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The aurora arc is a separate auroral structure from the aurora oval, whose location
and morphology are related to various solar-terrestrial circumstances. However,
because of the low occurring frequency of aurora arc and the lack of the
automatic identification technique, it can only be manually distinguished from
a huge number of observed images, which is very inefficient. In order to improve
the identification efficiency, we propose an identification algorithm based on
YOLOX network and Convolutional Block Attention Module attention
mechanism. Using the aurora images observed by Special Sensor Ultraviolet
Spectrographic Imager carried by the Defense Meteorological Satellite Program
F16-F19 satellites from 2013 to 2019, the automatic detection models for global
and local areas were trained separately. The identification outputs will be
integrated by calculating the intersection. According to the test results, the
event identification precision is 86% and the position identification precision is
79%, both of which are greater than the results before integration. Therefore, the
proposed method is not only able to identify whether the image contains the
aurora arcs, but also accurately locate them, making it a highly effective tool for
the advancement of future study.
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1 Introduction

Polar cap arc (PCA) is a special auroral phenomenon, which usually occurs in the polar
cap region at a higher latitude than the auroral oval. Its occurrence and evolution can reflect
the basic process of solar wind -magnetosphere- ionosphere coupling. At present, people
have recorded many kinds of auroral arc structures or related auroral patterns in the polar
cap region, such as Theta aurora/transpolar arc, monopolar cap arc, multiple polar cap arc,
space hurricanes etc (Zhang et al., 2018; Zhang et al., 2020; Zhang et al., 2021; Lu S et al.,
2022; Wang et al., 2023). However, the debate on the physical mechanism of the formation
and evolution of different forms of polar cap arc continues to today. In order to solve the
related scientific problems, human beings have developed a variety of aurora observation
methods. In the early days, the auroral arc observation data were generally from the ground-
based all sky imager (Lassen and Danielsen, 1978). The ground observation has a high
spatial-temporal resolution, which can clearly show the continuous evolution process of the
fine structure of the auroral arc. However, due to the field of view of the equipment and the
distribution range of stations, it is still inconvenient to study the whole structure of the
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auroral arc and the large-scale spatial-temporal evolution. With the
launch of polar orbiting satellites such as DE and DMSP in the late
1970s, the study of observing auroral arcs through space-based
platforms has developed rapidly (Meng, 1981a; Meng, 1981b;
Murhree and Cogger, 1981). Relevant studies have revealed the
characteristics of the overall structure and evolution of the polar cap
arc, such as the formation of multiple arcs and the morning-dusk
drift of the auroral arc (Zhu et al., 1994a; Zhu et al., 1994b; Moen
et al., 1994). Some studies have revealed the relationship between the
polar cap arc and the interplanetary magnetic field (IMF). It is
generally believed that the polar cap arc mainly occurs in the case of
northward IMF. Meanwhile, the By component will affect the
location and motion characteristics of the auroral arc
(Gussenhoven, 1982; Frank et al., 1986; Elphinstone et al., 1990).

In a large number of statistical work, it often consumes a lot of
manual work to select valuable events frommassive data. In the past
decades, the field of graphics segmentation and target detection in
deep learning has made rapid development, which is very suitable
for the task of locating typical targets such as aurora arcs in ground-
based or satellite images. It would greatly help scientists to looking
for interested events. Traditional target detection algorithms include
feature-based and segmentation based methods. The method based
on segmentation is to realize detection and recognition through the
characteristics of region, color and edge. Feature based method
designs features through human experience (Harr、SIFT、HOG、
SURF、Gray-level, etc), and match image objects through designed
features. With the rapid growth of image data volume and the
development of computer hardware level as well as the deep learning
technology, target detection methods based on deep learning
become more and more popular. Deep convolutional neural
network can learn low-level image features and high-level
semantic features from a large number of images, and fuse multi-
scale complex features. Therefore, the features learned by this
method are more representative than those designed manually,
thus the detection accuracy is higher in general. In 2012, AlexNet
neural network won the championship of Imagenet image
classification competition. After that, the CNN becomes the core
algorithm of image classification problem (Krizhevsky A et al.,
2017). Girshick et al. (2014) proposed RCNN (Regions with
CNN features) and introduced convolutional neural network
method into the field of target detection, which greatly improved
the detection effect and was a milestone event of target detection
using deep learning. Subsequently, improved methods such as Fast
RCNN (Girshick, 2015) and Faster RCNN (Ren S et al., 2015) were
successively proposed, which further improved the detection speed
and accuracy.

In the field of space weather, traditional image segmentation
methods are more used to achieve target detection. Most of them use
traditional threshold method, edge detection method, clustering
method, region growth method, level set method, morphological
technology, and automatic detection dark bar technology of joint
threshold method and region growth method. A few researchers use
neural network method. The application of image detection
technology based on deep learning, especially convolutional
neural network (CNN), in the field of image recognition and
object detection has exceeded the traditional computer vision
methods. However, its application in the field of space weather is
still lack. For the recognition and detection of auroral arc, due to the

fuzzy boundary and uneven brightness of auroral arc, the shape and
spatial scale are changeable, the traditional target detection method
is difficult to achieve accurate detection. Thus, the use of deep
learning target detection technology is conducive to improving the
detection efficiency and accuracy.

This paper proposes a detection algorithm based on the YOLOX
(J. Redmon et al., 2016; Ge Z et al., 2021) network and CBAM
attention mechanism. By adding the attention mechanism in
computer vision, the network can be guided to automatically
learn the weight of each pixel, so that the model can allocate
different weights on different positions or channels of the image,
and better capture the important information in the image. The
attention module is mainly divided into spatial attention module
(SENet) (Hu J et al., 2018), channel attention module (ECA-Net)
(Wang Q et al., 2019), and hybrid attentionmodule (CBAM) (Woo S
et al., 2018) (GAM) (Liu Y et al., 2021). CBAM is a lightweight
convolutional attention module, which combines the attention
mechanism module of channel and space. It can perform
attention operation in both the spatial dimension and
channel dimension.

Using the SSUSI equipment carried by the Defense
Meteorological Satellite Program (DMSP) F16-F19 satellite to
provide extreme ultraviolet band auroral images from 2013 to
2019, this study establishes automatic detection models for both
global and local regions, and designs an integration algorithm to
integrate the detection results of the two by intersection and obtain
the final recognition result.

2 Image data

2.1 Data sources

In this study, the aurora images are obtained by National
Defense Meteorological Satellite Program (DMSP). The DMSP
series are sun-synchronous satellites with the height ~830 km.
The Special Sensor Ultraviolet Spectrographic Imager (SSUSI)
(https://ssusi.jhuapl.edu/gal_Aur) on board DMSP is designed to
cross-track scanning the polar region. The angle of view by SSUSI is
approximately 11.84° (Hardy et al., 1984). When over the polar
regions, the SSUSI instruments scan along their orbit, building up an
image of a swath of the auroral region over 20 min. The DMSP/
SSUSI will generate two auroral images of the polar cap in the
Northern and Southern hemispheres every track. And the period of
the DMSP orbit is around 90 min. The SSUSI images could cover
most part of the polar cap region, although it could not cover the
whole aurora region due to the height of the DMSP orbit. And the
DMSP satellites have also carried sensors to measure particle
precipitation since 1973 (Hardy et al., 1984). Both auroral images
and in-situ particle observations are important for aurora physics.
Therefore, the data sources are very suitable for polar cap
arcs studies.

The duration of polar cap arcs varies from several minutes to
hours due to different interplanetary magnetic field (IMF)
conditions. In general, the polar cap arcs last long when the
IMF is north. The formations and disappearance of it are highly
related to the direction change of IMF Bz (Troshichev, O. A.
1990; Hosokawa et al., 2020). For auroral arcs with long duration,
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such as transpolar arcs, space hurricanes with obvious
characteristics, the observation period covers the event period,
so we can see the structure and even the evolution although the
SSUSI time resolution is relatively low. For some dark and fast
changing auroral arcs, such as cusp aligned arcs in the horse coral
aurora, we may only be able to occasionally observe them (Zhang
et al., 2018).

DMSP/SSUSI could obtain ultraviolet spectral aurora images
with high spatial resolution and comprehensive spatial coverage.
SSUSI have five spectral bands, including HI (121.6 nm), OI
(130.4 nm), OI (135.6 nm), LBHS (140–150 nm), and LBHL
(160–180 nm) (Paxton et al., 2002). Generally recognized that
the photon intensity of the LBHL band is proportional to the
total energy of precipitation particles, which can reflect the
distribution of the aurora. Therefore, the LBHL band aurora
images are used in this study.

2.2 Data annotation

The auroral arcs in theDMSP/SSUSI images aremanually annotated
by Yong Wang from Shandong University using the Labelme tool
(https://github.com/wkentaro/labelme). The location of auroral arcs
are specified by the upper left and lower right corner coordinates of
the smallest rectangular box where PCA is located. An example of the
annotation is shown in Figure 1. The coordinate information of the
annotation box is saved in a. json format file. As shown in Figure 1, (a) is
the original image, and (b) is an image containing visual annotation
boxes, with an image size of 390 × 350 pixels.

551 images with auroral arc from 2013, 2014, 2015 and
2019 collection of observations in the Northern Hemisphere
form the training dataset. The test dataset consists of
1779 Images with auroral arc and 12066 without auroral arc
from the 2016 collection.

2.3 Data preprocessing

Based on the characteristics of auroral arcs and the relationship
between most auroral arcs and auroral oval, two different
preprocessing methods are applied before training.

Preprocessing method 1: Use the original image with a size of
390 × 350 pixels. In order tomeet the model’s requirements for input
image size, the image is upsampled to 640 × 640 pixels to
obtain Dataset1.

Preprocessing method 2: Noticed that most auroral arcs appear
on the inner side of the polar boundary of the auroral oval, and the
dayside auroral oval is sometimes too narrow, which is difficult to
distinguish from the morphology. In order to avoid this situation,
the 128 × 128 pixels portion in the middle of the original image is
extracted, which not only preserves the polar cap area but also
removes a portion of the auroral oval, resulting in Dataset2. Figure 2
is an example image after two preprocessing methods.

In addition, random data augmentation is added during
training, including image scaling, image flipping, and color
gamut transformation to avoid overfitting. The image scaling
operation involves scaling the image to a smaller ratio of length
and width, and adding gray bars to the excess parts of the image.
Image flipping operation refers to flipping the image left and right.
The position of the annotation box will also change after image
scaling and image flipping. Color gamut transformation refers to the
process of randomly adjusting the saturation, brightness, and
contrast of the original image to generate a new image.

2.4 Dataset partitioning

Considering that the current dataset of 2013, 2014, 2015, and
2019 only selected a portion of images containing auroral arcs from
observations, and the dataset of 2016 is a complete dataset that had
undergone manual discrimination for the presence or absence of
auroral arcs. Therefore, data of 2013, 2014, 2015, and 2019 are used
as the training set, and data from the entire year of 2016 as the
testing set in order to comprehensively evaluate the generalization
performance of the model. The training set is randomly divided into
validation sets in a ratio of 4:1. The same dataset partitioning process
are conducted for both Dataset1 and Dataset2. The number of
images and annotation boxes on the training set, validation set, and
test set are shown in Table 1. There is a sufficient number of PCAs
on the training, validation, and testing sets, which can be used for
model training and testing.

3 Experimental methods

The previous section introduced the data preprocessing process
and dataset partitioning. The experimental methods will be
introduced in this section. The overall experimental process is
shown in Figure 3. During the training process, the Training
set1 and the Training set2 which are corresponding to the

FIGURE 1
DMSP/SSUSI LBHL image examples. (A) Original image. (B) An example image with annotation box.
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Dataset1 and the Dataset2 respectively were used to train the neural
network (the YOLOX embedded with CBAM) to obtain two
detectors, the Detector1 and the Detector2. Then, input the
corresponding Test set1 and the Test set2 to obtain the

Results1 and the Results2 for two detection boxes respectively
during the testing process. Finally, the two are integrated through
the intersection algorithm to obtain the final detection result. The
neural network structures will be introduced in the following

FIGURE 2
Sample images preprocessed by two methods. (A) Preprocessing method 1. (B) Preprocessing method 2.

TABLE 1 Number of images and annotation boxes on training, validation, and testing sets.

Number of images including PCAs Number of annotations boxes Number of images without PCAs

Training Set 440 650 -

Validation set 111 175 -

Test set 1779 2279 12066

FIGURE 3
Schematic diagram of the training and testing processes.
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section, including the YOLOX and the YOLOX embedded with
CBAM, as well as the intersection ensemble algorithms.

3.1 YOLOX

The YOLOX is a neural network structure proposed by Kuangsi
for object detection, which has significant improvements on various
public datasets compared to the previous generation of the YOLOv5.
Figure 4 is a schematic diagram of the overall structure of the
YOLOX, consisting of three parts: the backbone feature extraction
network CSPDarknet, the Feature Pyramid Network (FPN) and
Path Aggregation Network (PAN), and the decoupling head
YOLOHead. The backbone feature extraction network will
extract features from the input images and output feature maps
of different sizes. The feature pyramid network and path aggregation
network will further fuse these feature maps to obtain enhanced
features. Finally, the decoupling head is used to determine the target
category, prediction box position, and whether the target is included.

3.2 YOLOX embedded with CBAM

CBAM (Convolutional Block Attention Module) is a lightweight
attention module. For an intermediate feature map, CBAM infers the
attention map along the channel and spatial dimensions, and then
multiplies the attention map with the input feature map for adaptive
feature modification. After experimental verification, adding CBAM
modules to various classic neural network structures can better focus

on recognizing target objects. Therefore, this article embeds CBAM
modules into the YOLOX network, and the YOLOX structure after
embedding CBAM is shown in Figure 5. We have added three CBAM
modules between the backbone feature extraction network and the
feature pyramid network to perform an attention enhancement on the
features extracted by the backbone feature extraction network.

3.3 Loss functions

For YOLOX and YOLOX embedded with CBAM, the loss function
during the training process are shown in Equation 1. The loss function
consists of three parts: bounding box regression loss, target object loss, and
classification loss. In the Equation, N is the number of output layers, B is
the number of targets in the grid, SxS is the number of grids divided, λ1、
λ2 and λ3 are the weights of the three types of losses. The bounding box
regression loss is achieved by calculating the CIoU of the real box and the
predicted box, as shown in Equations 2–4, where bp and bgt are the
predicted box and the annotated box respectively, wgt and hgt are the
width and height of the annotated box, wp and hp are the width and
height of the predicted box, ρ represents the distance between the center
points of the two boxes, c is the farthest distance between the boundaries of
the two boxes, α is the weight coefficient of v. Target object loss is the
calculation of whether a feature point contains an object. The feature
points corresponding to the true box are consideredpositive samples,while
the rest are considered negative samples. Therefore, the cross entropy loss
is calculated based on the positive and negative samples and the predicted
results of whether the feature point contains an object. The classification
loss is the cross entropy loss that calculates the real box category and the

FIGURE 4
Schematic diagram of YOLOX model structure.
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predicted box category. Target object loss and classification loss can be
expressed by Equation 5, where n is the number of samples, y is the
predicted result, x is the true label, and is the sigmoid function.

Losstotal � ∑N
i

λ1Lossreg + λ2Lossobj + λ3Losscls( )
� ∑N

i

λ1∑Bi
j

LCIoUj + λ2 ∑Si×Si
j

LBCEj + λ3∑Bi
j

LBCEj
⎛⎝ ⎞⎠ (1)

LCIoU � 1 − IoU + ρ2 bp, bgt( )
c2

+ αv (2)

IoU � bp ∩ bgt
∣∣∣∣ ∣∣∣∣
bp ∪ bgt
∣∣∣∣ ∣∣∣∣ (3)

v � 4
π2

arctan
wgt

hgt
− arctan

wp

hp
( )2

(4)

LBCE � 1
n
∑n
i

yi log σ xi( )( ) + 1 − yi( )log 1 − σ xi( )( )[ ] (5)

3.4 Transfer learning

Due to the limited number of auroral arc images, the learning ability of
neural networks for auroral arc features is limited. The complex network
structure is prone to overfitting on small sample datasets. Therefore, the

transfer learning is utilized here. Transfer learning refers to applying
knowledge learned from other tasks to new tasks, where the learned
knowledge is called the source domain and the knowledge to be learned
is called the target domain. The COCO dataset (https://cocodataset.org) is a
large-scale dataset commonly used for object detection, consisting of over
330000 images, 1.5 million targets, and a total of 80 target categories. It is a
commonly used source domain dataset in transfer learning. The auroral arc
dataset is the target domain. The data distribution of the two is significantly
different, and the learning tasks are different, so a model-based transfer
learning method is used. Firstly, the network is pretrained on the source
domain dataset, using the YOLOX-s pretraining weights provided by
Kuangshi (https://github.com/STATWORX/ptu-stamping-insights-yolox/).
Then, the weights of the backbone network are retained as the initial
values for training on the target domain dataset. Subsequently, the
parameters of the backbone network are tuned during training until the
loss function converges, resulting in the final network weights.

3.5 Experimental parameter settings

During training, the Stochastic Gradient Descent with
Momentum (SGDM) method is used for parameter updates, with
an initial learning rate of 1e-2. The learning rate is updated using the
Cosine Annealing algorithm (Loshchilov and Hutter, 2017), with a
batch size of 8 for each iteration and an initial iteration
of 200 epochs.

FIGURE 5
Schematic diagram of YOLOX embedded with CBAM model structure.
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3.6 Intersection integration algorithm

After completing the training of the two models, auroral arc
detection will be performed on the images of the test set separately.
The two results will be mapped onto the original images and
integrated using the intersection ensemble algorithm. The
pseudocode for the intersection integration algorithm is shown
in Figure 6. For an image, if both Results1 and Results2 have
prediction boxes, and the intersection to union ratio of their
prediction boxes is higher than the preset ratio threshold, it is
judged that the image has an aurora arc. Both prediction boxes
are retained as references. On the contrary, it is judged that there is
no auroral arc in the graph.

4 Results and analysis

According to the experimental scheme in the previous
section, we use the data sets obtained by the two
preprocessing methods to train YOLOX and YOLOX
embedded in CBAM respectively. We detect them on the test
set, and then integrate them through the intersection integration
algorithm. This section will first show the training process of the
model, then evaluate the model from the two aspects of Aurora

arc event recognition and Aurora arc position detection, and
finally analyze the results.

4.1 Model training

The training process of detector1 and detector2 is shown in
Figure 7. The left figure is the loss curve trained with dataset1, and
the right figure is the loss curve trained with dataset2. The validation
loss of the two models began to converge at about 150 epochs, while
the training loss was still declining. Therefore, the training was
stopped before 200 epochs, and the parameters on the epochs with
the lowest loss in the validation set were selected as the final model
parameters.

4.2 Evaluation index

4.2.1 Evaluation index of auroral arc event
recognition

Evaluation of auroral arc event recognition refers to the
accuracy of the evaluation model in judging whether the
image contains auroral arcs, that is, the evaluation of a binary
classification problem. Since Aurora arc is an event with small
probability, precision, recall and F1 will be used as indicators for
classification evaluation.

According to the combination of real category labels and
prediction categories, all test samples can be divided into four
cases: true positive, false positive, true negative, and false
negative. The TP, FP, TN, and FN will show the corresponding
sample numbers respectively. The confusion matrix of PCA
classification results is shown in Table 2.

Further define the following parameters. The precision, recall
and F1 are defined in the Equations 6–8:
a) Precision refers to the proportion of correct predictions in all

images predicted to contain auroral arcs, reflecting the accuracy
of “no misjudgment” of the model.

Precision � TP

TP + FP
(6)

b) Recall refers to the proportion of all images predicted to contain
auroral arcs that are correctly predicted, reflecting the sensitivity
of the model to “not miss judgment”.

Recall � TP

TP + FN
(7)

c) F1 is the harmonic average based on precision and recall.

1
F1

� 1
2
· 1

Precision
+ 1
Recall

( ) (8)

4.2.2 Evaluation index of auroral arc position
detection

Auroral arc position detection and evaluation refers to the
accuracy of the evaluation model for auroral arc position
detection, in which the intersection union ratio IOU is used to
measure the overlap of the prediction box and the
annotation box.

FIGURE 6
And-Ensembling algorithm flowchart.
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According to the relationship with the annotated box, a prediction
box can be divided into one of the following four categories. The TP,
FP, FN and TN are defined in the Equations 9–12 based on the
confidence and IOU:

TP: Conf>Pthresh and IOU> IOUthresh{ } (9)
FP: Conf>Pthresh and IOU< IOUthresh{ } (10)
FN: Conf<Pthresh and IOU> IOUthresh{ } (11)
TN: Conf<Pthresh and IOU< IOUthresh{ } (12)

above, Pthresh and IOUthresh are constant from 0 to 1, which are
determined by task requirements.

Further define the following parameters in Equations 13–15:

a) Precision refers to the proportion of correct predictions in all
prediction boxes, reflecting the accuracy of the model “not
misjudging the background as the target”.

Precision � TP

TP + FP
� TP

All prediction boxes
(13)

b) Recall refers to the proportion correctly predicted in all
annotation boxes, reflecting the sensitivity of the model to
“not misjudge the target as the background”.

Recall � TP

TP + FN
� TP

All annotation boxes
(14)

c) Average precision (AP): change the confidence threshold from
0 to 1, calculate each corresponding precision and recall, and

draw a PR performance curve of a certain category. The enclosed
area is AP.

AP � ∫1

0
Pthresh r( )dr (15)

In this paper, precision, recall and AP are used as performance
indicators of auroral arc position detection.

4.3 Experimental results

4.3.1 Event identification results
During the test, all data on the test set are detected by detector1 and

detector2 respectively. For detector1 and detector2, only the prediction
frames with confidence greater than 0.5 are retained, and all prediction
frames less than 0.5 are discarded. The images with prediction frames
are judged as PCA. Then the detection results of the two methods are
integrated by the And-Ensembling algorithm, in which the IOU
thresholds are 0, 0.3 and 0.5 respectively. Table 3 shows the index
results of detector1, detector2 and the ensemble.

It could be found that compared with the separate detector1 and
detector2, the ensemble results are relatively good, especially in accuracy,
precision and F1. When the IOU threshold is 0, the accuracy of ensemble
is the highest, 0.95, and F1 is also the highest, 0.81. When the IOU
threshold is 0.5, the precision rate of ensemble is the highest,
which is 0.85. With the increase of IOU threshold, the precision
rate of assembled increases. This is because a part of the
prediction frames that are not the same detection target can
be eliminated through the IOU threshold, so reduce the
misjudgment. The maximum recall rate obtained by
detector2 is 0.90, while the recall rate of the ensemble will
decrease sharply with the increase of IOU threshold.
Similarly, the omission of judgment will be greatly increased
due to the elimination of many prediction frames. When the
IOU threshold is 0, that is, when the prediction box is not
eliminated through the IOU, the recall rate is the highest among
the ensemble, which is only 8% lower than that of detector2 with

FIGURE 7
(A): the training process of detector 1; (B): the training process of detector2.

TABLE 2 PCA classification confusion matrix.

Real case Prediction results

Prediction
with PCA

Prediction
without PCA

With PCA TP FN

Without PCA FP TN
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the highest recall rate, but the precision rate is 40% higher than
that of detector2, 17% higher than that of detector1, and F1 is
also 7% and 25% higher than that of the other two detectors,
respectively. It is proved that the accuracy of the results after the
integration of two detectors is better than that of the
independent results of each detector.

It could be found from Table 3 that the selection of IOU threshold
has a significant impact on the results. Therefore, the IOU threshold is
changed from 0 to 0.95 in steps of 0.05, and the scores of four indices
corresponding to each threshold are calculated, thus Figure 8 is
obtained. The accuracy, precision, and F1 all decrease with the
increase of IOU threshold, with a relatively small decrease in
accuracy, always higher than 0.8. This is mainly because the dataset
contains a large number of images without PCA, and the model can

more accurately judge these images, thereby greatly improving
accuracy. The recall rate and F1 remain around 0.8 when the IOU
threshold is less than 0.3, with a slight decrease before 0.5, but still
around 0.7 and a sharp decrease between 0.5 and 0.95, indicating that
the IOU threshold has a significant impact on recall rate and F1. The
precisionwill increase with the increase of IOU threshold, from0.81 to a
maximum of 0.94. There is a significant negative correlation between
precision and recall, and the decrease in recall also affects F1, indicating
that using the IOU threshold to remove prediction boxes that may not
have the same target will improve precision by sacrificing recall. Taking
into account several evaluation indices, we will discuss the IOU
thresholds of 0, 0.3, and 0.5, respectively.

In addition to the impact of IOU threshold on the detection results,
the confidence threshold also affects the detection results. For an aurora
image dataset of unknown category, relevant researchers prefer that the
images containing PCA detected by the detection model are relatively
accurate, so the precision rate is more important than the recall rate.
Therefore, here, the confidence threshold is changed from 0 to 0.9 in
steps of 0.05, and the precision rate corresponding to each threshold is
calculated, thus Figure 9 is obtained. With the increase of confidence
threshold, the precision of various models also increases. The precision
of ensembled algorithm is always higher than that of two detectors,
which fully proves the effectiveness of And-Ensembling algorithm.

Figure 10 shows twos examples where the ensemble results correct
the misjudgment by detector1 and detector2, and the corresponding
confidence is given above the prediction box. Figure 10A is the
detection result of detector 1 on the LBHL band image observed by

TABLE 3 List of index results of three methods.

Accuracy Precision Recall F1

Detector1 0.92 0.64 0.87 0.74

Detector2 0.82 0.41 0.90 0.56

Ensemble-0(IOUthresh = 0) 0.95 0.81 0.82 0.81

Ensemble-0.3(IOUthresh = 0.3) 0.94 0.83 0.76 0.79

Ensemble-0.5(IOUthresh = 0.5) 0.94 0.85 0.65 0.73

The best performance of each index is highlighted in bold.

FIGURE 8
The variation curve of various evaluation index with
IOU threshold.

FIGURE 9
The variation curve of precision with confidence threshold.

TABLE 4 Auroral arc position detection evaluation results.

Precision Recall AP

Detector1 0.46 0.54 0.43

Detector2 0.31 0.59 0.43

Ensemble-0(IOUthresh = 0) 0.67 0.60 0.58

Ensemble-0.3(IOUthresh = 0.3) 0.73 0.56 0.57

Ensemble-0.5(IOUthresh = 0.5) 0.76 0.48 0.51

The best performance of each index is highlighted in bold.
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DMSP F16 on the orbit 63507 on 8 February 2016, Figure 10B is
the detection result of detector 2 on the LHBL band image
observed by DMSP F16 on the orbit 63153 on 14 January 2016.
In the original images of Figures 10A, B, there was no PCA structure
after manual judgment. In the experimental results, detector1 in
Figure 10A misjudged the part of the auroral oval residue after
cutting as PCA, while detector2 had no prediction box on the
image, so the result of the two was that the image had no PCA. In
Figure 10B, detector1 judged that there was no prediction
box in the image, while detector2 misjudged the thinner auroral

oval in the dayside as PCA. The ensemble result of the two is still
no PCA, so the ensemble result is still correct. It is proved that the
detector1 and the detector2 can make up for each other’s
shortcomings, so the accuracy of the ensemble results can be
greatly improved.

4.3.2 Position identification results
The above shows analysis of the results that whether the image

contains PCA or not. In addition, the detection of PCA position is also
important. Table 4 shows the evaluation results of PCA position detection.

FIGURE 10
(A) Example image of detector2 correction misjudged by detector1. (B) Example image of detector1 correction misjudged by detector 2.

FIGURE 11
Six example images which are detected correctly (A) Typical dawn side TPA (B) Dawn side polar cap arc (C) Typical dusk side TPA (D) Isolated small
size auroral arc (E) Two polar cap arcs in one figure (F) Detection with noises.

Frontiers in Environmental Science frontiersin.org10

Lu et al. 10.3389/fenvs.2024.1418207

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2024.1418207


From Table 4, it could be found that the ensemble results are better
than both detector1 and detector2, especially the precision. When the
IOU threshold in the And-Ensembling algorithm is gradually
increased, the recall will be greatly reduced. This result is similar to
the result of auroral arc event identification, which is the same as
sacrificing recall to improve precision. For the task of auroral arc event
identification, precision is more important than recall in order to
ensure that the detected image or prediction box is more accurate and
does not contain the wrong image or target as far as possible.

Figure 11 shows the correctly detected images in six different
cases, which are obtained by ensemble results when the IOU threshold
is 0.5 and the confidence threshold is 0.5. The green prediction box is
detected by the detector1, the red prediction box is detected by the
detector2, and the corresponding confidence is marked in the upper
right corner of each figure. The arc in Figure 11A extends from the
dawn side across the entire polar cap area to the dayside, which is a
typical transpolar cap auroral arc (TPA). The arc in Figure 11B is a
typical polar cap arc extending from the auroral oval near 6mlt, and
the size is smaller compared with Figure 11A. The arc in Figure 11C
extends from the auroral oval in the dusk side across the polar cap area
and connects to the auroral oval in the dayside. It belongs to TPA and
can also be called as the theta aurora. Figure 11D shows an isolated
small-scale auroral arc located in the polar cap region. The arc only
connects the auroral oval in the one side. From Figures 11A–D, it is
shown that the model can detect both large-scale TPAs and small-
scale isolated auroral arcs. Figure 11E contains two polar cap arcs. On
the left is a large-scale TPA, and on the right is a small-scale auroral
arc extending from themidnight, which shows that themodel can also
accurately detect the situation that a figure contains multiple PCAs.
Figure 11F contains a lot of noises, but the model still detects the polar
cap arc, which proves that the model has a certain anti-noise ability.

5 Conclusions

Aiming at the problem of auroral arc identification in satellite
observation images, this paper first proposes an image preprocessing
method based on the characteristics of the polar cap arc, and divides
the dataset according to the time characteristics of the data. Two kinds
of preprocessed datasets are used to train the YOLOX target detection
model respectively, and a detection result integration method is
proposed. The results show that the integrated results are better
than those before And-Ensemble, especially the precision rate. The
influence of threshold parameters on the detection results is discussed.
According to the real detection effect, the reasons for improving the
effect are analyzed, and an accurate detection example is given, which
proves that the current model and integration method can effectively
detect the auroral arc in a variety of situations.

The polar cap arcs (PCA) are generally rare events, they are found in
auroral images during only 10%–16% of the time (Kullen et al., 2002;
Fear and Milan, 2012a). The percentage is also close to our cases in the
test set of 2016 collections. In this task, the background auroral oval is the
noise. In auroral science, the auroral oval is formed by the energetic
particles from the closed field line while the polar cap arcs are due to the
open field line particles.However, there aremany different features of the
polar cap arcs. For example, the Theta aurora/transpolar arc, monopolar
cap arc, multiple polar cap arc, space hurricanes etc as mentioned above.
They are believed to have different physics mechanisms. To discovery

the mechanism of the formation and evolution of different forms of
polar cap arc, statistical study should be conducted. Find more cases is
the key point of the statistical study. In this situation, it motivates us to
apply the deep learning tools to classify the polar cap arcs, andfinallyfind
the physics features for different types of arcs.
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