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The Jianghan Plain is simultaneously responsible for ecological protection, food
security and urbanization, and land use conflicts are prominent. Revealing the
driving mechanism of land use/cover change (LUCC) and simulating the land use
pattern can help to coordinate the land use conflicts in the future. Utilizing the
National Land Survey Data (NLSD) of Jiangling County in Jianghan Plain
(2011–2020) and the patch-generating land use simulation (PLUS) model, this
paper analyzed the characteristics of land use evolution, applied the random
forest classification (RFC) to analyze the driving mechanism, simulated the
2035 land use pattern under three scenarios of natural development, planning
guidance and ecological protection through Markov and Cellular Automaton
based on multiple random seeds (CARS) models, and proposed several
countermeasures. The study found that: 1) From 2011 to 2020, town
construction land increased, village construction land, agricultural land and
ecological land decreased. 2) The factors driving LUCC were socio-economic
factors, spatial factors, and natural factors in descending order. 3) In the three
scenarios, the trend of construction land expansion, agricultural land and
ecological land encroachment is inevitable by 2035. 4) It is imperative to
actively advocate for large-scale mechanization and informatization of
agricultural production, encourage the repurposing of idle and inefficiently
used construction land, facilitate multi-purpose land utilization, and
implement a policy of locally balancing occupation and compensation for
cultivated and ecological land. 5) When employing the PLUS model to
simulate LUCC, using continuous NLSD yielded more accurate results than
remote sensing image interpretation data. This study offers a theoretical basis
for the coordinated development of land use in Jianghan Plain, and presents a
method to enhance the simulation accuracy of the PLUS model.
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1 Introduction

China has achieved globally recognized successes in economic
development and urbanization, leading to a swift expansion of
construction land. Consequently, ecological and agricultural lands
are experiencing encroachment, and land use conflicts are gaining
prominence. Land use/cover change (LUCC) is the most direct effect
of the joint action of mankind and the earth (Sterling et al., 2013; Liu
H. et al., 2020), and it is the comprehensive reflection of the land use
type over time in the regional space. Analyzing the driving
mechanisms of LUCC can reveal the influence of natural, socio-
economic, spatial and other elements on LUCC. Simulating LUCC
can help identify potential land use problems. Combining problems
and mechanisms, targeted land management strategies can be
proposed to promote sustainable development.

In recent years, scholars have extensively explored LUCC,
examining it through the lenses of remote sensing monitoring
(Vu et al., 2022), simulation prediction (Zhou L. et al., 2020),
hydrological impacts (Zhang et al., 2020), soil quality (Li et al.,
2023), and food security (Guo et al., 2023). Their efforts have yielded
substantial outcomes. Regarding research content, the focus lied on
change characteristics (Ning et al., 2018), landscape patterns
(Bindajam et al., 2023), impact mechanisms (Zhou Y. et al.,
2020), and modelling predictions (Han et al., 2023). In terms of
research scales, most studies operated at macro (Winkler et al., 2021;
Guo et al., 2023) and meso (Liang J. et al., 2021; Jiang et al., 2023;
Zeng et al., 2023) scales, encompassing global, national, provincial,
watershed, urban agglomeration, and municipal levels. However,
there was a dearth of research at the county level (Deng and Quan,
2023). In terms of basic data, previous studies predominantly relied
on discrete remote sensing image data or decentralized annual
NLSD (Wu Q. et al., 2022; Chen and Yao, 2023). In terms of
research methodology, previous LUCC studies primarily
employed the land use transfer matrix and land use dynamics for
fundamental analysis (Wang Y. et al., 2023), utilized geoprobes and
CLUE-Smodel to drive the analysis (Ning et al., 2018; Li et al., 2023),
and conducted simulation predictions based on models such as CA,
CA-Markov, FLUS (Lv et al., 2021; Niu and Pan, 2021; Wu et al.,
2021; Wu J. et al., 2022; Wen et al., 2023; Zhang et al., 2023) and
PLUS (Liang et al., 2021b; Liang et al., 2021c; Xu D. et al., 2022; Fan
et al., 2023; Kou et al., 2023; Tian et al., 2023; Zeng et al., 2023). With
the advancement of 3S (RS, GIS, and GPS) technology, the
integration of remote sensing monitoring and various associated
models is increasingly prevalent in LUCC studies (Lv et al., 2021).

Overall, despite the fruitful research results on LUCC, there are
still deficiencies. Firstly, the research content primarily focuses on
specific aspects such as change characteristics, landscape patterns,
influence mechanisms, and simulation predictions. The
comprehensive closed-loop research approach of change
characteristics-driving mechanisms-simulation predictions-policy
suggestions is seldom employed. Secondly, the research scale is
predominantly concentrated at the macro and meso scales, with
insufficient attention given to the micro scale, particularly the
county space, which serves as the most basic administrative unit
in the national spatial governance system. Thirdly, the basic data are
less based on the NLSD of consecutive years, and the classification of
land classes is not detailed enough, requiring improvements in the
accuracy of research results. Fourthly, certain research methods

exhibit limitations. For instance, the Geodetector and CLUE-S
model can only analyze individual data. Although the CA model
can simulate spatial changes in complex systems, its prediction
accuracy is restricted. While the CA-MarKov model and the FLUS
model can simulate multi-scenarios, multi-scale, and high-precision
complex land-use change, they struggle to reflect relevant driving
mechanisms. In contrast, the PLUSmodel excels in revealing driving
mechanisms and conducting multi-scenario, multi-scale, and high-
precision simulations.

The Jianghan Plain is a crucial component of the Yangtze River
Basin, tasked with the significant responsibility of upholding
ecological security. It stands as one of China’s primary grain-
producing regions and serves as the origin of permanent basic
farmland. Simultaneously, its riverfront cities play a pivotal role
in urbanization. Therefore, this area has become one of the most
prominent areas of land use conflicts. Consequently, this study
focused on representative counties in the Jianghan Plain.
Utilizing continuous NLSD from 2011 to 2020, this study
employed the PLUS model to analyze the driving mechanism
and simulate the land use development pattern in 2035 under
three scenarios of natural development, planning guidance and
ecological protection. Additionally, it offered policy suggestions
for the rational allocation of land resources in the Jianghan Plain.

2 Materials and methods

2.1 Study area

Situated in the middle reaches of the Yangtze River, the middle
and lower stretches of the Han River, and the south-central region of
Hubei Province, the Jianghan Plain extends from Yichang Zhijiang
in the west to Wuhan in the east. It connects with Zhongxiang in the
north and the Dongting Lake Plain in the south. Spanning between
29°26′-31°37′north latitude and 111°14′-114°36′east longitude, it
encompasses an area exceeding 46,000 km2. The study focused
on Jiangling County, representing a typical county in the
Jianghan Plain (Figure 1). Positioned in the center of the
Jianghan Plain, Jiangling County is situated between 112°12’52″-
112°44′22″east longitude and 29°54’36″-30°16′45″north latitude,
west of the Yangtze River. Jiangling County falls within the north
subtropical monsoon humid climate zone, experiencing
simultaneous rainfall and high temperatures during the same
season, with an annual average rainfall ranging from 900 to
1,100 mm. The elevation ranges between 25.3 and 40 m,
featuring four types of landforms: island flat, silt flat,
intermediate flat, and low wet flat. The total area covers
1,048.74 km2, with a permanent population of
300.01 million in 2021.

2.2 Data and preconditioning

The research encompassed land use data, natural environment
data, spatial accessibility data, and socio-economic data (Table 1).
Land use data, spatial accessibility data, elevation, slope, slope
direction, and soil type data were obtained from the NLSD
conducted by the Jiangling County Natural Resources and
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Planning Bureau. The average annual temperature, average
annual precipitation, and average land GDP were sourced
from the Data Center for Resources and Environmental
Sciences, Chinese Academy of Sciences (https://www.resdc.cn/).
Population density data were obtained from the Jiangling County
Statistics Bureau.

Typically, land use data derived from remote sensing images are
categorized into six categories, namely, cultivated land, forest,
grassland, water, construction land, and unused land (Chang
et al., 2010; Xu C. et al., 2023; Fan et al., 2023). To enhance the
study’s precision, we utilized land change survey data, integrating it
with the land use classification from the second (2009–2018) and

FIGURE 1
Location of study area.

TABLE 1 Data details.

Data type Name Time Resolution Unit Sources

Land use vector data Land use/cover data 2011–2020 —— —— Jiangling County Natural Resources and Planning Bureau

Natural environment raster data Elevation —— 30 m m Jiangling County Natural Resources and Planning Bureau

Slope —— 30 m °

Slope direction —— 30 m °

Soil type 2020 30 m ——

Average annual temperature 1960–2020 1,000 m °C https://www.resdc.cn/

Average annual precipitation 1960–2020 1,000 m mm

Spatially accessible raster data Distance to water 2011–2020 30 m m Jiangling County Natural Resources and Planning Bureau

Distance to railway 2011–2020 30 m

Distance to town 2011–2020 30 m

Distance to highway 2011–2020 30 m

Distance to national road 2011–2020 30 m

Distance to provincial road 2011–2020 30 m

Distance to county road 2011–2020 30 m

Socio-economic raster data Population density 2000–2020 30 m People/km2 Jiangling County Statistics Bureau

average land GDP 1995–2019 1,000 m Million/
km2

https://www.resdc.cn/
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third (2019 to date) LUCC surveys in China. The land use types were
then classified into ten categories, encompassing grassland, towns
and villages, special, cultivated, industrial and mining,
transportation, forest, other, water, and garden (Table 2).

2.3 Methodology

2.3.1 Research framework
Employing the PLUS model, this study analyzed and forecasted

LUCC through the framework of change characteristics, driving
mechanisms, simulation predictions, and policy suggestions
(Figure 2). Initially, the trend research method and dynamics of
LUCC were used to analyze the overarching structural evolution
characteristics. Additionally, the transfer matrix was utilized to
examine the transformation traits of land classes over the years,
while the landscape pattern index was employed to scrutinize the
spatial pattern evolution characteristics. Subsequently, various
driving factors were chosen from socio-economic, spatial, and
natural environmental aspects. Using RFC, the contribution
degree of each driving factor and the development probability of
each land category were calculated to summarize the driving
mechanisms. Thirdly, leveraging the driving mechanisms and
development probabilities of each category, the Markov model
was employed to determine the initial simulation year and
forecast the land use demand under three scenarios: natural
development, planning guidance, and ecological protection.
Furthermore, the CARS model was utilized to simulate the
spatial distribution of land use in 2035 across the three scenarios.
Lastly, the differences between the simulations of the scenarios were
compared and analysed, and policy recommendations were
formulated.

2.3.2 The PLUS model
The PLUS model contains several modules such as Land

expansion analysis strategy (LEAS), Demand Projection (DP), CA
based onmultiple random seeds (CARS), and ConfusionMatrix and
FoM (CMF) (Liang et al., 2021b).

2.3.2.1 LEAS
The Mean Decrease Accuracy (MDA) in RFC is used to

represent the contribution degree of driving factors. The method
is to randomly swap a factor in the permuted oob data, then reroute
the predictions and calculate how much accuracy has fallen. The
algorithm is presented in Eq. 1.

MDAc j( ) � 1
T
∑T

t

1
Dt| | ∑

Xi∈D
I P Xi( ) �� yi( ) −∑

Xj
i∈D

j
i

I P Xj
i( ) �� yi( )( )[ ]

(1)

where T is the number of random trees in the RF; (Xi, yi) is
the sample, for classification y is the category, and for
regression is the output (which can be multidimensional);
Xj

i is the sample after random swapping of the ith
dimension (feature) of Xi; Dt is the set of out-of-bag (oob)
samples of random tree t, andDj

i is the set of samples formed by
swapping of the jth dimension; and P(Xi) is the sample Xi’s
prediction result (category).

The RFC algorithm is employed to excavate the land use
expansion and driving factors one by one. Ultimately, it
determines the probability of the occurrence of k land-use types
on cell I. The algorithm is presented in Eq. 2.

Pd
i,k x( ) � ∑M

n�1I hn x( ) � d[ ][
M

(2)

where d takes the value range of 0 or one; if d = 1, it means
that there are other land use types transformed into k land use
types; when d = 0, it means that the land use types are
transformed into other land use types except k; x is a vector
consisting of a number of driving force factors; i is the indicator
function of the set of decision trees; hn(x) is the predicted type of
the nth decision tree of the vector x; M is the total number of
decision trees.

2.3.2.2 DP
The Markov model was employed to simulate the projected land

demand under different development scenarios with the algorithm
shown in Eq. 3.

TABLE 2 The corresponding relation of land use classification.

Land use classification

Research China’s second national land survey China’s third national land survey

Grassland Grassland Grassland

Towns and villages Commercial, Public service, Residential Commercial, Public service, Residential

Special Special Special

Cultivated Cultivated Cultivated

Industrial and mining Storage Industrial and mining storage

Transportation Transportation Transportation

Forest Forest Forest

Other Other Other

Water Water Water

Garden Garden Garden
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FIGURE 2
Research framework.
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St+1 � St × pij (3)

where pij is the transfer matrix from land class i to land class j;
St+1 and St are the land use status at moments t+1 and t,
respectively.

2.3.2.3 CARS
The CARS module integrates the CA model, stochastic seed

generation mechanism and threshold decreasing mechanism to
simulate future land use data. Under the constraint of the growth
probability of each land use type, the overall probability of each land
use type is calculated, and the spatial distribution results are
obtained by combining the land quantity prediction results, land
use cost transfer matrix and neighbourhood weights. The algorithm
is shown in Eqs 4, 5.

MPd�1,t
i,k � Pd�1

i,k × Ωt
i,k × Dt

k (4)

Xi � ΔTAi − ΔTAmin

ΔTAmax − ΔTAmin
(5)

whereMPd�1,t
i,k is the overall probability; Pd�1

i,k is the probability of
growth of the k-land class in cell i; Dt

k is the effect on the target
demand of the k-land class, implying an adaptive driving
coefficient, which is taken to be the gap between the current
and the target demand of the k-land class at the time of iteration
t; Ωt

i,k is the neighbourhood effect of cell i, which is the
proportion of coverage of ground class k in the next
neighbourhood; Xi is the neighbourhood weight parameter of
a particular land class I; ΔTAi is the amount of change in the TA
of the land class during the study period; ΔTAmax and ΔTAmin

are the maximum and minimum changes in TA during the study
period, respectively.

2.3.2.4 CMF
The CMF includes Kappa coefficient, FoM coefficient, and

Overall accuracy. The Kappa coefficient combines mapping
accuracy with user accuracy and is a test of consistency between
data prediction results and monitoring results. The algorithm is
shown in Eq. 6.

Kappa � Pa − Pb

1 − Pb
(6)

where Pa is the proportion of rasters that are simulated correctly; Pb

is the proportion of rasters that are expected to be simulated
correctly; and one is the proportion of rasters that are simulated
correctly in the ideal case; Kappa ∈ [0, 1], the simulation is
unsatisfactory when Kappa <0.75; and the simulation is
satisfactory when Kappa >0.75.

The FoM coefficient is able to test the variation of the spatial
location of the predicted results. The algorithm is shown in Eq. 7.

Fom � B
A + B +M + N

(7)

where A is the error region where the land use type actually changes
and is predicted to be unchanged; B indicates the region where the
prediction is correct; M is the error region where the land use type is
incorrectly predicted; and M indicates the error region where the
land use type actually does not change and is predicted to be
changed; The FoM coefficient value has a range of 0–1, and the
FoM value for land use prediction is usually in the range of 0.12–0.18
(Liang et al., 2021b; Liang et al., 2021c), with the larger value
indicates that the simulation results are more reliable.

The Overall accuracy represents the percentage of the total
sample that predicted correctly. The algorithm is shown in Eq. 8.

OA � TP + TN
TP + TN + FP + FN

(8)

where OA is the Overall accuracy; TP is the number of positive cases
of successful prediction; FP is the number of positive cases of failed
prediction; FN is the number of negative cases of failed prediction;
TN is the number of negative cases of successful prediction.

2.3.3 Landscape pattern index
Landscape pattern index can highly effectively reflect the

landscape pattern information, presenting the landscape
composition and spatial distribution of the current status and
changes in the study area through different levels of landscape
indicators. In this study, relying on existing research outcomes
(Li L. et al., 2022; Wang et al., 2023b) and prioritizing clarity,
representativeness, and consistency, we selected landscape pattern
indices at both the patch type and landscape levels for analysis. A
total of nine landscape pattern indexes were selected (Table 3), and
in order to ensure the accuracy of the data in this study, the analyses

TABLE 3 Landscape pattern index.

Index Code Unit Value range Explanation

Number of patches NP 1 NP ≥ 1 Total number of patches of a given land class within the study area

Patch density PD 1/km2 PD > 0 Number of patches per unit area, characterizing the degree of fragmentation

Percent of landscape PLAND % 0≤PLAND≤100 Reflects the richness and dominance of landforms in the study area

Shannon’s diversity index SHDI _ SHDI≥0 Tends to be normally distributed with the richness and fragmentation of the landscape

Shannon’s evenness index SHEI _ 0≤SHEI <1 Describes the uniformity of distribution among different types of patches

Splitting index SPLIT _ 0≤SPLIT Used to observe landscape fragmentation

Landscape division index DIVISION _ 0≤DIVISION <1 Indicates the degree of dispersion between patches

Interspersion and juxtaposition index IJI % 0 < IJI≤100 Reflects the dispersion and juxtaposition between landscape types

Contagion index CONTAG % 0 < CONTAG ≤100 Describes the degree of clustering or extension of different patch types in the landscape
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FIGURE 3
LUCC in Jiangling county from 2011 to 2020.
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were carried out with the image sizes of “5m*5m” and “30m*30m”,
respectively, through continuous debugging.

2.3.4 LUCC dynamic
The LUCC dynamic can visualize the speed and magnitude of

change in different land categories. The algorithm is shown in
Eq 9.

K � St2 − St1
St1

×
1

t2 − t1
× 100% (9)

where K denotes the dynamic attitude of a land class in the time
period from t1 to t2; St1 and St2 are the area of the land class in this
time period, respectively.

2.3.5 Land use transfer matrix
The land use transfer matrix reflects the transformation

between different land categories. The algorithm is shown in
Eq. 10.

Aij �
A11 A12 / A1n

A21 A22 / A2n

/ / /
An1 An2 / Anm

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (10)

whereAi is the land area of category i before the transfer;Aj is the land
area of category j after the transfer; n is the number of land use types.

2.3.6 Buffer zone analysis
Buffer zone is used to analyze the distance of each target in the

space. Buffer analysis is an important spatial analysis function in
GIS, which is widely used in the study of spatial distance on land use
change (Zheng et al., 2021; Xiao et al., 2024). A buffer is an area of a
certain width within the sphere of influence of a spatial object or set
of objects (Patarasuk and Binford, 2012; Li C. et al., 2022). The
algorithm is shown in Eq. 11.

Buf f i � x|D x,Mi( )#R{ } (11)
where Buffi is the buffer ofMi;Mi is a spatial object; R is the buffer
radius; D is the distance.

3 Results

3.1 Characteristics of LUCC

3.1.1 Structural evolutionary features
In terms of area share, the land use structure of Jiangling County

has been basically stable during the 10-year period (Figure 3). The
proportion of each land use type, in descending order, are as follows:
cultivated > water > towns and villages > forest > special > garden >
transportation > industrial and mining > other > grassland
(Figure 4). Cultivated land constituted 67%–72% of the total,
water accounted for 14%–19%, towns and villages made up 8%–
11%, and grassland had the smallest proportion, approximately
0.005% throughout the year. Due to changes in the rules of the
LUCC Survey, all types of land use have experienced significant
fluctuations in their shares in 2019.

Examining the LUCC trends 9), significant variations are
observed in the trends of each category (Table 4). Over the 10-
year period, grassland, industrial and mining, and transportation
exhibited higher change trends, while cultivated and water had lower
change trends. Grassland exhibited an inflow trend, with a dynamic
attitude of 195.15%. Transfer volatility was highest in 2013–2014,
while inflow volatility reached its peak in 2018–2019. Over the past
decade, towns and villages exhibited a trend of turning out, with a
dynamic attitude of −2.73%. It experienced mild growth from
2011 to 2017 but underwent a significant decline from 2018 to
2020. It can be seen from Figure 4 that the towns were increasing,
while the villages were decreasing. The special showed a general
trend of transfer out, with the highest transfer out fluctuation in
2012–2013 and the greatest inflow fluctuation in 2014–2015. The
cultivated exhibited an overall trend of outflow, except for a slight
increase in 2012–2013. Outflow fluctuated in other study periods,
with the most significant outflow observed in 2018–2019. The
industrial and mining exhibited an overall inflow trend, with a
turn-out fluctuation in 2012–2013 and 2016–2017, and a turn-in
fluctuation in 2018–2020. The transportation exhibited an inflow
trend with annual fluctuations, reaching its peak in 2013–2014. The
forest generally exhibited an inflow trend, with a mild outflow

FIGURE 4
Evolution of land use structure from 2011 to 2020.
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fluctuation from 2011 to 2016 and an inflow fluctuation from
2017 to 2020. The other exhibited an overall inflow trend,
increasing every year. The garden and water exhibited an overall
inflow trend, with a slight decrease except in 2018–2019.

3.1.2 Land use transfer characteristics
From the perspective of land use transfer matrix ((10), Table 5),

cultivated, water, towns and villages were the three primary types of
land transfer in the past 10 years. The cultivated had an inflow of
6087.2646 hm2 and an outflow of 11,101.4566 hm2. The main sources
of inflow were towns and villages (49.37%) and water (35.36%). The
main outflow areas were water (52.47%), transportation (19.84%),
forest (7.28%), industrial and mining (7.12%), and towns and villages
(6.71%). The water experienced an inflow of 7202.9484 hm2 and
outflow of 3441.6894 hm2. The main inflow sources were cultivated
(80.86%) and towns and villages (14.58%). The main outflows were
cultivated (62.53%) and transportation (15.75%). The towns and
villages had an inflow of 1,177.2608 hm2 and outflow of
5915.2737 hm2. The main inflow sources were cultivated (63.27%),
water (19.95%) and special (8.88%). The main outflows were
cultivated (50.80%), water (17.75%), industrial and mining
(12.10%) and transportation (11.16%).

Based on the annual transfer data (Figure 5), there were no
significant changes in land classes in the study area from 2011 to
2012. From 2012 to 2018, the inflow and outflow of land classes
remained basically the same every year. Cultivated, garden, towns
and villages, and water were the primary outflow land types.
Cultivated, transportation, towns and villages, and other land
were the primary types of inflow land. From 2018 to 2020,
changes in territorial investigation rules led to inflows and
outflows in all categories.

3.1.3 Landscape pattern evolution characteristics
Examining the overall landscape pattern (Table 6), CONTAG

exhibited a persistent decline, signifying diminished connectivity
among various patch types and an escalating degree of
fragmentation. The Increase in IJI suggested a continual
augmentation of landscape continuity. DIVISION and SPLIT
exhibited an initial gradual rise followed by a sharp increase,
indicating the constant separation of small patches and an
ongoing surge in landscape fragmentation. The SHDI
experienced a slight decrease from 2011 to 2013 but continued
to rise from 2014 to 2020, suggesting an increase in land use
diversity and the information content of its uncertainty. The
SHEI exhibited a slow but steady increase from 2011 to 2020,
suggesting relative stability in the dominance of landscape types
in Jiangling County.

Examining landscape pattern changes across different regions
(Figure 6), the PD for water and towns and villages was higher,
indicating increased fragmentation. During 2011–2018, the PD of
towns and villages, cultivated, transportation and other land
showed an increasing trend, indicating that these four land
types were gradually fragmented. The PD of garden decreased,
signifying a reduction in the degree of fragmentation. The PD of
other categories were relatively stable. During 2019–2020, the PD
of all categories fluctuated greatly, which were related to the change
of land category identification and division rules in the third
territorial survey.T
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3.2 Driving mechanism of LUCC

3.2.1 Driving factor contribution degree
Drawing from existing relevant research literature (Gao et al.,

2022; Liu et al., 2022; Zhang et al., 2022; Xu W. et al., 2023) and the
specific conditions of Jiangling County, a total of 15 driving factors
(Table 1; Figure 7) were identified. These factors were selected based
on the principles of accessibility, correlation, quantification, spatial
differentiation, and consistency from three domains: natural

environment, social economy, and spatial accessibility. They were
used to analyze the driving mechanisms and conduct simulation
predictions. The MDA in RFC was used to measure the contribution
degree of driving factor. Overlaying the land class expansion patches
with the most important driver can intuitively display the spatial
relationship between them (Figure 8). Taking cultivated land as an
example, the distance to town contributed the most to its expansion.
The spatial superposition of the cultivated expansion patches and
the distance to town showed that the cultivated land expansion was

TABLE 5 Transfer matrix of land use from 2011 to 2020 (unit: hm2). The Land 1–10: Grassland, Towns and villages, Specia, Cultivated, Industrial andmining,
Transportation, Forest, Other, Water, Garden.

Class 2020 Areas

Land
1

Land 2 Land
3

Land 4 Land 5 Land 6 Land 7 Land
8

Land 9 Land
10

2011 Land 1 0 0.1384 0 1.6483 0.1637 0.1057 1.1740 0 1.8853 0 5.1154

Land 2 35.4242 4767.9908 13.5815 3005.1072 715.7491 660.4212 366.1585 28.3352 1,049.9516 40.5452 10,683.2645

Land 3 2.1418 104.5036 132.0565 116.5222 16.1767 16.0658 42.6629 10.3728 31.8650 0.7871 473.1545

Land 4 13.4806 744.8417 83.1522 64,277.6804 791.0482 2201.9847 808.7216 166.6969 5824.5250 467.0057 75,379.1371

Land 5 8.0898 17.3615 1.4636 47.7435 24.5690 5.1248 4.4950 1.6628 15.5082 1.6183 127.6366

Land 6 0.4868 19.1554 0.0078 12.6158 5.7894 147.4507 10.7637 0.0004 18.3606 1.0921 215.7226

Land 7 14.7482 42.5769 5.2962 558.3348 25.4117 69.5466 662.1482 13.0121 225.4806 36.4922 1,653.0474

Land 8 2.2696 5.4351 1.4829 11.5385 5.4413 1.8476 3.9310 21.4940 8.2222 0.2966 61.9588

Land 9 18.1736 234.9088 27.2532 2152.2579 83.8038 541.9449 315.9391 36.3949 12,574.1435 31.0132 16,015.8328

Land 10 0.1652 8.3394 0.1324 181.4964 4.2768 11.4142 12.3621 3.9115 27.1499 48.7485 297.9964

Areas 94.9797 5945.2516 264.4264 70,364.9449 1,672.4298 3655.9063 2228.3560 281.8805 19,777.0919 627.5988 104,912.8661

FIGURE 5
Land use transfer from 2011 to 2020.
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mainly distributed in areas far from the towns. The findings
indicated that the root mean square error (RMSE) for land
expansion driving force analysis was below 0.15, ensuring high
data reliability.

The primary factors affecting towns and villages expansion from
high to low were distance to town, distance to water, annual average
temperature, population density, distance to county road. The majority
of newly allocated towns and villages land exhibited proximity to towns,
high population density regions, and county roads, aligning with the
established pattern of construction land expansion. Furthermore, the
expansion of towns and villages land showed a preference for areas in

proximity to water and lower temperature zones, signifying that the
human settlement environment had emerged as a crucial factor in site
selection for construction.

The expansion of special land was mainly driven by population
density, average land GDP, and elevation, ranked in descending
order of impact. The majority of newly developed special land was
located within a 2 km radius outside each town in the peripheral
urban area, predominantly occupying areas with higher elevations.
This suggests that such lands should serve the towns while also being
distanced from them. Moreover, these locations require stringent
flood control measures.

TABLE 6 Overall landscape pattern index from 2011 to 2020.

Year CONTAG IJI DIVISION SPLIT SHDI SHEI

2011 78.5024 44.1888 0.9672 30.494 0.8893 0.3862

2012 78.5024 44.1888 0.9672 30.494 0.8893 0.3862

2013 78.5349 44.2452 0.9674 30.715 0.8877 0.3855

2014 78.2689 45.3477 0.9813 53.4098 0.8985 0.3902

2015 78.0348 46.2766 0.9866 74.8637 0.9077 0.3942

2016 77.9388 46.8742 0.9869 76.2198 0.9109 0.3956

2017 77.7309 47.4487 0.9882 85.0823 0.9192 0.3992

2018 77.5482 48.431 0.989 90.9127 0.9256 0.402

2019 70.309 45.3102 0.9975 404.8064 1.0631 0.4617

2020 69.9186 46.228 0.9975 398.4798 1.0778 0.4681

FIGURE 6
PD index from 2011 to 2020.
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The primary factors affecting cultivated land expansion from high
to low were distance to town, distance to highway, population density,
distance to railway and distance to water. Most of the newly added
cultivated land was far away from towns, convenient transportation and
dense population areas. It accords with the basic principle of the balance
of cultivated land occupation and compensation.

The primary factors influencing the expansion of
transportation land, ranked from high to low impact, were
distance to highway, distance to town, distance to railway, and
distance to the national road. The majority of the newly
designated transportation land was situated in proximity to
existing transportation routes and towns.

The primary factors influencing the expansion of forest land,
ranked from high to low impact, were population density and
distance to towns. The majority of the newly designated forest
land was situated in densely populated urban areas,
predominantly in town road green belts.

The primary factors influencing the expansion of other types of
land, ranked from high to low impact, were average annual
precipitation and population density. The newly added land
mainly consisted of facility agricultural land, primarily located in
areas with high precipitation and low population density, aligning
with the principles of agricultural production.

In terms of the average contribution degree of various category
and the average contribution degree of each driving factor (Figure 9),
socioeconomic factors had the greatest impact, followed by spatial
accessibility, and natural environmental factors had the least impact.
The main driving factors affecting LUCC in Jiangling County from

high to low were population density, distance to town, average
annual precipitation, distance to highway, distance to railway,
average land GDP, distance to water and elevation.

3.2.2 Spatial factor driving mechanism
According to the above contribution analysis, socio-economic

and spatial factors were the main driving forces. However, the
contribution degree could not reflect the driving mechanism at
the micro level. Because socio-economic factors were average data, it
was difficult to analyze at the micro level. Therefore, the spatial
factors were analyzed at the micro level. By establishing buffer zones
(11) for towns, roads, and waters, the number and area of increased
and decreased land class patches in the buffer zones from 2011 to
2020 were counted, and the gradient change characteristics were
analyzed, and then the microscopic driving mechanism of spatial
factors was revealed.

3.2.2.1 Water driving mechanism
As can be seen from Figure 10, the inflow and outflow of species

from 2011 to 2020 mainly concentrated within 3000 m away from
the water. The closer to the water, the more inflow and outflow
patches, indicating that the closer to the water, the more frequent the
land class transformation. The closer cultivated, towns and villages,
transportation, and forest were to water, the larger inflow area,
showing a strong “hydrophilic” property. In addition, the closer
cultivated, towns and villages, and forest were to the water, the larger
outflow area, indicating that the more hydrophilic the more easily
encroach. Water resources were the key factors for production and

FIGURE 7
Driving factors of LUCC.
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life in Jianghan Plain, and LUCC was negatively correlated with the
distance to water.

3.2.2.2 Road driving mechanism
As can be seen from Figure 11, the inflow and outflow of land

classes from 2011 to 2020 mainly concentrated within 1,200 m away
from the road. The closer to the road, the more inflow and outflow
patches, and the larger area, indicating a higher frequency of LUCC
closer to roads. The changes of cultivated, towns and villages,

transportation, forest, industrial and mining, and water were
positively correlated with transportation accessibility.

3.2.2.3 Towns driving mechanism
As can be seen from Figure 12, the inflow and outflow of various

land types from 2011 to 2020 mainly concentrated within 6000 m
away from towns. The closer to the town, the more inflow and
outflow patches, and the larger the area, indicating a higher
frequency of LUCC nearer to towns. The increase and decrease
of various land use types were negatively correlated with the distance
to towns. It is noteworthy that the inflow of cultivated land also
tended to occur closer to towns.

3.2.3 Probability of land development
Utilizing the spatial distribution of various land types expansion

and the influence range of each driving factor, the RFC 2) was used
to mine land expansion one by one, resulting in the probability
distribution of land type development (Figure 13). Findings revealed
a higher likelihood of towns and villages expansion in the central
and northwest regions along the Yangtze River, while indicating a
contraction trend in other areas, suggestive of “rural-town
convergence”. Cultivated land exhibited higher development
probabilities in the northeastern, southeastern, and western parts
of the county along the Yangtze River. The expansion probability of
transportation was higher along highways, provincial roads and
other roads around towns. The development of other land was
inextricably linked with cultivated, leading to a concentration of
development mainly in the northwest along the Yangtze River, the
southern border zone, and the northeast region. Conversely,
grassland, special, industrial and mining, forest, water, and
garden areas exhibited a declining or stagnant development trend.

3.3 LUCC simulation

3.3.1 Accuracy check and comparison
The Markov model’s demand for different land classes varies

based on the selected start and end simulation years. Therefore, it is
crucial to assess time precision before simulation and choose a time
period that yields superior simulation outcomes for land class
demand within the study area. Various start and end years, along
with time spans, were employed to simulate land use in 2018. As
depicted in Table 7, the Kappa coefficient 6), Overall Accuracy 8),
and FoM values 7) obtained from simulations in 2016–2017 (1-year
interval) surpassed those from simulations in 2014–2016 (2-year
interval) and 2012–2015 (3-year interval). Employing 2016–2017 (1-
year interval) for simulating land class demand exhibited superior
results compared to the other two options, aligning well with the
actual spatial patterns (Figure 14). Consequently, 2016–2017 was
chosen as the base period for further spatial pattern simulation of
land use in 2035, utilizing 2018 land use data, 15 driving factors, and
related parameters.

3.3.2 Multi-scenario simulation
As LUCC is influenced by various factors, and the change

process is intricate, numerous possibilities exist for the future
spatial pattern change in land use. Therefore, based on previous
studies (Zhou L. et al., 2020; Liu Y. et al., 2020; Qingzheng et al.,

FIGURE 8
Overlay of land class expansion patches and the most important
driving factor, Contribution degree of LUCC driving factors: (1) towns
and villages expansion, (2) special land expansion, (3) cultivated
expansion, (4) transportation expansion, (5) forest expansion, (6)
other land expansion.
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2023), the future LUCC in Jiangling County was modeled across
three scenarios: natural development, planning guidance, and
ecological protection. In the natural development scenario, it
assumed that LUCC in Jiangling County from 2018 to
2035 would follow patterns observed in previous years. In the
planning guidance scenario, areas designated as priority
development zones were identified in alignment with the
“Jiangling County Territorial Space Master Plan (2020–2035)". In
the ecological protection scenario, forest and grassland are strictly
protected. The simulation results are presented in Tables
8–10; Figure 15.

3.3.2.1 Natural development scenario
In terms of the dynamic attitude of land use, it can be seen

from Table 8 that the increased land types were transportation
and towns and villages, while the forest, cultivated, water and

garden all decreased, and the other types remained stable. The
transportation had the largest change (10.27%), followed by forest
(−3.94%), towns and villages (1.27%). Cultivated, water and
garden had a small fluctuation. In terms of land use transfer
change, it can be seen from Table 8; Figure 15 that the
transportation increased from 905.13 hm2 to 2,483.19 hm2, of
which 86.47% came from the conversion of cultivated. The forest
decreased from 1,523.88 hm2 to 502.83 hm2, of which 66.37% was
transferred to cultivated and 29.62% to towns and villages. The
towns and villages increased from 11,487.42 hm2 to
13,970.07 hm2, primarily from cultivated (6986.97 hm2) and
forest (302.4 hm2), while 4744.26 hm2 transferred out to
cultivated. The cultivated decreased from 74,617.74 hm2 to
72,479.61 hm2, primarily transferred to towns and villages
(6,986.97 hm2) and transportation (1,364.58 hm2), while
4,744.26 hm2 transferred from towns and villages.

FIGURE 9
Average contribution degree of various category, Average contribution degree of each factor.
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From the perspective of landscape pattern (Table 9; Table 10),
SHEI and SHDI were on the rise compared with 2018, while
CONTAG declined, indicating that the degree of landscape
fragmentation increased and the dominant land types
declined. PLAND of towns and villages increased compared to
2018, but PD experienced a decline, indicating that towns and
villages construction land was gathering, which was due to the
transfer of some rural areas along the Yangtze River and in the
eastern region to town areas. In contrast to 2018, the PLAND of
cultivated, water and garden decreased, but the PD increased,
indicating that agricultural space and ecological space
were occupied.

3.3.2.2 Planning guidance scenario
In terms of land use dynamics, Table 8 shows that

transportation and towns and villages increased, grassland,
industrial and mining remained stable, and other types of land
decreased. Transportation and towns and villages land fluctuated
greatly. Compared with the natural development scenario, the

transportation remained at 10.27%, the towns and villages
increased to 1.63%, and the forest decreased to −0.69%. In
terms of land use transfer change, it can be seen from Table 8;
Figure 15 that the transportation increased from 905.13 hm2 to
2,485.08 hm2, of which 87.94% was transferred from cultivated
land. The towns and villages increased from 11,487.42 hm2 to
14,680.08 hm2, primarily through the transfer from cultivated
(7,845.03 hm2) and transfer to cultivated (4,781.16 hm2). The
forest decreased from 1,523.88 hm2 to 1,344.87 hm2, being
transferred to towns and villages, cultivated and
transportation. Cultivated decreased from 74,617.74 hm2 to
70,959.6 hm2, primarily transferred to towns and villages
(7845.03 hm2) and transportation (1,389.33 hm2), mainly
transferred from towns and villages (4781.16 hm2).

From the landscape pattern index (Table 9; Table 10), the
CONTAG and SPLIT decreased compared with 2018, indicating
that the degree of landscape fragmentation was increasing.
Compared with the other two scenarios, CONTAG was the
smallest, and DIVISION, SPLIT, SHDI, and SHEI were the

FIGURE 10
Transfer changes at different distances to water.

Frontiers in Environmental Science frontiersin.org15

Zhou et al. 10.3389/fenvs.2024.1422987

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2024.1422987


largest, indicating that the dominant land class was the least obvious
and the fragmentation degree was the highest. The PLAND of towns
and villages increased substantially, indicating an obvious
aggregation trend. The PLAND and PD of forest and garden did
not fluctuate greatly, indicating that their encroachment decreased.
Figure 15 also shows that forest and garden along the Yangtze River
had been effectively protected. The PLAND of cultivated decreased
by about 2%, and the PD increased by 3%–4%, indicating that the
degree of fragmentation continued to increase.

3.3.2.3 Ecological protection scenario
In terms of the LUCC dynamic, it can be seen from Table 8 that

the transportation, towns and villages and the other land increased,
while the grassland, forest and industrial and mining remained
stable, and the other types of land decreased. The transportation

expanded steadily and remained at 10.21%. The other types dynamic
attitudes were lower than that in the other two scenarios. The towns
and villages dynamic attitude decreased to 0.9%, which decreased by
0.37% and 0.73% compared with the natural development scenario
and the planning guidance scenario, respectively. The cultivated
dynamic attitude was 0.2%, which decreased by 0.09% compared
with the planning guidance scenario and increased by 0.03%
compared with the natural development scenario. In terms of
land use circulation change, it can be seen from Table 8;
Figure 15 that the transportation increased by 1,571.67 hm2, of
which 89.09% was transferred from cultivated. Towns and villages
increased by 1755.27 hm2, with a growth rate significantly lower
than in the previous two scenarios. The main source of transfer was
from cultivated (6469.11 hm2), with the primary transfer to
cultivated (4766.76 hm2). Cultivated decreased by 2521.89 hm2,

FIGURE 11
Transfer changes at different distances to roads.
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primarily transferred to towns and villages (6469.11 hm2) and
transportation (1,400.22 hm2), with the main transfer source
from towns and villages (4766.76 hm2). Compared with the
natural development and planning guidance scenarios, forest
increased by 1,021.05 hm2 and 179.01 hm2, respectively,
indicating that ecological land was protected better under
this scenario.

From the perspective of landscape pattern (Table 9; Table 10),
SHEI and SHDI were higher than those in 2018, while SPLIT and
CONTAG declined, indicating an increased degree of landscape
fragmentation and a decline in dominant landscape land types. IJI
was higher than in the other two scenarios, suggesting a more
uniform distribution of land types. Compared with the other two
scenarios, towns and villages’ PLAND was lower, and NP was
higher, indicating a weaker agglomeration and appropriately
slowed urbanization process. The PD of cultivated was lower
than in the other two scenarios, indicating lower fragmentation.

The PLAND of forest was the largest among all scenarios, and the
NP was smaller than in the planning guidance scenario, indicating
effective control of the forest and a trend toward aggregation in
this scenario.

3.3.2.4 Comparative analysis
As shown in Table 11, in the natural development scenario,

construction land increased by 31.25%, and agricultural land was
occupied the least, with a reduction ratio of 2.86%. Ecological
land was occupied the most, with a decrease of 11.32%. In the
planning guidance scenario, construction land increased the
most, with a ratio of 36.60%. Agricultural land faced the most
occupation, experiencing a reduction of 4.91%. The proportion
of ecological land reduction was 6.34%. In the ecological
protection scenario, construction land increased the least, with
a ratio of 25.53%. Agricultural land was reduced by 3.23%.
Ecological land faced the least occupation, with a reduction

FIGURE 12
Transfer changes at different distances to towns.
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ratio of 5.28%. In either scenario, the expansion of construction
land and encroachment on agricultural and ecological land were
inevitable.

4 Discussion

4.1 Challenges

From the perspective of land use evolution, policy is the core
factor affecting the change of land use structure in Jianghan Plain,
and the continuous weakening of agricultural production function
deserves attention. From 2011 to 2020, towns increased, villages
and cultivated reduced greatly. Grassland, forest, garden, and
water increased slightly. In the past 10 years, urbanization had
achieved good results, and some ecological land had been
effectively protected, but the loss of agricultural land was
serious. The above phenomenon was primarily attributed to the
influence of policies (Deng and Quan, 2023; Fan et al., 2023; Zhou
et al., 2023). Firstly, the implementation of the strategy of “Yangtze
River Economic Belt” and “Coal transportation from North to
South” has brought water transportation port (Zhang et al., 2022),
Haoji railway and coal resources to Jiangling County, fostering
rapid industrialization and urbanization. Secondly, the
implementation of the strategy of “Great Protection of the
Yangtze River” requires the cities along the river to protect the
ecological environment, leading to stringent protection of
ecological land (Liang et al., 2021b; Zeng et al., 2023). Thirdly,

the implementation of the policy of “Balance of cultivated land
occupation and compensation” requires that the amount of
cultivated land occupied by the construction should be
supplemented by the amount of cultivated land with the same
quantity and quality (Liu et al., 2015; Zhou et al., 2023). The
indicators that can not be balanced within the region can be
purchased from outside the region. Jiangling County has taken
measures to purchase indicators outside the region, resulting in a
substantial reduction of cultivated land.

From the perspective of driving mechanisms, urbanization emerges
as the central theme in Jianghan Plain, and the limitation of ecological
growth space warrants attention (Zhou Y. et al., 2020; Xu W. et al.,
2023). The key factors influencing the LUCC in Jiangling County
include distance to town, distance to road, distance to water, population
density, annual average precipitation, and annual average temperature.
It is evident that the driving force behind LUCC at the micro level
primarily stems from spatial factors, with little impact from the natural
environment and socio-economic factors. Two reasons contribute to
this phenomenon. Firstly, Jiangling County is undergoing rapid
urbanization, marked by frequent urban and infrastructure
construction activities leading to a series of LUCC events (Bindajam
et al., 2023). Secondly, within Jianghan Plain, the flat terrain, dense river
network, and uniform natural environment contribute to a lack of
significant social and economic disparities between different areas,
reducing the driving force for LUCC. Additionally, there are notable
driving mechanisms (Cui et al., 2021; Ren et al., 2024). Firstly, the
expansion of urban and village land tends to occur near water areas and
regions withmoderate temperatures, influenced by the “land of fish and
rice” culture and a preference for areas with lower temperatures due to
the impact of hot summer climates (Cui et al., 2021). Secondly, the
expansion of forest was predominantly concentrated in urban areas.
Given that Jianghan Plain is primarily characterized by agricultural
production, where cultivated, water, and construction land occupy
about 97% of the space, there is limited room for the growth of
forest, which can only be enhanced through urban greening.
Therefore, space for future forest growth and carbon neutrality is a
great challenge in the Jianghan Plain (Li L. et al., 2022).

FIGURE 13
Development probability of each land use type.

TABLE 7 Comparison of prediction accuracy for different time spans.

Interval Years Kappa Overall FoM

Three years 2012–2015 0.9456 0.9378 0.1426

Two years 2014–2016 0.9637 0.9524 0.1618

One year 2016–2017 0.9816 0.9916 0.1851
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4.2 Policy suggestion

By comparing the results under three different scenarios of natural
development, planning guidance and ecological protection, it is found
that planning policies play an important role in LUCC, which can
directly affect the spatial distribution and quantitative changes of
various classes. Regardless of the scenario, by 2035, construction
land will increase, agricultural land and ecological land will decrease,
and ecological growth space will be limited, highlighting a common
challenge in the Jianghan Plain (Deng and Quan, 2023; Fan et al., 2023;
Zhou et al., 2023). Different scenario models have different policies and
land use trends (Zhou et al., 2023). The selection of development
scenarios should not be viewed as an “either/or” decision, and
land management policies should not adopt a “one-size-fits-all”
approach. The land use structure must be meticulously planned,
integrating regional environmental considerations with social
and economic functions, striking a harmonious balance among

cultivated land protection, ecological security, and economic
development (Wang et al., 2023c). As an important part of the
Yangtze River Economic Belt and the birthplace of “permanent
basic farmland”, Jianghan Plain should not only develop its
economy, but also implement the great protection strategy of
the Yangtze River and assume important agricultural production
functions (Zhang et al., 2022). In the face of the continuous
reduction of agricultural land and ecological land, it is necessary
to implement a land policy for high-quality development. First,
promote the scale, mechanization and informatization of
agricultural production, and improve the production efficiency
of agricultural land (Liu et al., 2015; Zhou et al., 2023). Second,
implement a policy of locally balancing occupation and
compensation for cultivated, ensuring its stability (Zhou et al.,
2023). Third, promote the reuse of idle and inefficient
construction land to reduce the demand for new construction
land (Zhou et al., 2023). Fourth, encourage the integrated

FIGURE 14
Simulation result in 2018.
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use of land, expanding afforestation spaces, and enhancing
ecological benefits. Fifth, implement a policy to balance the
local occupation and compensation of ecological land to
ensure that ecological land will not decrease (Gao et al., 2022;
Zeng et al., 2023).

4.3 Simulation effect

The contribution degree of driving factors is the basis of multi-
scenario land use simulation, which determines the direction and
probability of different land class expansion in the future

TABLE 8 Land use area and dynamic in 2035 under multi-scenario simulation. The Land 1–10: Grassland, Towns and villages, Specia, Cultivated, Industrial
and mining, Transportation, Forest, Other, Water, Garden.

Class 2018 True 2035 natural 2035 Ecological 2035 Plan

Raster Area
(hm2)

Raster Area
(hm2)

Dynamic
(%)

Raster Area
(hm2)

Dynamic
(%)

Raster Area
(hm2)

Dynamic
(%)

Land 1 51 4.59 51 4.59 0.00 51 4.59 0.00 51 4.59 0.00

Land 2 127,638 11,487.42 155,223 13,970.07 1.27 147,241 13,242.69 0.90 163,112 14,680.08 1.63

Land 3 5283 475.47 5181 475.47 0.00 5181 466.29 −0.11 5099 458.91 −0.20

Land 4 829,086 74,617.74 792,617 72,479.61 −0.17 792,992 72,095.85 −0.20 788,340 70,959.6 −0.29

Land 5 1,423 128.07 1,423 128.07 0.00 1,423 128.07 0.00 1,423 128.07 0.00

Land 6 10,057 905.13 27,591 2483.19 10.26 27,520 2476.8 10.21 27,612 2485.08 10.27

Land 7 16,932 1,523.88 17,297 502.83 −3.94 24,961 1,523.88 0.00 14,943 1,344.87 −0.69

Land 8 1,234 111.06 2339 111.06 0.00 2350 211.5 5.32 1,253 94.32 −0.89

Land 9 171,056 15,395.13 161,124 14,501.16 −0.34 161,122 14,500.98 −0.34 161,122 14,500.98 −0.34

Land 10 3124 281.16 3040 273.6 −0.16 3050 279 −0.05 3035 273.15 −0.17

TABLE 9 Overall landscape pattern index in 2035 under multi-scenario simulation.

Scenario CONTAG IJI DIVISION SPLIT SHDI SHEI

2018 Ture 71.0927 47.7325 0.9483 19.3284 0.9248 0.4017

2035 Nature 69.7128 45.362 0.9001 10.0115 0.9676 0.4202

2035 Ecological 68.7218 48.9053 0.9354 15.4877 1.0035 0.4358

2035 Plan 68.4372 47.8405 0.9464 18.643 1.0119 0.4395

TABLE 10 Land class landscape pattern index in 2035 under multi-scenario simulation. The Land 1–10: Grassland, Towns and villages, Specia, Cultivated,
Industrial and mining, Transportation, Forest, Other, Water, Garden.

Class 2018 Ture 2035 Nature 2035 Ecological 2035 Plan

PLAND NP PD PLAND NP PD PLAND NP PD PLAND NP PD

Land 1 0.0044 8 0.0076 0.0044 8 0.0076 0.0044 8 0.0076 0.0044 8 0.0076

Land 2 10.9477 2759 2.6294 13.3137 1891 1.8022 12.6205 1956 1.8641 13.9904 1819 1.7335

Land 3 0.4531 905 0.8625 0.4531 905 0.8625 0.4444 893 0.851 0.4374 889 0.8472

Land 4 71.1122 667 0.6357 69.0745 2693 2.5665 68.7087 2599 2.4769 67.6259 2964 2.8247

Land 5 0.1221 42 0.04 0.1221 42 0.04 0.1221 42 0.04 0.1221 42 0.04

Land 6 0.8626 596 0.568 2.3665 309 0.2945 2.3604 306 0.2916 2.3683 306 0.2916

Land 7 1.4523 648 0.6176 0.4792 467 0.4451 1.4523 648 0.6176 1.2817 816 0.7777

Land 8 0.1058 288 0.2745 0.1058 288 0.2745 0.2016 243 0.2316 0.0899 239 0.2278

Land 9 14.6719 3656 3.4842 13.8199 5579 5.3169 13.8197 5454 5.1978 13.8197 5449 5.193

Land 10 0.268 439 0.4184 0.2607 440 0.4193 0.2659 441 0.4203 0.2603 443 0.4222
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(Lin and Peng, 2022). The PLUS model firstly calculated the
contribution degree of driving factors through MDA, and then
calculated the development probability of different classes in space
(Wang Q. et al., 2023). At the same time, DP was used to predict the

future land use demand in different scenarios. Finally, the future spatial
distribution of land use was simulated by CARS based on the annual
land use in the base period, the development probability of land classes,
and the future land use demand (Liang et al., 2021c). The Kappa and

FIGURE 15
Simulation results: (A) Multi-scenario simulation results in 2035, (B) Land use transfer in different scenarios from 2018 to 2035.
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Overall results of this simulation reached 0.9816 and 0.9916 respectively,
indicating that the PLUS simulation effect was very effective. Therefore,
this research framework is feasible.

To enhance the simulation accuracy of the PLUS model,
improvements can be pursued in two main dimensions. Initially,
employing continuous NLSD (Liu et al., 2015; Chen et al., 2022) for
simulation is recommended. When contrasted with remote sensing
image interpretation data (Table 12), NLSD offers superior continuity,
more detailed land classification, and higher accuracy, resulting in amore
precise simulation effect (Zhou L. et al., 2020; Xu L. et al., 2022; Li X. et al.,
2022; Chen and Yao, 2023; Fan et al., 2023; Nie et al., 2023). Additionally,
a comparative analysis of the simulation accuracy at 1-year, 2-year, and
3-year intervals was conducted (Table 7). The optimal interval data was
selected based on the Kappa coefficient, Overall accuracy, and Form
coefficient to refine and enhance the simulation effect.

4.4 Limitations and future research
directions

Firstly, the 15 driving factors chosen in this study may not
comprehensively encompass all relevant factors (XuW. et al., 2023).
Secondly, the PLUS model lacks the capability to quantify the
contribution of driving factors to the contraction of land classes
(Liang et al., 2021b). Thirdly, there is inherent subjectivity in the
parameter setting for scenario simulation (Qingzheng et al., 2023).
Given the identified limitations of the current study, future research
endeavors aim to incorporate a broader range of influential factors
and analytical methods for understanding the driving mechanisms.
Additionally, the integration of deep learning technology is
proposed to enhance the determination of model parameters,
aiming to refine and elevate the overall systematic and scientific
rigor of the research.

5 Conclusion

Utilizing the National Land Survey Data spanning 2011 to
2020 in Jiangling County, this study employed the PLUS model
and embraced the conceptual framework integrating change
characteristics, driving mechanisms, simulation predictions, and
policy suggestions. The main conclusions are as follows:T
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TABLE 12 Comparison of simulation accuracy of existing studies.

Target Kappa Overall FoM

This Research 0.9816 0.9916 0.1851

Bibliography 1 (Fan et al., 2023) 0.8412 0.8956 0.1478

Bibliography 2 (Chen and Yao, 2023) 0.8343 0.8735 0.1326

Bibliography 3 (Zhou et al., 2020a) 0.8277 0.8643 0.1318

Bibliography 4 (Xu et al., 2022b) 0.8438 0.8894 0.1426

Bibliography 5 (Li et al., 2022c) 0.8422 0.8955 0.1452

Bibliography 6 (Nie et al., 2023) 0.8240 0.8603 0.1237

··· ··· ··· ··· ··· ··· ··· ···
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(1) Over the period from 2011 to 2020, there was an increase in
urban construction land while village construction land,
agricultural land and ecological land experienced
reductions. Cultivated, towns and villages, and water were
the three primary circulation change categories. The degree of
landscape fragmentation was increasing.

(2) The main driving factors affecting LUCC in Jiangling County
from high to low were population density, distance to town,
average annual precipitation, distance to highway, distance to
railway, average land GDP, distance to water and elevation.
Socioeconomic factors had the greatest impact, followed by
spatial accessibility, and natural environmental factors had the
least impact.

(3) In the three scenarios of natural development, planning
guidance and ecological protection, the trend of
construction land expansion, agricultural land and
ecological land encroachment is inevitable by 2035.

(4) To address the decline in agricultural land and the scarcity of
ecological land, it is imperative to actively advocate for large-scale
mechanization and informatization of agricultural production,
encourage the repurposing of idle and inefficiently used
construction land, facilitate multi-purpose land utilization, and
adopt a land management approach that balances the local
occupation and compensation of cultivated and ecological land.

(5) Utilizing the PLUS model for LUCC simulation, the ultimate
Kappa coefficient and Overall accuracy achieved 0.9816 and
0.9916, respectively, through the selection of continuous NLSD
and careful accuracy screening across different time spans. The
simulation results demonstrated higher accuracy compared to
those obtained from remote sensing image interpretation data.
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