification method and the membership
function method. The membership function classification algorithm
determines the object category by establishing a classification rule set
and setting a classification feature threshold and can distinguish
land types with fewer classification features. The nearest neighbour
classification method calculates the distance between each object to
be classified and the selected sample within the threshold range,
which is computationally intensive and leads to low classification
efficiency; therefore, this method is difficult to apply to high-
resolution and large-scale classification processes. In contrast, the
membership function method has higher operational efficiency than
the nearest neighbour classification method and can achieve more
accurate classification results (Wang et al., 2014; Zhang et al., 2016).
The spectral feature is the most important basis for land use
identification in previous researches. The principle is to extract
land classes by using the discrepancies of different land cover in
separate bands. Previous researches have shown that the use of
spectral features alone is not enough. It is believed that the extraction
effect of land cover information combined with texture features is
more effective (Lin and Guo, 2024). Among them, Gray Level CO-
Occurrence Matrix (GLCM) is a widely used method to extract
texture features. The occurrence frequency of each gray level
information contained in the image can be calculated by

FIGURE 4
The segmentation results at different scales: (A) 1,000, (B) 450, and (C) 200.
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statistical analysis of the gray level information contained in the
image. It can accurately predict and reflect the comprehensive
information such as direction, adjacent interval and change
amplitude in the gray level of the image (Duan et al., 2022).
After several tests and combined with relevant expertise in
geoscience, we included the indices of topographic, spectral and
geometric texture features into the classification rule set of land
classification in the study area (Table 1).

In the Level 1 layer, the near-infrared band value and NDWI are
used to extract water information. The near-infrared band value can
preliminarily distinguish between water body and non-water body,
and the use of the NDWI can eliminate wood shadows from the
preliminary water body classification results. At Level 2, the SAVI

performs better in terms of farmland extraction, which can be
extracted by adjusting the soil regulation coefficient based on the
difference in coverage (Equation 1). The GLCM dissimilarity index
is a unique grey-level co-occurrence matrix calculated by eCognition
software based on texture features that can balance the grey value
and variance relationship. The index can be used to evaluate the level
differences of objects, and it is effective at extracting farmland. The
slope of farmland in Jiangxi Province generally does not exceed 25°,
so we used the slope data to further screen the preliminary
classification results of farmland. The UBIWFV is an index used
in GF-1 WFV image extraction which is specific to impervious
surfaces (Equation 2). Compared with the commonly used RBI
(Yang et al., 2016), UBIWFV can more completely extract built-up

FIGURE 5
Classification process based on a binary decision tree.

TABLE 1 Extraction features and their thresholds.

Level Scale Type Feature parameter Threshold

Level 1 1,000 Water body NDWI NDWI ≤ 0

Band 4 Band 4 ≤ 1750

Level 2 450 Impervious surface UBI_WFV UBI_WFV ≥ 400

GLCM Correlation 3.38 ≤ GLCM Correlation ≤ 4.56

Bare land RI RI ≤ 0

RECI RECI ≤ 0.2

Farmland SAVI SAVI ≤ 0.85

GLCM Dissimilarity 11.87 ≤ GLCM Dissimilarity ≤ 47.13

Slope Slope ≤ 25

Level 3 200 Wood NDVI NDVI ≤ 0.35

Band 2 Band 2 ≤ 1,450

Grassland NDVI NDVI ≤ 0.32

Band 2 Band 2 > 1,450

DEM DEM < 244
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areas and do so with fewer omissions, especially when extracting
isolated villages and towns (Zhang et al., 2019). The GLCM
homogeneity index can evaluate the homogeneity level of objects
and further improve the extraction performance of rural standard
buildings in Jiangxi Province. The bare land area was extracted using
the RI and RECI. The RI is mainly used to distinguish bare land from
farmland, and the RECI is often used to detect areas of yellow and
deciduous growth in vegetated areas. At Level 3, wood and grassland
were extracted using the NDVI and the green band value. Solar
radiation angle varied on the day of image acquisition, which
interferes some high-altitude wood imaging, appearing similar
spectral characteristics to grasslands. Therefore, the DEM data
were used to screen out wood objects misclassified as grasslands
in high-altitude areas.

SAVI � ρnir − ρred( ) × 1 + L( )
ρnir + ρred + L

(1)

In the above equation, ρnir is the near-infrared band value, ρred is
the red band value, and L is the land adjustment coefficient, which is
0.5 in this paper.

UBIWFV � 0.5 × ρblue − 0.2 × ρgreen (2)

In the above equation, ρblue is the blue band value and ρgreen is
the green band value.

3.2.4 Accuracy assessment of classification
The confusion matrix (CM) is an important index for

evaluating the classification accuracy of land use (Yi, 2023). It
is a matrix of n rows and n columns, where n is the number of land
categories. The matrix column contains the information of the
reference samples, and the matrix row contains the information
of the results to be verified. The far right column shows the total
number of samples to be verified, and the bottom row shows the
total number of reference samples (Table 2). xii on the diagonal is
the number of samples correctly classified, and the off-diagonal

xii means the number of samples that have been mis-classified.
Table 3 shows the accuracy of the confusion matrix. Where Rii �
xii /x+i on the diagonal represents the accuracy of the prediction
result, generally referred to as the mapping accuracy; Wii �
xii /x+i on the off-diagonal is the probability of a wrong
prediction. The basic unit of the sample is the pixel when the
traditional pixel-based method is used for classification, and is
the object when the object-oriented method is used for
classification.

Based on the confusion matrix, the accuracy of the
classification results can be evaluated. Three indexes, overall
accuracy (OA), user accuracy (UA) and the kappa coefficient,
were used to evaluate the accuracy (Yi et al., 2023). The overall
accuracy represents the ratio of the number of correctly classified
samples to the total number of total samples, and the formula is as
follows (Equations 3, 4):

OA � ∑
n

k�1

xii

N
(3)

UA � xii

xi+
(4)

In the above formula, n shows the number of rows and columns,
xii is the number of samples correctly classified, and N is the total
number of samples. xii means the number of samples correctly
classified, and xi+ is the total number of samples of the various land
use types.

The kappa coefficient was calculated with a discrete multivariate
equation. Compared with the overall classification accuracy, which
can use only diagonal elements of the confusion matrix for accuracy
evaluation, the kappa coefficient can use confusion matrix
information to measure classification accuracy more
comprehensively (Equation 5). Generally, when the kappa
coefficient is less than 0.4, the classification accuracy is
considered poor, and when it is between 0.4 and 0.8, the
classification accuracy is considered acceptable. The classification
results are optimal when the value is greater than 0.8. The formula is
as follows:

Kappa �
N∑n

i�1
xii − ∑n

i�1
xi+x+i( )

N2 − ∑n
i�1

xi+x+i( )
(5)

In the formula, n is the number of columns in the matrix, xii is
the number of samples correctly classified, xi+ is the number of
samples in row i, x+i is the number of samples in column i, andN is
the total number of samples.

The validation samples required for accuracy verification
generally comes from higher spatial resolution remote sensing
image datasets and field visit data (Story and Congalton, 1986).
The selection of samples is generally based on stratified random
sampling. While ensuring the minimum number of samples for each
land use type, the total number of samples is determined according
to the area proportion (Bao Pham et al., 2024). In this study,
Sentinel-2 remote sensing images were used as reference datasets
and sampled via the Google Earth Engine platform. The day of
image data used for sampling was consistent with those of GF-1 and
the number of sample points is 8,500. In total 366 field investigation

TABLE 2 Confusion matrix table.

Type 1 2 . . . n Total rows

1 x11 x12 . . . x1i x1+

2 x21 x22 . . . x2i x2+

. . . . . . . . . . . . . . . . . .

n xi1 xi2 . . . xii xi+

Column Total x+1 x+2 . . . x+i N

TABLE 3 Confusion matrix accuracy rate.

Type 1 2 . . . n

1 R11 W12 . . . W1i

2 W21 R22 . . . x2i

. . . . . . . . . . . . . . .

n Wi1 Wi2 . . . Rii
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samples were selected from Pingxiang, Nanchang, Yichun, and
Shangrao prefectures. The spatial distribution of the samples is
shown in Supplementary Figure S1.

3.3 Land use change detection methods

The vector similarity function is a widely used land use change
detection method, The basic unit of detection can be a pixel or an
object. This research takes the object as the basic unit and uses vector
similarity function to detect land use change. The principle behind
change detection is to divide land use change into two states: change
and no change. The vector similarity function locates the object and
its spectral feature vector by superposing two remote sensing images;
one from the reference period (T1) and the other from the detection
period (T2). By setting the threshold of the similarity function, a
similarity measurement is carried out on the feature vector of the
two periods. If the vector similarity is lower than the set threshold,
the object is considered to have changed; otherwise, it has not
changed. The angle between vectors and the vector norm are two
indicators used to measure the similarity of vectors. The spectral
feature vector of an object is regarded as a vector in four-
dimensional space. When the angle between two vectors is
smaller, the vector norm is closer, and the vectors are more
similar (Xue et al., 2009). The formula is as follows (Equations 6–8):

Sxy � cos θ

Rxy − 1
∣∣∣∣ ∣∣∣∣ + 1

(6)

cos θ � ∑xi
→ · yi

→
����∑x2

i

√ · ����∑y2
i

√ (7)

Rxy � �x| |
�y

∣∣∣∣ ∣∣∣∣ �
����∑x2

i

√
����∑y2

i

√ (8)

In the formula, Sxy is the vector similarity, 0≤ Sxy ≤ 1. The larger
the Sxy value is, the smaller the difference is; otherwise, the
difference is greater. θ is the angle between the spectral feature
vectors xi

→ and yi
→ during T1 and T2, and Rxy is the norm ratio of the

vector xi
→, yi

→.
We first used the binary decision tree method to classify the

land of remote sensing images of Jiangxi Province in 2022, then
took the remote sensing images of 2020 and 2022 as T1 and
T2 period images respectively, and created four-dimensional
spectral feature vectors using the four bands (B, G, R, and NIR)
of GF-1 remote sensing images. By calculating the vector similarity
of each object between the two images and taking 0.76 as the
similarity threshold, Jiangxi Province was divided into changed
areas and unchanged areas. On this basis, we use the binary
decision tree method again to classify the changed areas within
2 years, so as to obtain the land use classification results within the
changed area in 2020. Since the land use classification results of the
unchanged area within 2 years are consistent, we take the land use
classification results of the unchanged areas in 2022 as the land use
classification results of the unchanged areas in 2020, and then
superimpose and merge the results with the land use classification
results of the unchanged areas in 2020. The results of land use
classification in Jiangxi Province in 2020 were obtained.
Supplementary Figure S2 shows the regions with changes over
the period 2020–2022 in Jiangxi Province.

4 Results

4.1 Land use classification results

According to the classification results, the approach using the
object-oriented method lead to a relatively compact and
continuous result, consistent with the actual distribution of
ground objects, and there is no “salt and pepper” effect.
Accuracy verification evaluates the accuracy of land use
classification via quantitative analysis of classification results.
After calculation, the overall accuracy of the classification results
based on the object-oriented method was 92.5%, and the kappa
coefficient was 0.88, indicating high classification accuracy, as
shown in Table 4. The mapping accuracy of grassland was the
lowest. The main reason for this inconsistency is that some
grasslands and woods exhibit similar spectral characteristics,
and some grasslands are incorrectly classified as wood. On the
other hand, the grasslands in the area around Poyang Lake are
interspersed with bare land and water, and their distribution
pattern is complex. After the bare land is desertified for a period,
a large amount of grass grows and the area assumes the spectral
characteristics of grassland. Changes in aquatic grasses in the
Poyang Lake complex also interfere with differentiation between
grassland and water body, resulting in some adjacent areas being
misclassified during the classification process. The user accuracy
for water body is the lowest, mainly because the spectral
difference between a few paddy fields and water body is very
small and because they are spatially close, so the two are easily
misclassified. The mapping accuracy of impervious surface,
farmland, water body, wood and bare land was greater than
that of the other land use types, and the user accuracy of
impervious surface, farmland, grassland, bare land and wood
was greater. This is due to the appropriate segmentation of
object-oriented technology and the supplementation of
textural features to the classification indexes. In general,
compared with traditional pixel-based classification methods
that use only spectral features for classification, object-
oriented classification methods can comprehensively use
spectral, textural and spatial classification features to achieve
classification results with higher overall accuracy, which can
meet the requirements of remote sensing classification.

The area of farmland, impervious surface, wood, grassland,
water body and bare land is 3.46 × 106hm², 8.07 × 105hm²,
1.09 × 107hm², 3.06 × 105hm², 6.96 × 105hm² and 4.8 × 105hm²
respectively. The proportion of total area is 20.72%, 4.84%,
65.56%, 1.84%, 4.17% and 2.88% respectively. Farmland is
mainly distributed in the northern plains area, especially in
the prefecture cities of Yichun, Nanchang and Yingtan. In the
central and southern regions, farmland is distributed mainly in
the valley areas of Ji ’an and Fuzhou cities. Woods are mainly
distributed in the northern surrounding areas of Jiujiang,
Shangrao and other prefecture cities and in the southern-
central mountainous area of Ganzhou and other prefecture
cities. The grasslands are mainly distributed in the area
around Poyang Lake and are more evenly distributed in other
areas of Jiangxi Province. The distribution of bare land is similar
to the distribution of farmland; it is mainly distributed in the
plains of Jiujiang, Shangrao, Yichun and other prefecture cities in
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the north, while in the central and southern areas, it is mainly
distributed in Ji ’an City. Water body is mainly distributed in the
northern plains, and Poyang Lake constitutes the main water
body of Jiangxi Province, which mainly belongs to three
prefecture cities, Jiujiang, Nanchang and Shangrao. The
distribution of impervious surface is more uniform across the
province; that of Nanchang, Jingdezhen, Pingxiang, and
Ganzhou are the four prefecture cities with obvious
agglomeration (Figure 6).

4.2 Spatial distribution pattern of
abandoned farmland

In 2022, the overall spatial distribution pattern of abandoned
farmland in Jiangxi Province was more extensive in the north and
less so in the south, whereas mountainous areas were sparsely
distributed, and plains showed a clustered pattern (Figure 7). The
area of abandoned farmland in the province was 3.41 × 105hm², and
the abandonment rate was 9.87%. The abandoned farmland area in

TABLE 4 Sample confusion matrix table.

Type Impervious
surface

Farmland Grassland Bare
land

Water
body

Wood Total
rows

Mapping
accuracy

User
accuracy

Impervious
surface

583 29 25 3 3 4 647 0.85 0.90

Farmland 12 1,134 22 13 4 50 1,235 0.85 0.92

Grassland 24 12 514 3 — 88 641 0.78 0.80

Bare land 5 63 49 506 — — 623 0.93 0.81

Water body 44 68 25 13 436 29 615 0.98 0.71

wood 15 23 22 9 3 5,033 5,105 0.97 0.99

Column Total 683 1,329 657 547 446 5,204 8,866

Overall accuracy = 92.5% Kappa coefficient = 88%.

FIGURE 6
Land classification results: (A) 2020 and (B) 2022.
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the plains area was 2.26 × 105hm², accounting for 66.12% of the all
abandoned farmland area. The area of abandoned farmland in the
hilly region was 6.08 × 104hm², accounting for 17.82%. The area of
abandoned farmland in the mountain area was 5.48 × 104hm²,
accounting for 16.06%. In the plains around Poyang Lake in
northern Jiangxi Province, the agglomeration of abandoned
farmland is relatively obvious, while in the central and southern
parts of Jiangxi Province, the abandoned farmland is sparse and
distributed along valleys and basins. Among the four major grain-
producing areas, the area of abandoned farmland in the Ganfu Plain
grain-producing area is the largest, up to 1.15 × 105hm2, and the
abandonment rate is the smallest (8.36%). Abandoned farmland in
Poyang Lake grain-producing areas ranked second, reaching
1.01 × 105hm², and the abandonment rate was the highest
(11.67%). In the Jitai Plain grain-producing area farmland
abandonment was 7.03 × 104hm², with an abandonment rate of
10.3%. The abandoned area of the West Jiangxi grain-producing
area was the smallest, at 5,292.71 hm2, and the abandonment rate
was 9.43%. The abandoned farmland in eight prefecture cities in
northern Jiangxi Province is concentrated, especially in the plains
area around Poyang Lake. Among them, Jiujiang, Nanchang, and
Shangrao are the prefecture cities experiencing the greatest farmland
abandonment. In Nanchang city, the abandoned farmland is
distributed evenly, while in Jiujiang City it is concentrated in the
eastern plains of the city, and in Shangrao City it is concentrated in
the western plains of the city. The abandoned farmland in the four

prefectural cities of Yichun, Yingtan, Xinyu and Jingdezhen is also
concentrated in the plains area, while the abandoned farmland in the
mountainous area is sparsely distributed. The overall distribution of
abandoned farmland in Pingxiang City is relatively uniform.

4.3 Differences in abandoned farmland
among prefecture cities and counties

4.3.1 Differences in abandoned farmland in
different cities

The abandoned areas among prefecture cities in Jiangxi
Province in 2022 are quite different (Figure 8). Shangrao
Prefecture City in the north had the largest area of abandoned
farmland (5.97 × 104hm2). The area of abandoned farmland in
Pingxiang Prefecture City was the smallest, with an area of
5,622.82 hm2, and the difference in the area of abandoned
farmland between the two prefecture cities was 5.41 × 104hm².
The abandoned farmland areas of the Shangrao (59699.14hm2),
Ji ’an (46422.18hm2) and Yichun (42816.22hm2) prefecture cities
are relatively large. The abandoned farmland areas of Pingxiang
(5,622.82 hm2), Yingtan (8,363.8 hm2), Jingdezhen (9,985.84 hm2)
and Xinyu (10,790.43 hm2) prefecture cities are relatively small.
Jiujiang Prefecture City in the northern region had the highest
abandonment rate (13.18%), while in Yichun city it was the lowest
(7.13%). The abandonment rate of the remaining prefecture cities

FIGURE 7
Map of abandoned farmland distribution: (A) distribution map of abandoned farmland based on topography and (B) distribution map of abandoned
farmland based on grain production.
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was not much different, ranging from 8.9% to 11.1%. Among the
11 prefecture cities in the province, the abandonment rates in
Jiujiang (13.18%), Jingdezhen (11.07%) and Shangrao (10.81%) in
the North and in Ganzhou (10.35%) and Ji ’an (10.33%) in the
Middle and South were all greater than those in all Jiangxi Province
(9.87%). In general, the abandonment of farmland in prefecture
cities in northern Jiangxi Province is more serious than that in
central and southern Jiangxi Province.

4.3.2 Differences in abandoned farmland in
different counties

Compared with the difference at the prefecture-city scale, the
differences in abandoned farmland at the county scale was more
evident (Figure 9). The area of abandoned farmland in each county
ranged from 30.99hm² to 24084.87hm².Among them, abandoned
farmland in Poyang County in Shangrao City was the largest,
reaching 24084.87hm², while that of Qingyunpu County in
Nanchang City was the smallest, at only 30.99hm². There is a
huge area of abandoned farmland in the counties surrounding
Poyang Lake Plain, including Poyang, Duchang (12,667.17 hm2),
Yugan (12,499.74 hm2), Jinxian (11,452.23 hm2) and Xinjian
(9,381.27 hm2). Nanchang (6,794.83 hm2) and Yongxiu
(6,692.52 hm2) had extensive abandoned farmland areas. The
above counties are included in the 15 counties with the largest
abandoned areas in the province.

Of the 100 counties in the province, 11 had a farmland
abandonment rate greater than 15%, and another 15 had a

farmland abandonment rate less than 5%. The highest
abandonment rate was 24.22% in Duchang County of the
Jiujiang Prefecture City. The lowest abandonment rate was in
Anfu County of Ji ’an Prefecture City, which was only 1.99%. In
addition, Yongfeng (23.85%), Pengze (20.65%), Wannian (19.4%),
Lianxi (18.37%), Poyang (16.25%), Xunyang (16.76%), Jishui
(16.03%), Suichuan (16.29%), and Wanan (15.94%) had high
abandonment rates. Except for the counties of Yongfeng, Jishui,
Suichuan and Wan ’an, which are located in the central and
southern parts of Jiangxi Province, the other counties are
located in the northern Poyang Lake Plain area and its
surrounding. The percentage of abandoned farmland was lower
in the counties of Shan (2.58%), Jing ’an (2.83%), Fengxin (2.91%),
Guangfeng (3.07%), Shanggao (3.65%), Shangrao (3.68%),
Xinzhou (3.71%), Yuan Zhou (3.76%) and Yongxin (3.86%).
Except for Yongxin County in the middle of Jiangxi Province,
the other counties are located in the northern mountains of
Jiangxi Province.

In general, at the county scale, the status of abandoned
farmland in Jiangxi Province is quite different. The area of
abandonment in northern counties is larger than that in
southern counties, and the abandonment rate in central
counties is greater than that in eastern and western counties.
The abandonment rate and area of the counties in the northern
Poyang Lake plain region are clearly greater than those in other
areas, which is an area severely impacted by farmland
abandonment in Jiangxi Province.

FIGURE 8
(A) Abandoned farmland area of each Prefecture City in Jiangxi Province, (B) Farmland abandonment rate of each Prefecture City in Jiangxi Province.
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FIGURE 9
(A) Area of abandoned farmland of each county in Jiangxi Province. (B) Sankey diagram of farmland abandonment rates in counties and their
corresponding cities and regions in Jiangxi Province.
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5 Discussion

5.1 Classification based on object-oriented
technology

The classification based on object-oriented technology can
improve the accuracy of land classification on a large scale by
using high-resolution remote sensing images. At present, most of
the research areas are less than 300 hm², and the resolution of the
remote sensing images used is mostly 30 m, while the research area
using high-resolution remote sensing images is generally smaller
(Ma et al., 2017). Although the use of high-resolution remote sensing
images on a large scale will increase the workload and classification
difficulty, it can extract fragmentized ground objects more
accurately, and the overall classification accuracy is higher (Dibs
et al., 2017). The traditional pixel-based classification method has a
‘salt and pepper’ effect and it is difficult to extract information from
high-resolution remote sensing images (Cao et al., 2007; Chouari,
2021; Rizayeva et al., 2023). Because of the above advantages of
object-oriented classification technology in combination with high-
resolution remote sensing images, this paper uses object-oriented
technology to identify and extract land types from GF-1 high-
resolution remote sensing images, with an overall accuracy of
93% and a Kappa coefficient of 0.89.

5.2 Influencing factors leading to the status
quo of abandoned farmland in
Jiangxi Province

Multiple factors are causing the abandonment of farmland,
among which the reduction of economic benefit is the root cause.
The same characteristics exist in prefecture cities and counties with
serious farmland abandonment, including the rising planting cost of
farmland, the large outflow of the farmer and the obvious trend of
non-agricultural labour transfer (Yu et al., 2022; Ding et al., 2010;
Cao et al., 2021; Wang et al., 2023). Rising planting costs squeeze the
net income space of farmers, and a large number of farmers choose
to go to cities to engage in non-agricultural industries with higher
income under the pressure of livelihood, which aggravates the
serious degree of farmland abandonment. The change of
farmland fragmentation has typical regional characteristics.
Poyang Lake area is the most serious area of farmland
abandonment in Jiangxi Province, and the degree of farmland
fragmentation in this area is much higher than in other areas in
recent years (Zheng et al., 2023). The expansion of construction land
in this region has intensified the degree of farmland fragmentation,
which is not conducive to mechanized farming, limits the
improvement of farming efficiency, and increases farmers’
farming intensity, which will hit farmers’ farming willingness and
lead to more serious farmland abandonment. Natural disaster is also
an important driving factor of farmland abandonment. Under the
influence of human activities and climate change, the frequency of
drought in the main grain-producing areas of Ganfu Plain has
increased significantly in recent years, and the spring drought has
become serious. Meanwhile, it is difficult for farmers to obtain the
necessary water resources for cultivation and irrigation due to the
long-term lack of a well-developed irrigation system, which

aggravates the serious degree of farmland abandonment in this
region (Yuan et al., 2024). In addition, serious farmland pollution
has a general impact on the abandonment of farmland, but the
sources of farmland pollution have regional differences. In the
main grain-producing areas of Ganfu Plain in central Jiangxi
Province and Shangrao prefecture city in northern Jiangxi
Province, the main source of farmland pollution is heavy metal
emission from industrial activities such as mineral exploitation,
while the main cause of farmland pollution in the areas around
Poyang Lake is agricultural pollution caused by irrational use of
chemical fertilizers and pesticides (Hu et al., 2020; Yuan et al.,
2021; Zuo et al., 2023, pp. 2014–2019). Seriously polluted farmland
needs a long period of treatment, and due to social security
considerations, this part of farmland can only be abandoned
until it is completely restored.

5.3 Research limitations and prospects

Although the accuracy of the land cover classification is high,
there are still some errors in the classification results because the
landscape of Jiangxi Province is too fragmented. There was some
subjectivity in setting the threshold, so it is difficult to obtain a
perfectly accurate threshold. How to use the relevant factors to
build a model and obtain the precise threshold of classification
features through machine learning is the goal of future research.
Based on 2 years of data, we analysed the spatial pattern of
abandoned farmland change in Jiangxi Province and discussed
the potential influencing factors. Due to the high cost of obtaining
high-resolution images, it is difficult to obtain multiple images
from long-term series. In the future, the feasibility of high-
resolution image classification of land cover under long time
series can be explored through the fusion of multiple remote
sensing product data sets, and the long-term dynamic change
characteristics and factors influencing abandoned farmland can be
further explored.

6 Conclusion

Using Chinese high-resolution GF-1 WFV remote sensing
images as the main data source with elevation and slope data,
taking Jiangxi Province as the study area, where has complex
terrain and a high degree of land fragmentation, this study
extracted the abandoned farmland on the large-scale based on
object-oriented classification technology. The results showed that
large-scale abandoned farmland can be extracted from GF-1 images
via combination with object-oriented classification technology.
Based on the membership function method, we use a binary
decision tree to classify the segmented objects. Although this
approach is more complicated than extracting multiple secondary
classes from the upper level at one time, the process can use the least
common object features for classification according to the easy-to-
difficult principal, layer by layer, which can significantly reduce the
transmission of errors to improve the classification accuracy.

Our study showed that from 2020 to 2022, the area of
abandoned farmland in Jiangxi Province was 3.41 × 105hm², with
a high abandonment rate of 9.87%. The spatial distribution pattern
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of abandoned farmland was greater in the north and less in the
south, with mountainous areas sparse and plains concentrated. The
plains area around Poyang Lake is the are most seriously affected by
abandonment in Jiangxi Province, and the abandoned farmland is
relatively clustered, while the abandoned farmland is sparsely
distributed in the central and southern parts of Jiangxi Province.
The most severe abandoned farmland area is located in Poyang
Lake’s grain-producing area, which reaches 1.01 × 105hm², and the
abandonment rate is 11.67%. In Jiangxi Province, the spatial
distribution of abandoned farmland is clearly different between
prefecture cities and counties, and there is a large difference in
the area and rate of abandoned farmland among prefecture cities
and counties. The situation of abandoned farmland in northern
prefecture cities in Jiangxi Province is more serious than that in
central and southern prefecture cities, and the severity of abandoned
farmland in central counties is greater than that in eastern and
western counties.
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