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Remote sensing has become an effective way for regional soil organic matter
(SOM) quantitative analysis. Topographic factors affect SOM content and
distribution, also influence the accuracy of SOM remote sensing inversion. In
large region with complex topographic conditions, characteristic topographic
factors of SOM in different topographic regions are unknown, and the effect of
combining characteristic topographic factors with spectral parameters on
improving SOM inversion accuracy remains to be further studied. Three
typical topographic regions of Shandong Province in China, namely Western
plain region (WPR), Central and southern mountain region (CSMR), Eastern hilly
region (EHR), were selected. Topographic factors, namely Elevation, Slope,
Aspect and Relief Amplitude, were introduced. Respectively, the characteristic
topographic factors and spectral parameters of SOM in each region were
identified. The SOM inversion models were built separately for each region by
integrating spectral parameters with topographic factors. The results revealed
that as for the characteristic topographic factors of SOM, none was in theWPR, E,
RA, and S were in the CSMR, E and RA were in the EHR. In combination with
characteristic topographic factors, the accuracy of SOM spectral inversion
models improved, the calibration R2 increased by 0.075–0.102, the RMSE
(Root mean square error) decreased by 0.162–0.171 g/kg, the validation R2

increased by 0.067–0.095, the RMSE decreased by 0.236–0.238 g/kg, and
RPD (Relative prediction deviation) increased by 0.129–0.169. The most
significant improvement was observed in the CSMR with the calibration R2 of
0.725, the validation R2 of 0.713 and the RPD of 1.852, followed by the EHR. This
study not only contributes to the advancement of soil quantitative remote
sensing theory but also offers more precise data support for the development
of green, low-carbon, and precision agriculture.
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1 Introduction

As an important component of soil and a key index in the global
carbon cycle (Wood and Baudron, 2018; Gu et al., 2019; Wang et al.,
2023), soil organic matter (SOM) plays a key role in analyzing soil
fertility and evaluating cropland quality (Gao et al., 2019; Pouladi
et al., 2019; Wu et al., 2019; Luo et al., 2022; Luo et al., 2022).
Accurately estimating and monitoring changes in SOM are highly
significant for calculating carbon pools calculation and enhancing
agricultural production (Li et al., 2019; Thaler et al., 2019; Wu et al.,
2019; Wang and Zhou, 2023). The traditional laboratory analysis
method for SOM is not only time-consuming and laborious, but also
cannot provide continuous spatial distribution with discrete sample
points, which makes it difficult to apply in large regions (Chen et al.,
2019; Gao et al., 2019; Xu et al., 2023). With the development and
maturity of remote sensing technology, remote sensing inversion
based on multi-spectral satellite images has become an effective
approach for quantitatively analyzing SOM contents (Kumar et al.,
2018; Wang et al., 2018; Dou et al., 2019; Liu et al., 2023; Ma et al.,
2023; Wang and Zhou, 2023; Zhou et al., 2023; Rajabi et al., 2024).

In the quantitative inversion of SOM utilizing multi-spectral
satellite remote sensing, two primary methodologies are
predominant. The first approach is only based on remote
sensing inversion (Sun et al., 2022; Wei et al., 2022). In this
method, spectral indexes are constructed using different
mathematical combinations of the bands, and the characteristic
spectral parameters of SOM are optimized, to build the spectral
inversion model (Kahaer et al., 2019). For example, Dindaroglu
et al. (Dindaroglu et al., 2022) built the spectral parameters and
SOM inversion model based on Sentinel-2A MSI images at the
research station of Kahramanmaras Sutcu Imam University in
Turkey. Tang et al. (Tang et al., 2022) employed Multiple Linear
Stepwise Regression (MLSR) and Partial Least Square (PLSR), and
built the SOM model based on Sentinel-2 MSI satellite images in
the Middle Songnen plain, Heilongjiang Province, China, which
demonstrated that the MLSR model provided the best prediction
and inversion results. It can be seen that existing scholars have
carried out a lot of research based on such methods; the spectral
characteristics of SOM were explored, and the SOM inversion
models were built, which certified the SOM inversion feasibility
based on multi-spectral satellite remote sensing data, and a series
of achievements were obtained. However, this method did not
take into account the influence of topography, precipitation, and
other environmental factors on SOM, so the accuracy of model
was not very good and needed to be improved. There are
environmental factors, for example topographic factors, which
not only affect SOM content and distribution, but also influence
the accuracy of SOM remote sensing inversion. Therefore the
applicability of the above mentioned method to regions with
diverse topographies and environmental conditions becomes
challenging.

The second type of method is a combination of spectral data
and environmental factors. Auxiliary variables representing
environmental characteristics, such as topography, hydrology,
and other environmental factors, are included to build the SOM
inversion model. For example, Pan et al. (Pan et al., 2022)
selected the black soil region of Songnen Plain, Hailun City,
Northeast China, as the research area and established a

prediction model based on SOM content, spectrum, and
topographic characteristics, which demonstrated that the
SOM prediction accuracy was significantly improved. Based
on Landsat 8 ETM+ and Global Digital Elevation Model
(GDEM) data, Hamedani et al. (Hamedani et al., 2022)
selected topographic factors such as relative elevation,
elevation, mid slope position, and vertical and horizontal
orientation as auxiliary data and utilized the regression tree
method (Nilashi et al., 2021) to predict the distribution of SOM
in the northern mountains of Iran, which revealed that the
relative elevation and mid slope position contributed a lot to
the SOM prediction model. Compared to the first type of
method, this method incorporates topography and other
environmental factors into the modeling process, resulting in
improved accuracy for SOM remote sensing inversion (Belenok
et al., 2023). However, in most existing studies, single
topographic factors were introduced according to the single
or a few terrains with small scale. In large regions with
complex and varied topographic features, such as provinces
with diverse topography, topography is one of the main
influencing factors of SOM, the SOM content and
distribution differ greatly among different topographic
features, and the characteristic topographic factors of SOM in
different topographic regions may be different, and remains to
be studied. The effect of the combination characteristic
topographic factors with spectral parameters on improving
the accuracy of SOM inversion for different topographic
regions remains to be further verified.

Based on the above analysis, without considering topography
and other environmental factors, the remote sensing inversion
only on spectral data can realize quantitative analysis of regional
SOM content, but the accuracy of the analysis needs to be
improved. By incorporating both spectral data and
topographic factors, the accuracy of SOM analysis was
improved; however, most studies only considered single or a
few topographies, which was not suitable for large areas with
complex topography. In complex and dynamic topographic
regions, the characteristic topographic factors of SOM may be
different and should be explored in different topographic
regions. The combination of characteristic spectra and
topographic factors in different topographic regions should
improve the accuracy and practicability of regional SOM
inversion, which can provide a fresh perspective for large-
scale SOM inversion.

Taking Shandong Province in China as the study area, three
topographic regions, namely the Western plain region (WPR),
Central and southern mountain region (CSMR), Eastern hilly
region (EHR) were selected, the SOM spectral characteristics,
indices and topographic factors in different topographic regions
were analyzed and compared, then the SOM inversion models were
built. The effectiveness of combining topographic variables with
spectral indices for regional SOM inversion in different topographic
regions was also explored. This study aims to achieve high-precision
SOM inversion over large areas with complex topography, which
can not only enrich the theoretical knowledge of soil quantitative
remote sensing inversion, but also provide accurate data support for
the investigation of cropland quality, carbon cycle research, and
precision agriculture development in large areas.
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2 Materials and methods

2.1 Study area

Shandong Province is located in the east coast of China, the lower
reaches of the YellowRiver, which is adjacent to the Bohai Sea to the north
and the Yellow Sea in the east. The geographical coordinates of the areas
are 34°22.9′-38°24.01′N latitude, 114°47.5′-122°42.3′E longitude (Figure 1).
The region has a temperate monsoon climate with four distinct seasons:
the winter is cold and dry, while the summer is hot and humid.

The main types of landforms in Shandong are plains, mountains,
and hills; the central mountains protrude, while the southwest and
northwest are low-lying, and the east is hilly and undulating. Among
these regions, the first zone is the plain, which accounts for 65.56% of the
total area, primarily located in the northwest and southwest of Shandong
Province, mostly formed by the alluvial Yellow River, also known as the
yellow flood plain; the second zone is the mountainous area, which
makes up 14.59% of the area, mainly distributed in the central and
southern parts of Shandong; the third zone is the hills, which occupy
15.39% of the total area, mainly found in the eastern part of Shandong
and belongs to the tectonic uplift zone. In addition, there are small
terrace area in the eastern region, accounting for 4.46% of the total area.

According to the above-mentioned geomorphologic characteristics
of Shandong Province, taking the integrity of the administrative divisions
into account, the three main topographic regions (Western plain region
(WPR), Central and southern mountain region (CSMR), Eastern hilly
region (EHR)) were selected to be studied in Shandong Province. Three
kinds of major topography (plain, mountain and hills) account for
95.54% of the total area in Shandong Province, so these three districts
(WPR, CSMR and EHR) can fully represent the whole Province.

2.2 Methodological flowchart

To begin with, the study area was initially divided into different
topographic regions based on the main topographic characteristics. Soil
samples were then collected in the field, followed by indoor

measurement of soil organic matter (SOM) content. Furthermore,
Sentinel-2A MSI images and DEM data from the same period were
acquired and preprocessed. After that, the study uses several techniques,
including the extraction of topographic factors, the selection of sensitive
bands for SOM, the building and optimization of SOM’s spectral
parameters, and the utilization of characteristic topographic factors.
Subsequently, to evaluate the effectiveness of SOM inversion models
with topographic factors, the inversion models were built and compared
to determine the best inversion models for each topographic region.
Finally, the spatial distribution of SOM in the study areas was analyzed.
Figure 2 is the methodological flowchart.

2.3 Soil sample collection and SOM
determination

From mid-September to mid-October in the North China Plain,
corn had been harvested, while wheat had been recently sown but had
not yet sprouted. As a result, most of the soil surface was left bare.
Therefore, the field soil samples were collected from September 20 to
28 in 2017, the geographic coordinates and basic information of the
sampling points were recorded through the handheldGlobal Positioning
System (GPS). A total of 288 soil samples (96, 90, 102 respectively in the
WPR, CSMR, and EHR) were collected at depths of 0–20 cm (Liao et al.,
2013; Jiang et al., 2019; Li et al., 2021; Pusch et al., 2021; Xu et al., 2023) in
the three topographic regions (Figure 3). Then, soil samples were stored
in separate sealed bags and brought back to the laboratory to remove
weeds, stones, and other impurities, soil samples were naturally air dried
and sifted through a 2mm screen. Finally, the content of SOM was
determined by potassium dichromate volumetric method.

2.4 Remote sensing image acquisition and
preprocessing

First, the cloudless Sentinel 2A Multi-Spectral Instrument
(MSI) images with 13 spectral bands were acquired on the GEE

FIGURE 1
Location of the research area: (A) China; (B) DEM data of Shandong Province.
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cloud platform (https://code.earthengine.google.com/). The
images of 21 September 2017 are the mains, supplemented by
images of similar periods. Second, Sentinel-2A MSI images
acquired on GEE cloud platform had been processed
radiometric calibration and atmospheric correction, the
surface reflectance was extracted. Considering the needs of
SOM inversion and the characteristics of the image bands, we

resampled to the resolution of 10 m. Finally, the images after
band synthesis were mosaicked in ENVI 5.3 software, and the
Sentinel-2AMSI image of the study area was obtained by clipping
according to the regions of western Shandong, central and
eastern Shandong. Then based on Normalized Difference
Vegetation Index (NDVI), the cropland in the study area was
extracted by supervisory classification method.

FIGURE 2
Methodological flowchart.
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2.5 Construction and analysis of SOM
spectral parameters

The correlations between the SOM content and the spectral
reflectance were analyzed on a band-by-band basis, and the bands
with absolute values of correlation coefficients greater than 0.52 were
selected as the SOM characteristic bands (Hong et al., 2017; Kahaer
et al., 2019; Chen et al., 2021; Wang et al., 2022). Additionally, the
spectral indices were constructed by various mathematical
combinations of the characteristic band reflectance values, such
as difference, square root and normalized index based on the
formulas shown in Table 1. In each topographic region,
correlation analysis between the SOM content and the spectral
indices was then performed, and as with the selection of
characteristic bands, the characteristic spectral parameters
associated with SOM were selected and analyzed in different
topographic areas.

2.6 Extraction and analysis of
topographic factors

The Digital Elevation Model (DEM) used was derived from the
ASTER GDEM, which is a global 1-arcsec elevation dataset developed
jointly by the METI (Ministry of Economy, Trade, and Industry) of
Japan and the NASA, and generated through image matching for the
optical images collected by the ASTER imaging sensors. The DEM data
was preprocessed according to the cropland range in the study area, and
then resampled to a resolution of 10 m. Based on the relevant studies
(Piccini et al., 2020; Mallick et al., 2022; Medeiros et al., 2022) and the

actual situation of Shandong Province, the common topographic factors
including Elevation (E), Slope (S), Aspect (A) and Relief Amplitude (RA)
were calculated from the DEM data in ArcGIS 10.2. The correlation
between topographic factors and SOM in each was respectively analyzed
and compared in each topographic region.

2.7 Construction and analysis of SOM
remote sensing inversion model

Initially, the samples were grouped by the SOM contents in each
topographic region, two-thirds of the samples were selected for the
calibration set, and the remaining samples were used as the
validation set. Secondly, respectively based on spectral
parameters, “spectral parameters + topographic factors”, Multiple
linear stepwise regression (MLSR) was employed to build SOM
inversion models for each topographic region, where the significant
level of variance of the variables was established at 0.05 as the
determination and exclusion levels for the models in SPSS software.
Thirdly, in order to assess the effectiveness of SOM inversion with
topographic factors, the kinds of models based on “spectral
parameters + topographic factors” were compared with the
spectral models only on the spectral parameter. The model
accuracy was evaluated by determination coefficient (R2), Root
Mean Square Error (RMSE) and Relative Prediction Deviation
(RPD) (Chen et al., 2019; Ma et al., 2020). Finally, the model
with the highest R2, RPD, and the lowest RMSE was determined
the best SOM inversion model for different topographic areas.

The whole province was zoned as Western plain region, Central
and southern mountain region and Eastern hilly region according to

FIGURE 3
Topographic partition of the study areas with the sample locations.

Frontiers in Environmental Science frontiersin.org05

Zou et al. 10.3389/fenvs.2024.1420557

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2024.1420557


TABLE 1 Correlation between spectral indices and SOM in three topographic regions.

Area Number Spectral index Correlation coefficient References

Western plain region 1 SWIR1 − SWIR2 −0.672a Pan et al. (2022)

2 G − R −0.651a

3 SWIR1 − R −0.660a

4 Reg1 − SWIR2 −0.704a

5 Reg1 − R −0.685a

6 (SWIR1 − Reg1)/(SWIR1 + Reg1) −0.724a

7 (SWIR2 − G)/(SWIR2 + G) −0.689a

8 (Reg1 − R)/(Reg1 + R) −0.693a

9
�������������
Reg1 × SWIR2

√
−0.692a Zhai (2019)

10
����������������
G× Reg1 × SWIR2

√
−0.685a

11
����������������
Reg1 × SWIR1 × G

√
−0.682a

12
����������������������
G × R × SWIR1 × SWIR2

√
−0.699a

13
����������������������������
G × R × SWIR1 × SWIR2 × Reg1

√
−0.703a

14
������������
Reg2

1 + SWIR2
2

√
−0.728a Pouladi et al. (2019)

15
�����������������
G2 + SWIR2

2 + Reg2
1

√
−0.716a

16
�����������������
R2 + SWIR2

2 + Reg2
1

√
−0.732a

17
������������������������
Reg2

1 + R2 + SWIR2
1 + SWIR2

2

√
−0.745a

18
�����������������������������
G2 + R2 + SWIR2

1 + SWIR2
2 + Reg2

1

√
−0.740a

Central and southern mountain region 1 B − Reg1 −0.674a Pan et al. (2022)

2 B − R −0.669a

3 Reg1 − R −0.667a

4 Reg1 − SWIR2 −0.650a

5 B − SWIR2 −0.653a

6 (B − Reg1)/(B + Reg1) −0.697a

7 (SWIR2 − Reg1)/(SWIR2 + Reg1) −0.664a

8 (B − R)/(B + R) −0.688a

9
��������
Reg1 × B

√
−0.714a Zhai (2019)

10
���������������
Reg1 × B× SWIR2

√
−0.709a

11
����������������
Reg1 × SWIR1 × G

√
−0.694a

12
����������������������
G × R × SWIR1 × SWIR2

√
−0.675a

13
�����������������������
B × G × R × SWIR2 × Reg1

√
−0.691a

14
���������
Reg2

1 + B2
√

−0.692a Pouladi et al. (2019)

15
����������������
B2 + SWIR2

2 + Reg2
1

√
−0.683a

16
������������
B2+R2 + Reg2

1

√
−0.712a

17
���������������������
Reg2

1 + R2 + B2 + SWIR2
2

√
−0.706a

(Continued on following page)
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the topography. Based on the best SOM inversion model and the
Sentinel-2AMSI imagery of different topographic areas, by applying
the Band Math tool in the ENVI 5.3 software, the SOM inversion
map of each topographic areas and the whole province was obtained,
where SOM content was classified into 6 grades using the decision
tree approach in ENVI Classic. Feature selection and decision tree
generation was carried out according to the SOM classification
criteria (Wang et al., 2016; Guo et al., 2021) and the actural
situation of the study area. Then the final SOM grade
distribution map was generated and compared with the
classification of samples to verify the SOM analytical precision.

3 Results

3.1 Three topographic regions and SOM
descriptive statistical analysis in
Shandong Province

3.1.1 Basic characteristics of three
topographic regions

Western plain region (WPR) is located in the Yellow River basin,
a portion of the North China Plain. Geomorphologically, it consists
of Yellow River Flood plains and piedmont inclined plains, the

landscape is primarily flat and the rivers mostly flow eastward.
Because of the favorable irrigation conditions and the natural
advantage of flat terrain, the cropland has higher nutrient contents.

Central and southern mountain region (CSMR) is characterized
as the highest and most mountainous area in Shandong province. It
is situated to the west of the Yishu Great Fracture Zone, south of
both the Yellow River and Xiaoqing River, and east of the Beijing-
Hangzhou Grand Canal. Due to its northern location, it exhibits a
steep north slope contrasted with a gradual southern slope. Beyond
the middle and lower mountains lies a gradually descending terrain,
forming a flat “square mountain” topography with elevations
ranging from 500 to 600 m.

Eastern hilly region (EHR) is located in the eastern region of the
Shuhe River and Weihe Valley, encompassed by the sea on three
sides. Apart from Laoshan, Kunyu Mountain, Ai Mountain, and a
few other mountains that stand above 700 m above sea level, most of
the undulating hills range between 200 and 300 m above sea level
with gentle slopes and wide valleys. The soil layer is thick, while the
climate remains warm and humid throughout the year.

3.1.2 Descriptive statistical analysis of SOM in three
topographic regions

Based on statistical principle, descriptive statistics were
conducted on soil samples collected in the three major

TABLE 1 (Continued) Correlation between spectral indices and SOM in three topographic regions.

Area Number Spectral index Correlation coefficient References

18
�������������������������
G2 + R2 + B2 + SWIR2

2 + Reg2
1

√
−0.741a

Eastern hilly region 1 SWIR2 − R −0.685a Pan et al. (2022)

2 SWIR2 − NIR −0.680a

3 SWIR2 − SWIR1 −0.647a

4 R − NIR −0.630a

5 NIR − SWIR1 −0.624a

6 (SWIR2 − R)/(SWIR2 + R) −0.707a

7 (SWIR2 − NIR)/(SWIR2 + NIR) −0.705a

8 (R − NIR)/(R + NIR) −0.668a

9
����������
SWIR2 × R

√
−0.691a Zhai (2019)

10
���������������
SWIR2 × R × NIR

√
−0.690a

11
�����������������������
SWIR2 × R × NIR × SWIR1

√
−0.696a

12
���������������������������
SWIR2 × R × B × NIR × SWIR1

√
−0.689a

13
�������
R × NIR

√
−0.640a

14
����������
SWIR2

2 + R2
√

−0.714a Pouladi et al. (2019)

15
�����������������
SWIR2

2 + R2 +NIR2
√

−0.736a

16
�������������������������
SWIR2

2 + R2 + SWIR2
1 +NIR2

√
−0.742a

17
���������
R2 +NIR2

√
−0.693a

18
�����������������
R2 +NIR2 + SWIR2

1

√
−0.725a

aThere was a significant correlation at 0.01 level.
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topographic regions, as shown in Table 2. It is apparent that the
statistical distribution features of both the calibration set and
validation set samples within each region exhibit similarities with
the overall sample set. In comparison, as the primary grain-
producing area of Shandong Province, the WPR demonstrates a
relatively high SOM content, which is due to the accumulation of
rich SOM through long-term reasonable cultivation. Conversely, the
overall level of SOM in the CSMR presents a low overall SOM level
due to its irregular topography, which includes higher altitudes and
slopes susceptible to soil erosion and nutrient loss. In the EHR
located along the coast, some areas are affected by soil salinization,
however, the overall SOM level remains within normal ranges.

3.2 Correlation between SOM and spectral
parameters, topographic factors in three
topographic regions of Shandong Province

3.2.1 Correlationship between SOM and
spectral indices

The correlation coefficients between SOM content and spectral
reflectance of Sentinel-2A MSI image in the three topographic
regions are shown in Figure 4. The trend of the correlation
curves of three topographic regions were consistent in the most
band range, which ranged from −0.102 to −0.683, indicating a
negative correlation. These bands that the absolute values of
correlation coefficients were greater than 0.52, were selected as
sensitive bands to participate in the construction of spectral indices.

The SOM sensitive bands identified in the WPR were Red-edge1
(Reg1), Shortwave Infrared 2 (SWIR2), Shortwave Infrared 1 (SWIR1),
(Red) (R), and Green (G), with respective correlations of
−0.669, −0.654, −0.649, −0.640, and −0.617. In the CSMR, there were
B, Reg1, R, G, SWIR2, and SWIR1, with correlation coefficients
respectively of −0.660, −0.655, −0.633, −0.641, −0.583, and −0.550. In
the EHR, there were SWIR2, R, NIR, SWIR1, and B, with correlation
coefficients of−0.683, −0.628, −0.615, −0.598, and −0.526, respectively. It
was observed that the spectral responses of SOM in different topographic
regions were relatively consistent with some partial differences, R and
SWIR were the common sensitive bands in the three
topographic regions.

Based on the selected sensitive bands, the spectral reflectance
was mathematically calculated to construct the spectral indices, and
the correlation between the spectral indices and SOM was
from −0.624 to −0.745, which indicated that the correlation was
improved effectively compared to the single band. The spectral

indices with good correlation were
����������������
R2 + SWIR2

2 + Reg21

√
, (SWIR1 −

Reg1)/(SWIR1 + Reg1) in the WPR,
�����������
B2+R2 + Reg21

√
in the CSMR

and NIR − SWIR1,
�����������������
SWIR2

2 + R2 + NIR2
√

in the EHR.

3.2.2 Correlationship between SOM and
topographic factors

The correlation coefficients between topographic factors and
SOM are presented in Table 3. In the WPR, the correlation was not
significant, with absolute values below 0.3 observed, indicating the

TABLE 2 SOM descriptive statistical analysis in three topographic regions.

Topography Statistical indicators (g/kg) All samples Calibration samples Validation samples

Western plain region Quantity (number) 96 64 32

AVG 22.61 22.15 22.89

MAX 46.69 46.69 45.95

MIN 3.53 3.81 3.53

SD 5.21 5.07 5.32

Coefficient of variation 0.56 0.57 0.54

Central and southern mountain region Quantity (number) 90 60 30

AVG 13.17 12.94 13.25

MAX 39.43 39.43 38.06

MIN 2.90 3.26 2.90

SD 4.36 4.11 4.53

Coefficient of variation 0.49 0.45 0.52

Eastern hilly region Quantity (number) 102 68 34

AVG 16.35 16.10 16.57

MAX 42.76 42.76 41.12

MIN 3.36 3.52 3.36

SD 4.77 4.89 4.55

Coefficient of variation 0.69 0.66 0.71
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absence of distinct characteristic topographic factors. Notably, in
addition to A, the topographic factors E, RA, and S displayed a good
correlation to SOM with absolute values of correlation coefficients
above 0.33 in the CSMR. In the EHR, the correlation coefficient of
RA reached the highest value of −0.395, followed by E (−0.327), S
and A were less than 0.3, which could be seen that the E and RA had
a strong correlation to SOM.

3.3 SOM remote sensing inversion model in
combination with topographic factors

3.3.1 Characteristic spectral parameters and
topographic factors of SOM

From Table 4, the SOM characteristic spectral parameters were

SWIR1,
����������������
R2 + SWIR2

2 + Reg21

√
and (SWIR1 − Reg1)/(SWIR1 + Reg1)

in the WPR, SWIR2 and
�����������
B2+R2 + Reg21

√
in the CSMR, and

NIR − SWIR1,
����������������
SWIR2

2 + R2 +NIR2
√

in the EHR. It can be seen

that the characteristic spectral parameters were the combination of

characteristic bands, but there were no common characteristic

spectral parameters in these three topographic regions.
As for the characteristic topographic factor of SOM, none

was in the WPR, E, RA and S were in the CSMR, E and RA were
in the EHR.

3.3.2 SOM remote sensing inversion models
The SOM inversion models were built and compared, as

presented in Table 4. Modeling only based on spectral
parameters, the accuracy of SOM inversion models in the three
topographic areas was very similar, and the calibration set R2 was
better than 0.639, the validation set R2 was more than 0.627, and the
RPD was greater than 1.683, all of which can be used for the spatial
distribution analysis of SOM in a single topographic region. It could
be seen that the modeling accuracy of the plain area was
slightly higher.

After incorporating the topographic factor into the modeling
process, in the CSMR, the calibration R2 increased by 0.102, and

FIGURE 4
Correlation between SOM and spectral reflectance in three topographic regions.

TABLE 3 Correlation between topographic factors and SOM in three topographic regions.

Correlation coefficient Elevation Slope Aspect Relief amplitude

Western plain region −0.241 −0.147 0.059 −0.216

Central and southern mountain region −0.420a −0.331a 0.098 −0.337a

Eastern hilly region −0.327a −0.193 0.126 −0.395a

aThere was a significant correlation at 0.01 level.
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RMSE decreased by 0.162 g/kg, the validation R2 improved by
0.095, RMSE decreased by 0.238 g/kg, and RPD increased by
0.129. In the EHR, the calibration R2 improved by 0.075, RMSE
decreased by 0.171 g/kg, the validation set demonstrated an
improvement of 0.067 in the R2, a decrease of 0.236 g/kg in
the RMSE, and an increase of 0.169 in the RPD. The results
indeed confirm that the introduction of topographic factors
effectively improves the inversion accuracy of SOM in both
the CSMR and EHR. Utilizing the “spectral parameter +
topographic factor” approach, the calibration R2 of the SOM
inversion model in both the CSMR and EHR exceeds 0.725, the
validation R2 surpasses 0.713, and the RPD value exceeds 1.852.
The result demonstrates an efficient improvement in the
models’ accuracy.

In summary, the model based solely on spectral parameters is
determined to be the SOM inversion model in the WPR, the
spectral model in combination with E, RA and S is in the CSMR,
and the spectral model in combination with E and RA is
in the EHR.

Based on the determined models, the inversion values of SOM in
the three major topographic regions show a good linear relationship
with themeasured values in Figure 5. The scatter diagram shows that
most of the soil samples were close to the 1:1 line., which indicates
that SOM can be predicted using the determined model in these
topographic areas.

3.4 Spatial inversion analysis of cropland
SOM in three topographic regions in
Shandong Province

3.4.1 Spatial distribution of croplands SOM in three
topographic regions

SOM inversion was conducted in the three topographic regions
based on the determined model, the SOM inversion maps and
statistical analysis are shown in Figure 6 and Table 5, which
presents that the inversion results are in good agreement with
the actual situation.

In the WPR, the SOM inversion content ranged from 1.24 to
56.37 g/kg, with an average value of 22.31 g/kg. In terms of spatial
distribution, in the southwest SOM content was higher around and
lower in the middle, while in the northwest it was higher in the east,
but lower in the west. Additionally, the SOM content was high near
the Yellow River and low near the urban. Overall, the S, A and RA in
this area were generally low, the overall SOM content was high and
the transition was gentle.

In the CSMR, the range of SOM inversion content was between
0.39 and 49.91 g/kg, with an average value of 16.17 g/kg. SOM
content exhibited a geographical gradient, being relatively lower
in the west and south, and higher in the north and northeast. It could
be seen that the SOM content was comparatively low, with a
dispersed distribution of different levels.

TABLE 4 SOM inversion models of three topographic regions.

Topographic area Topographic
factor

Variable Calibration set Validation set

R2 RMSE
(g/kg)

R2 RMSE
(g/kg)

RPD

Western plain region No SWIR1 0.661 2.740 0.655 3.265 1.854

�����������������
R2 + SWIR2

2 + Reg2
1

√

(SWIR1 − Reg1)/(SWIR1 + Reg1)

Central and southern mountain
region

No SWIR2 0.639 2.312 0.627 3.446 1.782

������������
B2+R2 + Reg2

1

√

Yes NIR 0.741 2.150 0.722 3.208 1.911

�������������������������
G2 + R2 + B2 + SWIR2

2 + Reg2
1

√

E

S

RA

Eastern hilly region No NIR − SWIR1 0.650 2.409 0.646 3.557 1.683

�����������������
SWIR2

2 + R2 +NIR2
√

Yes B 0.725 2.238 0.713 3.321 1.852

�������������������������
SWIR2

2 + R2 + SWIR2
1 +NIR2

√

E

RA
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In the EHR, the SOM content ranged from 1.13 to 50.32 g/kg,
with an average value of 18.25 g/kg. The SOM content in the western
inland and coastal areas was low, while relatively high in the central
and eastern inland areas, and the overall SOM content was general.

From Figure 7, in Shandong Province, the SOM content ranged
from 0.39 to 56.37 g/kg, the inversion SOM contents are primarily
concentrated in grades 3 to 5 with the SOM range of 10–25 g/kg. The
area exceeding 25 g/kg accounted for 14.82%, the area between

FIGURE 5
The scatter diagram of the SOM inversion value and measured value based on the determined model in the WPR (A), the CSMR (B) and the EHR (C).

FIGURE 6
DEM data of Shandong Province (A); Inversion map of SOM content in the EHR (B); the WPR (C) and the CSMR (D).
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10 and 25 g/kg accounted for 80.63%, and the area below 10 g/kg
accounted for only 4.55%. The SOM content was very high in the
western plain, general in the eastern hills, and relatively low in the
central mountains, which was consistent with the previous results.

3.4.2 Analysis of SOM inversion accuracy
The accuracy of the SOM inversion was evaluated and presented

in Table 5. For the differences of the each grade proportion in
inversion maps and in the samples’ measured values, 2.47%, 2.89%,
1.17%, 3.86%, 5.45%, and 2.53% were in the WPR; 1.32%, 7.34%,
4.29%, 4.83%, 6.84%, and 2.36% were in the CSMR; 2.92%, 3.78%,
1.16%, 1.95%, 4.92%, and 1.33% were in the EHR, respectively. In
general, the inversion results of the three topographic regions align
with the field sampling findings, with discrepancies for most grades
under 5%, it could be seen that these are consistent with the samples
point measurements. Therefore, the determined model in
combination spectra and topographic factors can be effectively
used for the spatial distribution of croplands SOM inversion in
three topographic regions.

In addition, the inversion SOM contents are primarily
concentrated in grades 3 to 5 with the SOM range of

10–25 g/kg. In the WPR, the area exceeding 25 g/kg accounted
for 16.24%, the area between 10 and 25 g/kg accounted for
80.19%, and the area below 10 g/kg accounted for 3.57%. In
the CSMR, the areas of above-mentioned three levels accounted
for 11.34%, 82.97%, and 5.69% respectively. In the EHR, the areas
of above-mentioned three levels accounted for 9.97%, 87.44%,
and 2.59% respectively. Therefore, the inversion results reveal
higher SOM content in the WPR, lower in the CSMR, and general
in the EHR, which is consistent with reality.

4 Discussion

(1) The spatial distribution of SOM is closely related to
environmental factors, and other studies have shown that
E, RA and S are significantly negative correlated with SOM (Li
et al., 2016; Hu et al., 2021; Lv et al., 2022), which is consistent
with the results of this study. The reason is that the thermal
conditions, precipitation, and decomposition rate change
with the increase of altitude, which contributes to different
impacts on SOM accumulation (Li et al., 2019). In addition, S

TABLE 5 Statistical analysis of SOM grades in three topographic regions.

Topographic regions Grade Soil organic matter
content (g/kg)

Inversion map Measured value of
samples

Pixel
number

Percentage
(%)

Number Percentage
(%)

Western plain region 1 ≥30 19747100 4.55 2 2.08

2 ≥25–30 50734856 11.69 14 14.58

3 ≥20–25 92485868 21.31 24 25.00

4 ≥15–20 96261687 22.18 25 26.04

5 ≥10–15 159278805 36.70 30 31.25

6 <10 15493878 3.57 1 1.04

Total 434002194 100.00 96 100.00

Central and southern mountain
region

1 ≥30 5756983 2.01 3 3.33

2 ≥25–30 26722712 9.33 15 16.67

3 ≥20–25 72749931 25.40 19 21.11

4 ≥15–20 59374255 20.73 23 25.56

5 ≥10–15 105516042 36.84 27 30.00

6 <10 16297130 5.69 3 3.33

Total 286417053 100.00 90 100.00

Eastern hilly region 1 ≥30 6746454 1.99 5 4.91

2 ≥25–30 27053618 7.98 12 11.76

3 ≥20–25 73736365 21.75 21 20.59

4 ≥15–20 86381727 25.48 24 23.53

5 ≥10–15 136319044 40.21 36 35.29

6 <10 8780560 2.59 4 3.92

Total 339017768 100.00 102 100.00
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influences SOM distribution by regulating soil erosion
intensity (Nabiollahi et al., 2018; Zhang et al., 2020). RA
can result in the accumulation and drainage of water in gully
and hillside areas, (Takoutsing et al., 2018). Moreover, some
studies have also demonstrated that distinct topographies
have a significant impact on SOM content and its
distribution in large-scale regions with diverse
topographies (Sigua and Coleman, 2010; Chen et al., 2016;
Bai and Zhou, 2020; Kumar et al., 2023). Therefore this study
employed regional inversion to distinguish the different
topographies of plains, mountains, and hills, and
topographic factors were introduced to enhance the
accuracy of the SOM prediction model. The results
indicate that the characteristic topographic factors differ
across various topographic regions. In flat or plain areas,
topographic differences are minimal, as are the variations in
landscape environmental factors, such as vegetation,
consequently, topography has a negligible influence on the
spatial variability of SOM. However, E, RA and S exhibit
significant disparities in mountainous regions, and S is slow
and the terrain is rugged in hilly areas. Therefore, no obvious
characteristic topographic factor of SOM is observed in the
WPR, while which are E, RA, S in the CSMR and are E, RA
in the EHR.

(2) The complex topographic conditions and strong soil
heterogeneity in large-scale areas significantly influence
the content and spatial distribution of surface SOM

(Luo et al., 2012). It was found that there were significant
differences in SOM content among plain, mountain and hilly
terrain in Shandong Province, with the highest in the WPR,
lowest in the CSMR and general in the EHR. The soil spectral
reflectance can be used to characterize the SOM to some
extent. The characteristic spectral parameters of SOM exhibit
distinct differences in different topographic regions, which

are SWIR1,
����������������
R2 + SWIR2

2 + Reg21

√
and (SWIR1 − Reg1)/

(SWIR1 + Reg1), in the WPR;
�����������
B2+R2 + Reg21

√
and SWIR2

in the CSMR; NIR − SWIR1 and
����������������
SWIR2

2 + R2 + NIR2
√

in the
EHR. The topographic factors influencing SOM also vary
across different topographic regions. In the WPR, no distinct
characteristic topographic factor is observed, while in the
CSMR, E, RA and S serve as characteristic topographic
factors. Similarly, in the EHR, E and RA are identified as
characteristic topographic factors. Therefore, according to
three major topographic areas in Shandong Province, this
study introduced characteristic topographic factors and
improved the accuracy of regional cropland SOM spectral
modeling, and developed a set of “spectral data + topographic
factors” region inversion technique. The results demonstrate
that introducing characteristic topographic factors
significantly improved the accuracy of SOM remote
sensing inversion both in the CSMR and EHR regions.
Therefore, for regions with variable topography, it is suggested
to analyze the characteristic topographic factors of different

FIGURE 7
Inversion map of SOM content in Shandong Province.
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topography, and then introduce topographic factors to improve
the accuracy of SOM remote sensing inversion. In future studies,
multiple influential factors such as precipitation, temperature, and
soil type should be considered in enhancing the precision of SOM
remote sensing inversion so as to realize large-scale SOM
prediction and mapping.

(3) The field sampling took place from mid-September to mid-
October, a period strategically chosen for its agricultural
significance. During this time, the corn harvest had
concluded, leaving the fields predominantly bare with
minimal ground cover. Concurrently, wheat had been recently
sown, but had not yet sprouted. This specific timing provided an
ideal condition for the inversion of SOM, as exposed soil surface
facilitated more accurate and effective sampling. Hence, the
study did not take into account vegetation types and its
coverage. However, Sha et al. revealed that a high vegetation
cover significantly influenced soil reflectance, which suggested
that SOM inversion studies must consider the influence of
vegetation on soil reflectance and apply appropriate
corrections (Sha et al., 2019). Therefore, the applicability of
these findings to SOM inversion in the areas with higher
vegetation cover needs to be explored in future.

5 Conclusion

Taking Sentinel 2A MSI image as data source, this paper
selected three major topographic regions in Shandong Province.
According to topographic conditions, four topographic factors, E,
S, A RA, were introduced to improve the accuracy of SOM remote
sensing inversion. The SOM spectral characteristics, spectral
indices and topographic factors of different topographic
regions were compared and analyzed, and the characteristic
spectral parameters and topographic factors were screened to
construct SOM remote sensing inversion models. The results
showed that the correlation between topographic factors and
SOM was not obvious in the WPR, so it was not necessary to
introduce topographic factors to participate in SOM inversion.
Through comparative analysis, the introduction of topographic
factors had the best effect on the SOM prediction and mapping in
the CSMR, followed by the EHR, which could effectively enhance
the accuracy of regional SOM remote sensing inversion.
Therefore, building the SOM inversion model combined
spectral parameters with topographic factors can not only
effectively improve the SOM inversion accuracy in different
topographic regions, but also provide a new perspective for
predicting and mapping SOM in large-scale regions. The
research findings can provides valuable data and decision-
making support for applications such as sustainable land use
and intelligent agriculture.
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