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Environmental issues of rainfall are basic in terms of understanding and
management of ecosystems and natural resources. The rainfall patterns
significantly affect soil moisture, vegetation growth and biodiversity in the
ecosystems. In addition, proper classification of rainfall types helps in the
evaluation of the risk of flood, drought, and other extreme weather events’
risk, which immensely affect the ecosystems and human societies. Rainfall
classification can be improved by using machine learning and metaheuristic
algorithms. In this work, an Adaptive Dynamic Puma Optimizer (AD-PO)
algorithm combined with Guided Whale Optimization Algorithm (Guided
WOA) introduces a potentially important improvement in rainfall classification
approaches. These algorithms are to be combined to enable researchers to
comprehend and classify rain events by their specific features, such as intensity,
duration, and spatial distribution. A voting ensemble approach within the
proposed (AD-PO-Guided WOA) algorithm increases its predictive
performance because of the combination of predictions from several
classifiers to localize the dominant rainfall class. The presented approach not
only makes the classifying of rain faster and more accurate but also strengthens
the robustness and trustworthiness of the classification in this regard.
Comparison to other optimization algorithms validates the effectiveness of the
AD-PO-Guided WOA algorithm in terms of performance metrics with an
outstanding 95.99% accuracy. Furthermore, the second scenario is applied for
forecasting based on the long short-term memory networks (LSTM) model
optimized by the AD-PO-Guided WOA algorithm. The AD-PO-Guided WOA-
LSTM algorithm produces rainfall prediction with an MSE of 0.005078. Wilcoxon
rank test, descriptive statistics, and sensitivity analysis are applied to help
evaluating and improving the quality and validity of the proposed algorithm.
This intensive method facilitates rainfall classification and is a base for suggested
measures that cut the hazards of extreme weather events on societies.
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1 Introduction

For the survival of life on earth, water is required. The social,
economic, and environmental development of a region largely
depends on how the region is positioned regarding water. Water
accessibility influences every aspect of life, including animals,
industries, agriculture, and life itself. The demand for water has
gone up due to population growth, urbanization, and the need for
enlarged agricultural and modernized living standards. The water
cycling between the sea, atmosphere, and the earth (by rain) is a
renewable resource (Raval et al., 2021). The rainfall is a major
element of the hydrological cycle, and its pattern changes reflect on
the water supplies. Today both hydrologists and water resource
managers are worried about the changed pattern of rainfall
influenced by climate change. The impact of rainfall variations is
reflected in the nation’s agriculture, drinking water supply, energy
industry, and many peoples’ survival. Rain is a crucial element in the
management of the rise of water level of the reservoir. The reservoir
could be flooded or dried because of the irregular amount of rainfall
as result of climate change. Many people use rain forecasts, mostly
the ones in the agriculture sector. Because the weather is always
changing, forecasting rain is also very hard (Praveen et al., 2020;
Samee et al., 2022).

Several factors, such as wind direction, moisture, heat, etc., that
differ by region have an impact on rainfall forecasts. Therefore, a
model developed for one place may not be as valuable in another
(Belghit et al., 2023). The simultaneous occurrence of three patterns,
namely, spatial, temporal, and non-linear, makes rainfall forecasting
one of the most difficult tasks (Saha et al., 2020). Artificial
intelligence algorithms can offer significant insights into a rainfall
forecasting and warning system without requiring extensive
knowledge of the hydrological or physical behaviors of the
watershed (Barrera-Animas et al., 2022). The application of deep
learning techniques for weather forecasting has grown dramatically
in recent years; nevertheless, current machine learning algorithms
based on observable data are only appropriate for very short-term
forecasting. For medium- and short-term forecasting, numerical
models are more stable, although the results may differ from the data
that have been observed (Jeong and Yi, 2023).

The use of machine learning (ML) algorithms for rainfall
forecasting may be advantageous. Artificial neural networks
(ANN) and support vector regression (SVR) are ML techniques
that are frequently used to forecast rainfall (Raval et al., 2021;
Appiah-Badu et al., 2022) carried out feature engineering and
chose features for each of the eight distinct classification models.
They compared the efficacy of these models based on two primary
criteria of F1-score and precision. A deep-learning algorithm
outperformed the tested statistical models with precision of
98.26% and F1-scores of 88.61%. This demonstrated that models
employing deep learning can effectively address the problem of
rainfall forecasting. This work has created a variety of algorithms,
various machine learning models are assessed, and their
performances are contrasted to increase the precision of rainfall
predictions (Hazarika and Gupta, 2020).

Accurate rainfall forecasting is a challenging procedure that
requires constant progress. The proposed ensemble algorithm (AD-
PO-Guided WOA Algorithm), which employs an adaptive dynamic
technique, the puma optimizer (Abdollahzadeh et al., 2024), and a

modified whale optimization algorithm, can predict rainfall falls
under the category of conventional weather forecasting, which
entails gathering and analyzing vast amounts of data. To train
and test the proposed models, several optimization algorithms
will be evaluated and compared for classification and
model selection.

This study introduces a novel voting-based optimized algorithm
for rainfall classification and forecasting, combining the Adaptive
Dynamic Puma Optimizer (AD-PO) and Guided Whale
Optimization Algorithm (Guided WOA). Our approach leverages
multiple machine learning and metaheuristic algorithms to enhance
prediction accuracy and robustness. The innovations in our
approach include integrating AD-PO and Guided WOA with a
voting ensemble to improve accuracy, enhancing prediction
reliability through optimized parameter settings, and providing a
detailed sensitivity analysis to assess model stability under various
conditions.

The structure of the paper is as follows: Section 2 provides an
overview of existing methods and recent advancements in rainfall
forecasting and classification. Section 3 details the proposed
algorithm and the datasets used in this study. Section 4 presents
performance metrics and comparisons with existing models. Section
5 examines the impact of parameter settings on the model’s
performance through sensitivity analysis. Finally, Section 6
summarizes the contributions of the study and suggests
directions for future research.

2 Related works

The research interest in rainfall forecasting has recently
increased because of its importance in many applications,
including flood forecasting and pollutant concentration
monitoring. However, most models currently used are based on
complex statistical methods, which might be expensive,
computationally inefficient, or difficult to apply to future tasks.

In enhancing the classification results of precipitation
intensities, Belghit et al. (2023) examine the application of the
AdaBoost algorithm with the One versus All strategy (OvA) and
Support Vector Machine (SVM). Their study focuses on applying
this model to images from the Meteosat Second Generation (MSG)
satellite. The performance of the AdaBoost algorithm is compared
against other multiclass SVM variants, including One Versus One
SVM (OvO-SVM), Slant Binary Tree SVM (SBT-SVM), and
Decision Directed Acyclic Graph SVM (DDAG-SVM). Results
indicate that the AdaBoost variant, OvA-SVM, offers better
performance compared to other methods. Additional
classification techniques used to evaluate the model’s efficacy
include Enhanced Convective Stratiform Technique (ECST),
SVM, ANN, Random Forest (SART), Convective/Stratiform Rain
Area Delineation Technique (CS-RADT), and Random Forest
Technique (RFT). The metrics demonstrate promising results for
the AdaBoost with OvA-SVM (AdaOvA-SVM) model, which
significantly outperforms approaches like CS-RADT, ECST, and
RFT, showcasing its efficiency in both weak and strong classifier
instances, particularly in adverse environmental conditions.

Researchers are also exploring the adoption of machine learning
(ML) algorithms for time series data. Barrera-Animas et al. (2022)
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TABLE 1 Rainfall classification and forecasting related works summary.

References Focus Methods and algorithms Key findings Results summary

Belghit et al. (2023) Enhancing classification
results of precipitation
intensities

AdaBoost algorithm with One versus All
(OvA) SVM, compared with other SVM
variants

AdaBoost (OvA-SVM) offers better
performance compared to other methods;
significantly outperforms approaches like
CS-RADT, ECST, and RFT in adverse
conditions

Improved classification
accuracy and robustness in
adverse conditions

Barrera-Animas
et al. (2022)

Comparing simplified
rainfall estimation models

Gradient Boosting Regressor, Support
Vector Regression, Extra-trees Regressor,
LSTM, Stacked-LSTM, Bidirectional-
LSTM Networks, XGBoost

Bidirectional-LSTM and Stacked-LSTM
Networks perform well, especially in
budget-constrained applications; low
hidden layers’ LSTM models are the best
predictors

Equivalent performance of
Bidirectional-LSTM and
Stacked-LSTM in forecasting

Appiah-Badu et al.
(2022)

Evaluating classification
algorithms for rainfall
prediction

Decision Tree (DT), Random Forest (RF),
Multilayer Perceptron (MLP), Extreme
Gradient Boosting (XGB), K-Nearest
Neighbor (KNN)

RF, XGB, and MLP show strong
performance across all zones; MLP
consumes the most runtime resources,
whereas DT delivers the quickest runtime

Strong performance of RF,
XGB, and MLP; DT has the
quickest runtime

Ridwan et al. (2021) Predicting rainfall for
water level control in
reservoirs

Boosted Decision Tree Regression
(BDTR), Decision Forest Regression
(DFR), Neural Network Regression
(NNR); Thiessen polygon method

BDTR achieves the highest coefficient of
determination in M1; M1 is more accurate
than M2, highlighting the importance of
different methods and scenarios

BDTR in M1 method yields
highest determination
coefficients for accuracy

Ni et al. (2020) Developing hybrid models
for rainfall and streamflow
forecasts

Wavelet-LSTM (WLSTM), Convolutional
LSTM (CLSTM)

WLSTM and CLSTM outperform
conventional methods, providing higher
prediction performance and better
understanding of underlying temporal
dynamics

WLSTM and CLSTM provide
superior prediction
performance

Lazri et al. (2020) Estimating rainfall using
MSG satellite data and
multi-classifier models

Weighted k-nearest Neighbors (WkNN),
Random Forest (RF), ANN, SVM, Naïve
Bayesian (NB), Kmeans++; Multi-
classifier model

Multi-classifiers model achieves a
coefficient of correlation of 0.93, better
than single classifiers; demonstrates the
potential of integrating satellite data
with ML.

Enhanced classification
accuracy with a multi-
classifier approach

Avanzato et al.
(2020)

Accurate precipitation
estimation using advanced
ML techniques

Convolutional Neural Networks (CNNs);
AVDB-4RC dataset

The novel dataset includes audio and video
data for rainfall classification; CNNs
achieve 49% average accuracy, improving
to 75% with excluding adjacent
misclassifications

CNN-based approach
achieves notable accuracy
improvement in classification

FIGURE 1
The proposed framework for AD-PO-guided WOA algorithm.
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compare simplified rainfall estimation models based on traditional
machine learning algorithms and deep learning architectures. They
evaluate Gradient Boosting Regressor, Support Vector Regression,

Extra-trees Regressor, LSTM, Stacked-LSTM, Bidirectional-LSTM
Networks, and XGBoost on their ability to forecast hourly rainfall
volumes in five major UK cities using climate data from 2000 to

FIGURE 2
PO exploration and exploitation process.

FIGURE 3
Correlation heatmap for original data.
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2020. Performance metrics include Mean Absolute Error, Root
Mean Squared Error, Loss, and Root Mean Squared Logarithmic
Error. The results demonstrate that Bidirectional-LSTM
Networks and Stacked-LSTM Networks perform equivalently
well, especially in budget-constrained applications, with low
hidden layers’ LSTM-based models being the best predictors
among all models tested.

Climate change and variability have worsened the ability to
forecast rain accurately. However, significant progress has been
made with classification algorithms to improve rain prediction
accuracy. Appiah-Badu et al. (2022) evaluate the performance of
different classification algorithms for rainfall prediction in various
ecological zones of Ghana. The study includes Decision Tree (DT),
Random Forest (RF), Multilayer Perceptron (MLP), Extreme
Gradient Boosting (XGB), and K-Nearest Neighbor (KNN).
Using climate data from 1980 to 2019 sourced from the Ghana
Meteorological Agency, the performance of these algorithms is
measured in terms of precision, recall, f1-score, accuracy, and
execution time across various training and testing data ratios (70:
30, 80:20, and 90:10). Results reveal that while KNN performs
poorly, RF, XGB, and MLP show strong performance across all

zones. Additionally, MLP consumes the most runtime resources,
whereas the Decision Tree always delivers the quickest runtime.

Rainfall is crucial for water level control in reservoirs, and
climatic variability poses challenges like drought or overflow.
Ridwan et al. (2021) use various machine learning models and
techniques to predict rainfall in Tasik Kenyir, Terengganu. Their
study employs two forecasting approaches and assesses several
scenarios and time horizons. Using the Thiessen polygon method
to weigh station areas and projected rainfall, data is collected by
averaging rainfall from ten stations around the study area. For
prediction, four machine learning algorithms are used: Boosted
Decision Tree Regression (BDTR), Decision Forest Regression
(DFR), and Neural Network Regression (NNR). Two approaches,
Method 1 (M1) involving the Autocorrelation Function (ACF) and
Method 2 (M2) involving Projected Error, are evaluated. In M1,
BDTR achieves the highest coefficient of determination, making it
the best algorithm for ACF. Results indicate that all scenarios have
coefficients within the range of 0.5–0.9, with the daily (0.9740),
weekly (0.9895), 10-day (0.9894), and monthly (0.9998) forecasts
having the highest values. The study concludes that while applying
BDTR modeling, M1 is more accurate than M2, emphasizing the

FIGURE 4
3D scatterplot of humidity in copula data.
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importance of considering different methods and situations in
rainfall prediction.

Predicting rain and streamflow is key for wise water resource
management. Ni et al. (2020) investigate the development of hybrid
models for monthly rainfall and streamflow forecasts using LSTM

networks, renowned for handling sequential data. The first model,
wavelet-LSTM (WLSTM), uses the trous algorithm of wavelet
transform for time series decomposition, enhancing the model’s
ability to represent nuanced interactions and subtleties in hydrology.
The second model, convolutional LSTM (CLSTM), embeds aspects

FIGURE 5
Residual, seasonality, and trend plot for the CRU data.

TABLE 2 Performance of the outcomes from single classifiers.

Classifiers Accuracy Sensitivity Specificity PPV NPV F1-score

RF 0.87141 0.86992 0.87192 0.87084 0.86734 0.87033

XGBoost 0.83952 0.84196 0.83941 0.84101 0.84133 0.844

KNN 0.82385 0.82301 0.81762 0.81734 0.81921 0.81518

DT 0.81077 0.80844 0.80523 0.81043 0.81322 0.80609

TABLE 3 Comparing the proposed algorithm with other voting algorithms.

Algorithms Accuracy Sensitivity Specificity PPV NPV F1-score

AD-PO-Guided WOA 0.95993 0.99425196 0.88841989 0.94478060 0.989728466 0.973053

PSO 0.94642 0.99425196 0.82966549 0.93348882 0.980393142 0.967022

Guided WOA 0.93829 0.99425196 0.80832836 0.92246913 0.980393142 0.961066

WOA 0.92637 0.99425196 0.77834835 0.90642864 0.980393142 0.952271

GWO 0.91476 0.99425196 0.75056199 0.8909477 0.980393142 0.943639

GA 0.90793 0.99425196 0.73484513 0.88191567 0.980393142 0.938536
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of convolutional neural networks (CNNs) to capture spatial and
temporal information. The accuracy of forecasts is enhanced by
CLSTM’s ability to learn complex patterns and dependencies in time

series data by employing the hierarchical nature of CNNs.
Comparative analysis with conventional techniques like MLP and
LSTM demonstrates that WLSTM and CLSTM outperform

TABLE 4 The proposed algorithm descriptive analysis versus another voting algorithms.

AD-PO-Guided WOA PSO Guided WOA WOA GWO GA

Number of values 9 9 9 9 9 9

Minimum 0.9411 0.9176 0.9154 0.9075 0.8859 0.8791

25% Percentile 0.9411 0.9276 0.9194 0.9075 0.8959 0.8891

Median 0.9411 0.9276 0.9194 0.9075 0.8959 0.8891

75% Percentile 0.9416 0.9276 0.9194 0.9101 0.8959 0.8891

Maximum 0.9441 0.9296 0.9219 0.9148 0.8999 0.8908

Range 0.003 0.012 0.006504 0.007233 0.014 0.01169

Mean 0.9415 0.9267 0.9193 0.9089 0.8952 0.8882

Std. Deviation 0.001014 0.00348 0.001659 0.002794 0.003742 0.00345

Std. Error of Mean 0.0003379 0.00116 0.000553 0.000931 0.001247 0.00115

TABLE 5 The Wilcoxon signed rank test findings for the proposed algorithm in contrast to alternative algorithms for rainfall classification.

AD-PO-Guided WOA PSO Guided WOA WOA GWO GA

Sum of signed ranks (W) 45 45 45 45 45 45

Sum of positive ranks 45 45 45 45 45 45

Sum of negative ranks 0 0 0 0 0 0

p-value (two tailed) 0.003 0.003 0.003 0.003 0.003 0.003

Exact or estimate? Exact Exact Exact Exact Exact Exact

Significant (alpha = 0.05)? Yes Yes Yes Yes Yes Yes

Discrepancy 0.9411 0.927 0.9194 0.907 0.895 0.889

FIGURE 6
The AD-PO-Guided WOA algorithm accuracy is based on the objective function compared to different algorithms.
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conventional methods, providing higher prediction performance
and better understanding of underlying temporal dynamics. This
new paradigm facilitates evidence-based decision-making and
proactive action towards water-related issues in different
ecological settings.

Lazri et al. (2020) aim to estimate rainfall based on pictures taken
by MSG using a multi-classifier model from machine learning. For
training and testing, radar andMSG satellite data correlations are noted.
Six classifiers, including Weighted k-nearest Neighbors (WkNN),
Random Forest (RF), ANN, SVM, Naïve Bayesian (NB), and
Kmeans++, are combined for level 1 classification, where different
classifiers assign a pixel to other classes. The certainty coefficients

derived from these results are used as input parameters for RF in
level 2 classification. This mechanism generates six classes of
precipitation intensities, from extremely high to no rain. The quality
of classification is significantly better with the multi-classifiers model
compared to single classifiers, achieving a coefficient of correlation of
0.93. Additionally, the developed scheme shows better results than
alternative methods, with biases ranging from −11 mm to 16 mm and
RMSD greater than 14 mm. This approach demonstrates the potential
of integrating satellite data with machine learning models to enhance
rainfall forecasting accuracy.

Avanzato et al. (2020) addressed the increasing occurrence of
natural disasters due to hydrogeological instability caused by heavy

TABLE 6 Compression of forecasting results.

Models MSE RMSE MAE MBE r R2 RRMSE NSE WI

Baseline 0.039432 0.198574 0.120505 0.001089 0.252725 0.06387 170.7078 0.48701 0.513604

ARIMA 0.02425 0.155724 0.108686 −0.0009 0.313969 0.098576 133.8706 0.085513 0.561311

SARIMA 0.012407 0.111388 0.058482 −0.00279 0.729863 0.532699 104.0775 0.532112 0.763949

LSTM 0.013976 0.118221 0.074762 −0.01833 0.673703 0.453875 95.75635 0.426391 0.684735

AD-PO-Guided WOA-LSTM 0.005078 0.066483 0.044829 0.000263 0.942646 0.887911 19.01841 0.885961 0.853388

FIGURE 7
Residual plot of model predictions.
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rain. To mitigate these risks, the study emphasized the need for
accurate precipitation estimation using advanced machine learning
techniques. The researchers introduced the AVDB-4RC (Audio/
Video Database for Rainfall Classification) dataset, which includes
audio and video data recorded by a custom-built multimodal rain
gauge. This dataset categorizes rainfall into seven intensities: “No
rain,” “Weak rain,” “Moderate rain,” “Heavy rain,” “Very heavy
rain,” “Shower rain,” and “Cloudburst rain.” The validation of the
dataset involved a novel rainfall classification method using

Convolutional Neural Networks (CNNs), achieving an average
accuracy of 49%, which could improve to 75% when excluding
adjacent misclassifications. This study is notable for providing
the first open dataset combining acoustic and video data for
rainfall classification, encouraging the evaluation and
improvement of rainfall estimation algorithms on a
shared platform.

Table 1 provides a concise overview of the methodologies,
performance metrics, and key findings of each study.

FIGURE 8
Testing and prediction of rainfall in mecca.

FIGURE 9
Modeling and forecasting LSTM rainfall in Mecca.
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FIGURE 10
Heatmap Compression of AD-PO-Guided WOA-LSTM and other Models.

FIGURE 11
Parallel Coordinates Plot of Model Comparison of AD-PO-Guided WOA-LSTM and other Models.
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3 Proposed algorithm and models

3.1 Proposed AD-PO-guidedWOA algorithm

This section delves into the AD-PO-Guided WOA algorithm as
shown in Figure 1, which employs an adaptive dynamic technique,
the puma optimizer, and a modified whale optimization algorithm.
Algorithm 1 provides a depiction of the AD-PO-Guided
WOA algorithm.

3.1.1 Adaptive dynamic algorithm
Following the initialization of the optimization algorithm, a

fitness value is assessed for each solution within the population. The
algorithm identifies the solution with the best fitness value as the
best agent. Initiating the adaptive dynamic process involves
segregating the population into two distinct groups. These groups
are referred to as the exploitation group and the exploration

group. The primary objective of individuals in the exploitation
group is to converge toward the optimal or best solution, while
individuals in the exploration group aim to explore the vicinity
around the leaders. The update process among the population
groups’ agents operates dynamically. To maintain a balance
between the exploitation group and the exploration group, the
optimization algorithm commences with an initial population
distribution of (50/50).

3.1.2 Guided WOA algorithm
The WOA algorithm demonstrates its efficacy across various

optimization problems. It is widely acknowledged in the literature as
one of the most powerful optimization algorithms (El-Kenawy et al.,
2020). However, a potential drawback lies in its limited exploration
capabilities (Mirjalili et al., 2020; Ghoneim et al., 2021). For
mathematical purposes, let’s denote ‘n’ as the dimension or the
number of variables in the search space where whales navigate. If we

FIGURE 12
Radar Plot of Performance Metrics of Model Comparison of AD-PO-Guided WOA-LSTM and other Models.
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TABLE 7 Convergence time results for different values of AD-PO-guided WOA’s parameters.

r1 r2 r3 w1 w2 w3 A C L

Values Time Values Time Values Time Values Time Values Time Values Time Value s Time Values Time Values Time

0.1 5.8 0.1 5.7 0.1 5.8 0.1 5.7 0.1 5.8 0.1 5.7 0.1 5.8 0.1 5.7 0.1 5.8

0.1 5.8 0.1 5.8 0.1 5.7 0.1 5.7 0.1 5.7 0.2 5.8 0.2 5.7 0.2 5.8 0.2 5.7

0.2 5.7 0.2 5.7 0.2 5.8 0.2 5.8 0.2 5.8 0.3 5.8 0.3 5.8 0.3 5.7 0.3 5.7

0.2 5.7 0.2 5.8 0.2 5.7 0.2 5.7 0.2 5.8 0.4 5.7 0.4 5.8 0.4 5.7 0.4 5.8

0.3 5.7 0.3 5.8 0.3 5.8 0.3 5.8 0.3 5.8 0.5 5.7 0.5 5.7 0.5 5.8 0.5 5.7

0.3 5.7 0.3 5.8 0.3 5.8 0.3 5.7 0.3 5.8 0.6 5.7 0.6 5.7 0.6 5.8 0.6 5.7

0.4 5.7 0.4 5.8 0.4 5.8 0.4 5.7 0.4 5.7 0.7 5.7 0.7 5.7 0.7 5.8 0.7 5.7

0.4 5.7 0.4 5.7 0.4 5.8 0.4 5.8 0.4 5.8 0.8 5.8 0.8 5.7 0.8 5.7 0.8 5.8

0.5 5.7 0.5 5.8 0.5 5.7 0.5 5.7 0.5 5.7 0.9 5.8 0.9 5.7 0.9 5.8 0.9 5.7

0.5 5.7 0.5 5.7 0.5 5.7 0.5 5.8 0.5 5.8 1.0 5.7 1.0 5.8 1.0 5.8 1.0 5.7

0.6 5.8 0.6 5.8 0.6 5.8 0.6 5.7 0.6 5.7 1.1 5.7 1.1 5.8 1.1 5.8 1.1 5.7

0.6 5.7 0.6 5.8 0.6 5.7 0.6 5.8 0.6 5.8 1.2 5.7 1.2 5.8 1.2 5.8 1.2 5.7

0.7 5.7 0.7 5.7 0.7 5.8 0.7 5.8 0.7 5.8 1.3 5.8 1.3 5.7 1.3 5.7 1.3 5.8

0.7 5.7 0.7 5.8 0.7 5.7 0.7 5.8 0.7 5.8 1.4 5.7 1.4 5.7 1.4 5.7 1.4 5.7

0.8 5.7 0.8 5.7 0.8 5.7 0.8 5.8 0.8 5.7 1.5 5.7 1.5 5.7 1.5 5.7 1.5 5.7

0.8 5.8 0.8 5.7 0.8 5.7 0.8 5.7 0.8 5.8 1.6 5.8 1.6 5.8 1.6 5.7 1.6 5.8

0.9 5.8 0.9 5.7 0.9 5.8 0.9 5.7 0.9 5.7 1.7 5.8 1.7 5.7 1.7 5.7 1.7 5.8

0.9 5.7 0.9 5.8 0.9 5.8 0.9 5.7 0.9 5.7 1.8 5.8 1.8 5.7 1.8 5.8 1.8 5.7

1.0 5.7 1.0 5.8 1.0 5.8 1.0 5.7 1.0 5.7 1.9 5.7 1.9 5.8 1.9 5.7 1.9 5.8

1.0 5.7 1.0 5.8 1.0 5.7 1.0 5.7 1.0 5.8 2.0 5.8 2.0 5.7 2.0 5.7 2.0 5.7
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consider that the positions of agents (solutions) in the search space
evolve over time, the optimal solution will be discovered. The
subsequent Equation can be employed in the WOA algorithm to
update the positions of agents.

�X t + 1( ) � �X* t( ) − �A. �D, �D � �C. �X* t( ) − �X t( )
∣∣∣∣∣ ∣∣∣∣∣ (1)

In Eq. (1), the term �X(t) represents a solution at iteration t,
while the term �X*(t) denotes the position of the optimal solution
or the food source. The “.” in this Equation signifies a form of
pairwise multiplication. The term �X(t + 1) represents the updated
position of the changed agent. The two vectors, �A and �C, undergo
updates during iterations as �A � 2 �a.r1 − �a and �C � 2.r2. The term �a
undergoes a linear change from 2 that represent the maximum
value to 0 that represent the minimum value. The values of r1 and
r2 vary randomly within the range of [0, 1]. The term Guided
WOA signifies an improved version of the original WOA
algorithm (Nazir et al., 2020). Guided WOA introduces
refinements to address the constraints of the initial WOA by
adapting the search strategy through the collaboration of
multiple agents. In contrast to the original WOA, which
mandates agents to move randomly around each other using
Eq. (1) for global exploration, the adapted Guided WOA
algorithm guides agents collaboratively toward the target or
optimal solution. Within the framework of the Guided WOA
algorithm, the exploration process undergoes improvement as
agents are directed to follow three random agents as opposed to
just one. This adjustment is made to prevent agents from being
overly swayed by a singular leader position. To foster increased
exploration, Eq. (1) can be replaced with the subsequent
expression.

�X t + 1( ) � w1
�→

p �Xrand1 + �ϑ p w2
�→

p �Xrand2 − �Xrand3( )
+ 1 − �ϑ( ) p w3

�→
p �X − �Xrand1( ) (2)

In Eq. (2), the three random solutions are denoted as �Xrand1,
�Xrand2, and �Xrand3. The value of the term w1

�→ is adjusted within the
range [0, 0.5]. The terms w2

�→ and w3
�→ dynamically vary within the

interval [0, 1]. To ensure a smooth transition between

exploration and exploitation, the term �ϑ decreases
exponentially, as opposed to linearly, and its calculation is as
follows. as in Eq. 3.

�ϑ � 1 − t

Maxiiter
( )

2

(3)

where, t is the number of iterations and Maxiiter is the maximum
number of iterations.

3.1.3 Puma optimizer (PO)
The Puma Optimizer (PO) (Abdollahzadeh et al., 2024) is a

bio-inspired metaheuristic algorithm that has been created to
solve optimization problems with efficiency and adaptability.
Developed based on the hunting activities of pumas, the PO
algorithm applies a multi-stage strategy, which includes the
stages of exploration and exploitation. As shown in Figure 2
In the exploration phase, like a puma, as it tours the territory in
search of possible prey, the algorithm does the random
exploration of the search space in order to find new solutions.
While doing so, it also avoids the local optima. In the exploitation
phase, on the contrary, the algorithm emulates pumas’ hunting
methods—ambushes and sprints-to improve existing solutions
and exploit promising areas of the search space. Using heuristic
selection algorithms and hyper-heuristic mechanisms, the PO
adaptively changes its strategies based on the problem landscape
and historical information to optimally balance between
exploration and exploitation to converge to optimal
solutions quickly.

Utilizing nature-inspired insights and adaptive strategies
from pumas, the Puma Optimizer provides an efficient and
flexible solution for optimization problems. The design of the
method is multi-phase and enables the comprehensive
investigation of different solution spaces and the focused
extraction of attractive regions, which results in high-quality
solutions being found. Due to its flexible nature and effectiveness,
the PO algorithm has a powerful ability to address many
optimization problems in different domains and is also,
therefore, a critical tool in the sphere of computational

TABLE 8 Statistical analysis for the convergence time results for different values of AD-PO-guided WOA’s parameters.

r1 r2 r3 w1 w2 w3 A C L

Number of values 20 20 20 20 20 20 20 20 20

Minimum 3.691 5.727 5.673 5.68 5.662 5.666 5.674 5.689 5.664

25% Percentile 3.792 5.775 5.721 5.717 5.706 5.687 5.729 5.705 5.686

Median 5.678 9.671 5.754 5.74 5.752 5.757 5.744 5.732 5.731

75% Percentile 5.722 9.747 5.789 5.763 5.767 7.745 5.759 5.772 5.765

Maximum 5.796 9.803 6.77 5.796 5.8 7.803 5.803 5.808 5.782

Range 2.105 4.076 1.097 0.116 0.138 2.137 0.129 0.119 0.118

Mean 5.072 7.952 5.892 5.741 5.743 6.429 5.742 5.739 5.725

Std. Deviation 0.9194 2.023 0.3643 0.02807 0.04186 1.001 0.0316 0.03668 0.04047

Std. Error of Mean 0.2056 0.4524 0.08145 0.006277 0.00936 0.2238 0.007066 0.008201 0.00905

Sum 101.4 159 117.8 114.8 114.9 128.6 114.8 114.8 114.5
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optimization. Algorithm 1 shows the pseudo-code of the
puma optimizer.

% PO setting

Inputs: The population size N and the maximum number of

iterations and parameter settings

Outputs: Puma’s location and fitness potential

% initialization

Create a random population using Xi (i = 1, 2, . . ., N).

Calculate Puma’s fitness levels.

For iter = 1: 3

Apply exploration phase

Apply exploitation phase

End

Apply Unexperienced Phase

for iter = 4: Max iteration

Apply experienced Phase

if Score Explore > Score Exploit

Apply exploration phase (Algorithm 1)

if Exploration NewBestXi Cost < Puma male Cost

Puma male = NewBestXi
end

else

Apply exploitation phase (Algorithm 2)

if Exploitation NewBestXi Cost < Puma male Cost

Puma male = NewBestXi
end

end

Update T, f1, f2 and f3

Update Score Explore and Score Exploit by Eq. 17

end

Algorithm 1. Pseudo-code of PO.

3.1.4 AD-PO-guided WOA algorithm
This section provides a complexity analysis of the AD-PO-

Guided WOA algorithm using Algorithm 1. By denoting the
population number as n and the iterations as Mt, the complexity
for each component of the algorithm can be defined as follows:

• Initializing the population : O(1).
• Initialize the set of parameters �a, �A, �C, l, r1

→, r2
→, r3

→, w1
��→, w2

�→, w3
�→,

t � 1: O(1).
• Assess the fitness function Fn: O(n).
• Gaining the best individuals �X*: O(n).
• Update the position : O(Mt × n).
• Assessing the fitness function of agents through the utilization
of Guided WOA : O(Mt × n).

• Assessing the fitness function of agents through the utilization
of PO : O(Mt × n).

• Update �a, �A, �C, l, r3
→
: O(Mt).

• Best solution updating : O(Mt × n).
• Increasing the counter iteration : O(Mt).

The computational complexity of the AD-PO-Guided WOA
algorithm can be expressed as O(Mt × n). In the case of problems
with m variables, the algorithm’s complexity can be articulated as
O(Mt × n × m).

3.1.5 Fitness function
The effectiveness of an optimizer is gauged by evaluating the fitness

function (Hassan et al., 2022), primarily reliant on the classification/
regression error rate and the selected features from the input dataset.
The optimal solution is determined by a set of features that minimize
both the feature count and classification error rate as shown in Eq. 4.
The assessment of solution quality in this study is carried out using the
following equation.

Fn � αErr O( ) + β
s| |
f
∣∣∣∣ ∣∣∣∣ (4)

where the error rate of the optimizer is denoted as Err(O), the chosen set
of features is represented by s, andf signifies the total number of available
features. The value of α is in the range [0, 1] and β � 1 − h1. α and β are
used for the classification error rate and the selected features number.

The voting classifier model is based on Adaptive Dynamic Puma
Optimizer (AD-PO) and augmented with the Guided Whale
Optimization Algorithm (Guided WOA) as outlined in Algorithm 2.
The AD-PO-Guided WOA algorithm combines RF and XG Boost
classifiers to enhance the accuracy of the ensemble. The classifiers
undergo training to determine optimal weights. The AD-PO-Guided
WOA algorithm is then employed to optimize these weights.

Set the population �Xi(i � 1,2, . . . ,n) with size n, the

maximum iterations are Maxiiter and fitness function Fn

Set the parameters �a, �A, �C, l, r1
�→

, r2
�→

, r3
�→

, w1
��→, w2

�→, w3
�→, t � 1

Assess the fitness function Fn for each �Xi

Identify the most optimal individual �X*

while Maxiiter ≥t do

if (t%2 �� 0) then
for (i � 1: i<n + 1) do

if (r3
�→<0.5) then

if (| �A|<1) then
Update the position of current search agent as
�X(t + 1) � �X* (t) − �A. �D

else

Select the search agents �Xrand1, �Xrand2, and �Xrand3

Update ( �ϑ) by the Equation �ϑ � 1 − ( t
Maxiiter

)2
Update the position of current agent as �X(t + 1) �
w1
�→

* �Xrand1 + �ϑ*w2
�→

* ( �Xrand2 − �Xrand3) + (1 − �ϑ)*w3
�→

*

( �X − �Xrand1)
end if

else

Update the position of current agent

as �X(t + 1) � |Cost Initial
Best − Cost 1

Explore|
end if

end for

Calculate the fitness function Fn for every �Xi

from Guided WOA

else

Calculate the fitness function Fn for every �Xi from PO

end if

Update �a, �A, �C, l, r3
�→

Find the best individual �X*

Set t � t + 1

end while

return �X*

Algorithm 2. AD-PO-Guided WOA Algorithm.
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3.2 Classification models

A Random Forest (RF) is a type of ensemble learning method
that merges the predictions from numerous decision tree, aiming
to enhance overall performance and resilience (Zaki et al., 2023).
Random forest is constructed upon the fundamental principles of
decision tree, which are basic models systematically dividing the
data based on features for prediction purposes. Instead of
employing all features for every split within each tree, the
random forest algorithm opts to randomly choose a subset of
features for each decision tree (Rodriguez-Galiano et al., 2012).
This variability contributes to the creation of diverse trees. Every
tree is constructed using a random sample, drawn with
replacement, from the original dataset. This technique is
commonly referred to as bootstrapped sampling. When
dealing with a new data point, each decision tree within the
forest provides a prediction for the class. The ultimate prediction
is determined by the class that attains most votes across all trees
(Parmar et al., 2019). The quantity of decision tree within the
forest is a vital hyperparameter. Elevated numbers generally
result in improved performance, reaching a stage of
diminishing returns. The maximum depth hyperparameter
determines the complexity of individual trees.

Extreme Gradient Boosting, commonly referred to as XG
Boost stands out as a potent and effective machine learning
algorithm celebrated for its exceptional performance across

diverse data science applications. XG Boost falls under the
ensemble learning umbrella, specifically leveraging boosting
techniques (Chen et al., 2015). It amalgamates predictions
from multiple weak learners, typically decision tree, to
construct a resilient model. XG Boost introduces a
regularization term in the objective function. This addition
enhances the model’s capability to manage complexity and
counteract overfitting. XG Boost sequentially builds a series of
decision tree, each rectifying errors from its predecessor (Osman
et al., 2021). To control individual tree complexity and prevent
overfitting, the algorithm integrates L1 (LASSO) and L2 (ridge)
regularization terms. The algorithm optimizes an objective
function that combines a loss function, gauging model
performance, and a regularization term during the
training process.

The K-Nearest Neighbor (KNN) classification algorithm is a
straightforward yet impactful supervised machine learning
method applicable to both classification and regression tasks
(Rizk et al., 2023). KNN operates based on the premise that
similar instances or data points typically reside closely together in
the feature space. For classification purposes, when presented
with a new, unlabeled data point, KNN determines its class by
examining the majority class among its K nearest neighbors. The
algorithm relies on a distance metric, often Euclidean distance, to
gauge the proximity between data points (Suguna and
Thanushkodi, 2010). Alternative metrics like Manhattan

TABLE 10 One Sample t-test for the Convergence Time Results for Different Values of AD-PO-Guided WOA’s Parameters.

r1 r2 r3 w1 w2 w3 A C L

One sample t-test

t, df t = 24.67,
df = 19

t = 17.58,
df = 19

t = 72.34,
df = 19

t = 914.5,
df = 19

t = 613.5,
df = 19

t = 28.72,
df = 19

t = 812.6,
df = 19

t = 699.8,
df = 19

t = 632.7,
df = 19

p-value (two tailed) <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001

p-value summary **** **** **** **** **** **** **** **** ****

Significant
(alpha = 0.05)?

Yes Yes Yes Yes Yes Yes Yes Yes Yes

How big is the discrepancy?

Discrepancy 5.072 7.952 5.892 5.741 5.743 6.429 5.742 5.739 5.725

SD of discrepancy 0.9194 2.023 0.3643 0.02807 0.04186 1.001 0.0316 0.03668 0.04047

SEM of discrepancy 0.2056 0.4524 0.08145 0.006277 0.00936 0.2238 0.007066 0.008201 0.00905

95% confidence
interval

4.642 to 5.502 7.005 to 8.899 5.722 to 6.063 5.728 to 5.754 5.723 to 5.762 5.960 to 6.897 5.727 to 5.756 5.722 to 5.756 5.706 to
5.744

R squared (partial eta
squared)

0.9697 0.9421 0.9964 1 0.9999 0.9775 1 1 1

TABLE 9 ANOVA test for the Convergence Time Results for Different Values of AD-PO-Guided WOA’s Parameters.

SS DF MS F (DFn, DFd) p-value

Treatment (between columns) 104.2 8 13.03 F (8, 171) = 19.29 p < 0.0001

Residual (within columns) 115.5 171 0.6754 - -

Total 219.7 179 - - -
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TABLE 11 Minimization results for different values of AD-PO-guided WOA’s parameters.

r1 r2 r3 w1 w2 w3 A C L

Values Time Values Time Values Time Values Time Values Time Values Time Values Time Values Time Values Time

0.1 48.7 0.1 47.8 0.1 48.4 0.1 48.1 0.1 48.2 0.1 47.6 0.1 48.3 0.1 48.0 0.1 48.5

0.1 48.6 0.1 48.7 0.1 47.5 0.1 48.0 0.1 48.1 0.2 48.4 0.2 48.0 0.2 48.4 0.2 47.4

0.2 47.6 0.2 47.4 0.2 48.2 0.2 48.7 0.2 48.6 0.3 48.7 0.3 48.3 0.3 47.8 0.3 47.5

0.2 47.9 0.2 48.7 0.2 47.4 0.2 48.0 0.2 48.7 0.4 47.7 0.4 48.7 0.4 47.7 0.4 48.4

0.3 47.5 0.3 48.7 0.3 48.3 0.3 48.2 0.3 48.3 0.5 47.5 0.5 48.1 0.5 48.8 0.5 47.4

0.3 47.7 0.3 48.4 0.3 48.6 0.3 47.8 0.3 48.7 0.6 47.4 0.6 48.2 0.6 48.2 0.6 48.1

0.4 48.1 0.4 48.7 0.4 48.2 0.4 47.8 0.4 47.9 0.7 48.1 0.7 48.0 0.7 48.3 0.7 47.7

0.4 47.5 0.4 48.1 0.4 48.2 0.4 48.4 0.4 48.3 0.8 48.4 0.8 48.2 0.8 47.8 0.8 48.5

0.5 47.7 0.5 48.7 0.5 47.9 0.5 47.8 0.5 47.6 0.9 48.2 0.9 48.0 0.9 48.5 0.9 47.3

0.5 47.8 0.5 47.4 0.5 47.4 0.5 48.4 0.5 48.4 1.0 47.6 1.0 48.2 1.0 48.5 1.0 48.0

0.6 48.7 0.6 48.7 0.6 48.6 0.6 48.1 0.6 47.3 1.1 47.4 1.1 48.2 1.1 48.4 1.1 47.5

0.6 47.6 0.6 48.2 0.6 47.9 0.6 48.5 0.6 48.2 1.2 47.6 1.2 48.5 1.2 48.5 1.2 47.6

0.7 48.0 0.7 47.6 0.7 48.4 0.7 48.3 0.7 48.2 1.3 48.3 1.3 48.1 1.3 47.6 1.3 48.5

0.7 47.6 0.7 48.4 0.7 48.1 0.7 48.3 0.7 48.3 1.4 47.4 1.4 47.6 1.4 48.0 1.4 47.9

0.8 48.1 0.8 48.0 0.8 48.0 0.8 48.3 0.8 47.7 1.5 47.7 1.5 48.0 1.5 47.8 1.5 47.7

0.8 48.5 0.8 48.0 0.8 48.1 0.8 48.2 0.8 48.2 1.6 48.7 1.6 48.3 1.6 47.6 1.6 48.4

0.9 48.6 0.9 47.5 0.9 48.3 0.9 47.8 0.9 47.4 1.7 48.6 1.7 47.4 1.7 47.7 1.7 48.3

0.9 47.6 0.9 48.6 0.9 48.5 0.9 48.0 0.9 47.6 1.8 48.6 1.8 48.1 1.8 48.4 1.8 48.1

1.0 47.3 1.0 48.5 1.0 48.5 1.0 48.1 1.0 48.1 1.9 47.6 1.9 48.5 1.9 47.8 1.9 48.2

1.0 47.4 1.0 48.2 1.0 47.8 1.0 47.5 1.0 48.7 2.0 48.3 2.0 47.6 2.0 48.0 2.0 48.1
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distance can be employed depending on the specific problem. ‘K’
signifies the number of nearest neighbors to consider. This
pivotal hyperparameter significantly influences the model’s
performance. A smaller ‘K’ may yield a more responsive

model, while a larger ‘K’ introduces more smoothing. KNN
does not explicitly construct a model with a defined decision
boundary. Instead, it classifies new data points based on the
consensus of their K nearest neighbors.

TABLE 13 ANOVA table for the Minimization Results for Different Values of AD-PO-Guided WOA’s Parameters.

SS DF MS F (DFn, DFd) p-value

Treatment (between columns) 1.505 8 0.1882 F (8, 171) = 1.159 p = 0.03265

Residual (within columns) 27.75 171 0.1623 - -

Total 29.26 179 - - -

TABLE 14 One sample t-test for the Minimization Results for Different Values of AD-PO-Guided WOA’s Parameters.

r1 r2 r3 w1 w2 w3 A C L

One sample t-test

t, df t = 469.2,
df = 19

t = 452.1,
df = 19

t = 567.4,
df = 19

t = 767.3,
df = 19

t = 515.1,
df = 19

t = 445.3,
df = 19

t = 684.1,
df = 19

t = 588.0,
df = 19

t = 531.9,
df = 19

p-value (two tailed) <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001

p-value summary **** **** **** **** **** **** **** **** ****

Significant
(alpha = 0.05)?

Yes Yes Yes Yes Yes Yes Yes Yes Yes

How big is the discrepancy?

Discrepancy 47.92 48.22 48.12 48.11 48.13 47.99 48.11 48.09 47.95

SD of discrepancy 0.4568 0.477 0.3793 0.2804 0.4178 0.4819 0.3145 0.3657 0.4032

SEM of discrepancy 0.1021 0.1067 0.08482 0.0627 0.09343 0.1078 0.07033 0.08178 0.09016

95% confidence
interval

47.71 to 48.13 48.00 to 48.44 47.95 to 48.30 47.97 to 48.24 47.93 to 48.32 47.76 to 48.21 47.97 to 48.26 47.92 to 48.26 47.76 to
48.14

R squared (partial eta
squared)

0.9999 0.9999 0.9999 1 0.9999 0.9999 1 0.9999 0.9999

TABLE 12 Statistical analysis for the minimization results for different values of AD-PO-guided WOA’s parameters.

r1 r2 r3 w1 w2 w3 A C L

Number of values 20 20 20 20 20 20 20 20 20

Minimum 47.35 47.38 47.38 47.5 47.32 47.36 47.44 47.59 47.34

25% Percentile 47.58 47.84 47.86 47.86 47.76 47.57 47.99 47.75 47.56

Median 47.77 48.29 48.22 48.1 48.22 47.91 48.14 48.02 48.01

75% Percentile 48.45 48.7 48.39 48.33 48.36 48.39 48.28 48.42 48.34

Maximum 48.68 48.75 48.63 48.65 48.7 48.73 48.73 48.78 48.52

Range 1.336 1.368 1.247 1.156 1.379 1.362 1.287 1.186 1.174

Mean 47.92 48.22 48.12 48.11 48.13 47.99 48.11 48.09 47.95

Std. Deviation 0.4568 0.477 0.3793 0.2804 0.4178 0.4819 0.3145 0.3657 0.4032

Std. Error of Mean 0.1021 0.1067 0.08482 0.0627 0.09343 0.1078 0.07033 0.08178 0.09016

Sum 958.4 964.4 962.5 962.1 962.5 959.7 962.3 961.8 959.1
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The Decision Tree (DT) classification algorithm stands out as
a versatile and extensively utilized supervised machine learning
approach, catering to both classification and regression tasks
(Priyam et al., 2013). DT adopts a hierarchical structure
resembling a tree. Each internal node serves as a decision
point based on a feature, branches represent outcomes, and
leaf nodes denote the final class or predicted value. At each
decision node, the algorithm assesses a feature and makes
decisions using criteria like Gini impurity or information gain.
This process iterates until a specified stopping condition is met.
The choice of criteria for splitting nodes is pivotal, with common
measures including Gini impurity for classification tasks and
mean squared error for regression tasks. The objective is to
maximize homogeneity within nodes (Patel and Prajapati,
2018). DT provides a metric for feature importance,
highlighting features that significantly reduce impurity or
variance as more influential in decision-making. To address
overfitting and the capture of noise in training data, DT
undergoes pruning, involving the removal of branches that
contribute little predictive power, fostering a more generalized
model (Li and Belford, 2002). A key strength of DT lies in its
interpretability. The resulting tree structure offers a clear
understanding of the decision-making process. DT exhibits
flexibility in handling both categorical and numerical data,
employing distinct splitting strategies for each data type.

These methodologies aim to leverage the unique strengths of
various individual base models in building a predictive model. This
concept can be implemented through diverse means, with notable
strategies encompassing the resampling of the training set, the
exploration of alternative prediction methods, or the adjustment
of parameters in specific predictive techniques. In the end, the
results from each prediction are combined through an ensemble
of approaches.

3.3 Forecasting models

Forecasting models are extremely important in the prognosis of
future trends and patterns from historical data. Here, we discuss four
commonly used forecasting models including Baseline,
autoregressive integrated moving averages (ARIMA), seasonal
ARIMA (SARIMA), and long short-term memory (LSTM)
networks. The Baseline model acts as a basic reference to
compare with more advanced forecasting approaches. It usually
implies the prediction of future values through the mean or median
interpolation of historical data. Although too primitive, the Baseline
model is used to measure the power of more sophisticated models
and can occasionally give surprisingly accurate predictions to stable
time series data. ARIMA is a widely used time series forecasting
model appreciated for its flexibility and ability to capture temporal
dependencies. ARIMA models are characterized by three
components: First order autoregression (AR (1)), differencing (I
(1)), and first-order moving average (MA (1)). The autocorrelation,
as well as the partial autocorrelation functions of the time series data,
when analyzed by ARIMA models, can help identify and model the
underlying patterns and seasonality, which makes ARIMA models
suitable for a variety of time series forecasting (Hazarika and
Gupta, 2020).

SARIMA (Seasonal ARIMA) adds an ability to ARIMA models
to consider seasonal attributes in the forecasting process. SARIMA
models are especially recommended for time series data that has
seasonal patterns or trends, such as monthly and quarterly data.
Seasonal differencing and seasonal autoregressive and moving
average terms included in SARIMA models enable them to
adequately reflect seasonal fluctuations present in the data and,
therefore, enhance the accuracy of forecasting. LSTM networks are a
type of RNNs that are later developed to model long-term
dependencies in sequential data. LSTM models are good at
capturing difficult temporal patterns and nonlinear relationships
in time series data, which makes them especially suitable for time
series forecasting tasks. Utilizing a chain of connected memory cells,
LSTM models can essentially learn and store patterns across longer
time spans, thus providing precise forecasts despite the presence of
noisy or erratic data. Each forecasting model has its unique
advantages and features that make it feasible for different
forecasting problems and data types. It is important to know the
characteristics and limitations of each model to choose the best
approach for a certain forecasting situation.

4 Materials and scenarios

In this section, the materials and methods employed in two
distinct scenarios of manipulation and tendencies are outlined. In
a classification scenario, the technique that is used to classify data
or groups defined by a set of criteria is explained. This is the step
where you will be concerned with the selection of data mining
algorithms, feature engineering techniques and performance
evaluation metrics. Moreover, in the scenario of forecasting, a
list of forecasting models will be applied, in addition to data
preprocessing and metrics to check forecast accuracy. The aim is
to give particulars about the materials and methods
simultaneously for the group’s classification and forecasting by
providing the full description of the research methodology
applied in this study.

4.1 Classification scenario

4.1.1 Dataset
The dataset used in this paper is available at (Classification

Scenario, 2024). This dataset encompasses the cumulative
precipitation (in millimeters) recorded by PME MET (Presidency
of Meteorology and Environment) stations in Saudi Arabia,
provided by the General Authority for Statistics. The data spans
from 2009 to 2019 for up-to-date information relevant to advancing
research in energy economics. The dataset attributes include region,
which indicates the region in Saudi Arabia where the meteorological
station is located; station, which specifies the meteorological station
within the region; total rainfall, which is observed in millimeters for
each month of the year, rainfall intensity: that is a quantitative
measure of the amount of rainfall, usually in millimeters or inches.
This could be provided as a single value or broken down into
intervals (light, moderate, heavy, etc.); duration is the length of time
over which rainfall occurs, expressed in minutes, hours, or days.
Rainfall type: is the classification of rainfall into categories, such as
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rainy or not rainy, and rainfall distribution represents the
information about how rainfall is distributed over a specific
period, including whether it is continuous or intermittent.

The dataset includes detailed attributes relevant for
classification purposes:

• Total Rainfall (mm): Observed in millimeters for each month
of the year, indicating the cumulative precipitation recorded
by each station.

• Wind Speed: The average wind speed recorded during the
observation period, which can influence rainfall patterns.

• Humidity: The average humidity level recorded, which is a
critical factor in precipitation formation.

• RainTomorrow: A binary indicator (Yes/No) signifying
whether it rained the next day, used for predicting future
rainfall events.

• Month: The specific month of the year when the data was
recorded, helping to identify seasonal patterns.

4.1.2 Data preprocessing
Data preprocessing plays a pivotal role in the machine learning

and metaheuristic process, encompassing activities like cleaning,
transforming, and integrating data to prepare it for analysis
(Khafaga Doaa et al., 2022). The primary objective of data
preprocessing is to enhance the quality of the data and tailor it
to meet the requirements of the data mining task at hand. Data
preprocessing, integral to the data preparation phase, encompasses
various processing activities applied to raw data to ready it for
subsequent processing steps (Alkhammash et al., 2022). Historically,
it has served as a crucial initial stage in the data mining process. In
more contemporary contexts, the methods of data preprocessing
have evolved to cater to the training of machine learning, Artificial
Intelligence (AI) and metaheuristic algorithms, as well as for
executing inferences based on them. Real-world data is frequently
disorderly, generated, processed, and stored by diverse individuals,
business procedures, and applications (Tarek et al., 2023).
Consequently, a dataset might lack specific fields, exhibit manual
input inaccuracies, or include duplicate data, as well as variations in
names denoting the same entity (Khafaga D. et al., 2022). While
humans can typically recognize and address these issues in the data
used for business operations, data employed to train machine
learning, deep learning and metaheuristic algorithms necessitates
automated preprocessing (Alkhammash et al., 2023).

4.1.3 Data analysis
The role played by the total rainfall and accompanied humidity

in Weather phenomena and patterns of precipitation is undeniable.
Figure 3 shows the Correlation heat map of the original dataset to
visualize the patterns between different variables. This is shown in
the figure below. Correlation heatmaps are a means of visualizing the
degree and sign of linear relationship between pairs of variables,
whereby warmer colors indicate stronger positive correlations and
cooler colors stand for stronger negative correlations. This
representation helps in finding the trends and connections in the
data. In addition, it makes the feature selection process easy and
provides opportunities for exploring the data aspects more deeply.
Understanding the associations of various meteorological
parameters and applying them to predict rainfall better helps

researchers include the most significant variables and formulate
classification models of higher efficiency and precision.

4.1.4 Copule analysis
Copula analysis is a statistical method used to model the

dependence structure between multiple random variables. Unlike
traditional correlation measures, which only capture linear
relationships, copulas allow for the characterization of complex
dependencies, including non-linear and tail dependencies (Benali
et al., 2021). Figure 4 illustrates a 3D scatterplot correlation between
humidity and the copula dataset. Copulas represent a class of
statistical techniques to model the interdependencies among
many variables; hence, this picture is essential for understanding
the complicated associations with humidity as well as other climate
factors. Researchers can then exploit this in-depth knowledge of the
dynamics of humidity of this data set. The visualization concerned
helps the investigators in revealing the order and behavior of the
variables, which are hard to detect when only the separate individual
variables are being analyzed. The wind speed could be plotted along
one axis, whereas the two additional variables could be plotted along
the other axes (Bahraoui et al., 2018; Petropoulos et al., 2022). Such a
scatterplot gives a good snapshot of how wind speed interrelates
with their other atmospheric factors.

4.2 Forecasting scenario

4.2.1 Dataset
To analyze the Climatic Research Unit (CRU) data, we utilized

the CRU TS interface integrated into Google Earth. This integration
facilitates renewable energy investment by creating a diversified and
resilient electricity grid. The user interface (UI) provides an intuitive
way to specify study areas and load the required climate data.
Datasets are updated annually, and for this study, we used data
spanning from 1901 to 2020, offering a century-long perspective to
enrich our research.

The CRU TS site (Harris et al., 2014; CRU, 2024) is
straightforward to navigate, allowing easy access to climate data.
Specifically, for our analysis, we extracted data on average monthly
rainfall in Mecca, Saudi Arabia, using the Google Earth Pro
platform. This dataset was instrumental in training our
algorithm, enabling us to develop highly efficient models for
rainfall analysis and prediction.

Combining the strengths of Google Earth Pro with the CRU TS
interface allowed us to explore global climate data and tailor our
analysis to local conditions in Mecca. This approach ensured that
our models were not only accurate but also highly relevant to the
specific climatic patterns of the region.

4.2.2 Data preprocessing
Our analysis will be preceded by the preprocessing of the climate

data that we have retrieved from the CRU TS interface within
Google Earth Pro. The preprocessed data will undergo careful,
meticulous processing. The most crucial task at this point is to
undertake a form of tuning of the data so it can be properly
processed, entailing a high degree of accuracy. First, we
completed a thorough scrubbing procedure by fixing and
squaring any inconsistencies, errors, or missing data. This first
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step was surely the most important one in terms of ensuring the
correctness and reliability of the dataset, which is paramount for our
following analysis. Thereby, a solid basis for our upcoming efforts
will be created. Upon completing cleaning, the normalization
technique was used to standardize the range of values of different
variables so that they could be subjected to a fair comparison with no
scale variations. In the next step, we chose the top features based on
the scores of our features selection process to validate the most
important variables. This helped us focus our data analysis and
reduce the computation complexity without losing important data.
Additionally, spatial and time aggregation methods were used to
compress the dataset, making it more manageable and still capturing
the complex components, broader meaning, and patterns. Another
aspect that we did was careful outlier detection and removal to
increase the dependability of our findings and make the model more
sensible to deviations. While applying elaborate and careful data
preprocessing that involves data cleaning, normalization, feature
selection, spatial and temporal aggregation, and outlier detection, we
achieved data/raw data refinement at the needed level on a quality,
reliability, and suitability basis for subsequent analytical steps.

4.2.3 Data analysis
Figure 5 presents a detailed visualization of the CRU data,

showcasing three key components: the residual, seasonality, and
trend. The plot represents a term interpretation of the time series
embedded in the data, bringing to light many important facts, such as
trends and patterns that happen over time. The residual quantity aimed
at insinuating a component of variation in the data that cannot be due
to seasonal and trend-related causes is critical in the process of
conditioning and identification of outliers and irregularities. Also,
the seasonality component reveals reoccurring patterns or
fluctuations that happen periodically (i.e., annually or monthly).
Therefore, there is an ability to perceive clear trends such as annual
temperature fluctuation or monthly rainfall patterns. The last part,
which is the trend component, portrays the long-run trajectory or
directionality of the data and therefore, one can easily identify the trend,
such as temperature increase or slope decline. In other words, the whole
battery of basic information provided by the CRU data allows
researchers to detect hidden patterns, trends, etc. and improve their
knowledge about climate variability and change.

5 Experimental results

This section presents the experimental results obtained which is
divided into two main categories based on classification-scenario
outcomes and forecasting-scenario outcomes. In the classification
scenario, different algorithms are evaluated in their ability to classify
data into predefined classes. In the forecasting scenario, however, the
performance of forecasting models is analyzed as to their capacity of
prediction based on history of the tested data. A comprehensive
analysis of the results from both scenarios provides crucial
information on the effectiveness of the methodologies proposed
in this work and their impact on real-life situations. By conducting
an in-depth analysis of the experimental results, this research aims to
find some useful implications about the strengths and limitations of
the classification algorithms and forecasting models, which would
help move forward the data-driven analysis and prediction.

5.1 Classification scenario results

In the classification scenario, several machine learning
algorithms were assessed for their effectiveness in categorizing
data into pre-assigned classes using defined criteria. The
experiments were carried out with different classification
methods. Detailed results of these experiments, which include
metrics like accuracy, precision, recall, and F1-score, were
presented and discussed. Also, the strengths and weaknesses of
each classification algorithm were described, and any interesting
findings or matters learned from the experiments were outlined.

5.1.1 Classification results
The aim idea is to assess the effectiveness of the suggested voting

optimizer, specifically the AD-PO-Guided WOA algorithm, in
enhancing the classification accuracy of rainfall. To substantiate
the superiority of the proposed algorithms statistically, Wilcoxon’s
rank-sum test and descriptive statistics are conducted. The dataset is
randomly divided into training (80%), and testing (20%) sets for
experimentation. The initial experiment displays the outcomes for
RF, XGBoost, KNN, and DT employed as individual classifiers, as
outlined in Table 2. The classifier performances are delineated across
data preprocessing. Table 2 highlights that the RF, and XG Boost
classifiers achieved the highest accuracy, sensitivity, specificity, PPV,
NPV, and F-score. The outcomes for comparing the proposed voting
algorithm against other voting algorithms utilizing PSO, AD-PO-
GuidedWOA,WOA, GreyWolf Optimization (GWO), and Genetic
Algorithm (GA) are presented in Table 3. The results indicate that
the AD-PO-Guided WOA algorithm, with an accuracy of 0.95993,
surpasses the performance of PSO (accuracy = 0.94,642), voting
Guided WOA (accuracy = 0.93829), voting WOA (accuracy =
0.92637), GWO (accuracy = 0.91476), and GA (accuracy =
0.90,793). The AD-PO-Guided WOA algorithm gives competitive
results with sensitivity of (0.9842519), specificity of (0.86956521),
PPV of (0.92592592), NPV of (0.970873786), and F-score of
(0.954198) compared to other voting algorithms.

Table 4 provides a comprehensive overview of the descriptive
statistics for the showcased optimizing ensemble algorithm in
comparison to alternative algorithms. The analysis using
Wilcoxon’s rank-sum test (Breidablik et al., 2020; Khadartsev
et al., 2021), as outlined in Table 5, aims to discern any
noteworthy differences in the results among the models. A
p-value below 0.05 signifies substantial superiority. The findings
not only highlight the superior performance of the AD-PO-Guided
WOA algorithm but also emphasize the statistical significance of the
algorithm itself.

Figure 6 illustrates the AD-PO-Guided WOA algorithm, based
on the objective function, in comparison with various other
algorithms.

5.2 Forecasting scenario results

In the forecasting scenario, predictive accuracy was checked
about various forecasting models in the prediction of future trends
or outcomes from utilized historical data. The experiments were
performed using different forecasting methods, including ARIMA,
seasonal ARIMA (SARIMA), and LSTM networks. The findings of
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these experiments, which include mean absolute error, root mean
squared error, and other related measures, were further elaborated
and discussed. In addition, the performance of each of the
forecasting models was compared, and the factors influencing
their predictive accuracy were examined.

5.2.1 Forecasting results
The results of the comparison of the forecast models are

presented in Table 6, in which baseline, ARIMA, SARIMA,
LSTM, and AD-PO-Guided WOA-LSTM are included. The table
contains some performance measures such as MSE, RMSE, MAE,
MBE, r, R2, RRMSE, NSE, and WI. They provide measures of the
accuracy, precision, and reliability of each forecasting model in the
prediction of future trends and patterns as per past data. Through
performance comparison of these models across these metrics,
researchers can evaluate the advantages and disadvantages of
each approach and choose the best model for their specific
forecasting application. Moreover, the outcomes emphasize the
benefits of using cutting-edge approaches like AD-PO-Guided
WOS-LSTM that outperform in practically all measures, showing
lower MSE, RMSE, and MAE, as well as higher r, R2, and NSE. That
implies its efficiency in precise prediction.

Figure 7 demonstrates the residual plot of the model and,
hence, hints at the deviations between expected and observed
values. Residuals are an index to measure the difference between
the true values and the values predicted by the model. The
residual plot is a powerful tool for the model assessment that
shows if data contain any regression pattern, which indicates its
predictive power. In the case of an ideal scenario, the residuals
should be just scattered around zero, and that proves that the
model does not have any bias and its prediction is compelling and
precise. However, the residuals’ memory may suggest that our
model might be lacking some important features or may not
include all the features of the data. By these test plots, model
makers can know how good the model is and where the
smoothing is done in order to improve.

Figure 8 displays the forecasting and genuine rainfall inMecca to
get a real picture of the forecasting and the measurement values.
This plot demonstrates the model’s performance in terms of
precision and reliability in generating forecasts of rainfall
patterns in the coming years. Points or markers usually represent
the historical data, and lines or curves represent the forecasts.

Figure 9 represents the simulation and forecasting of LSTM
rainfall inMecca through the graphical explanations of the model, as
the performance is delivered by the Long Short-Term Memory
(LSTM) model on predicting the trends of rainfall. This kind of
graphic is mostly preferred to display the Rainfall values for both
observed and LSTM model forecast predictions so that a direct
comparison between the two can be easily made. Obtained values
become data points or markers, whereas the predicted values, which
are more likely to be represented as a line or curve, are shown as a
continuous line or curve.

5.2.2 Forecasting results analysis
Figure 10 represents a heatmap comparing the AD-PO-Guided

WOA-LSTM model with others and gives visual insights into their
performances varying by different metrics. The heatmap is an
effective tool to track performance patterns and trends as the

color gradient is used to ascertain varying levels of model
performance across all the measures. Figure 11 displays a parallel
plot representing how the AD-PO-Guided WOA-LSTM model
beats the other models. A peculiarity of this plot is the ability to
conduct a detailed comparative study of several models
simultaneously with respect to several performance criteria
concurrently. Every line represents a different type of model, and
the plots on the axes represent their performance on each metric,
therefore enabling us to make quick comparisons and spot the areas
of strength and weakness. Figure 12 depicts a radar plot that shows
the performance metrics of the AD-PO Guided WOA-LSTMmodel
alongside the other models.

6 Sensitivity analysis

The convergence time (Pal et al., 2020; Chen et al., 2021) results
for different parameter values of the AD-PO-Guided WOA
algorithm are presented in Table 7. Through the exploration of
various parameter combinations, researchers can determine the best
settings that minimize the convergence time and yet maintain
acceptable performance. This table contains useful information
on the relationship between the parameter settings and the
convergence time, thus contributing to the optimization of the
algorithm performance.

• Parameter Sensitivity: Parameters like r1, w1, and A
significantly impact convergence time. Lower values
generally lead to faster convergence.

• Optimal Settings: Optimal settings for minimizing
convergence time are r1 = 0.1, w1 = 0.1, and A = 0.1.

Table 8 provides a statistical analysis of the convergence time
results, listing measures of minimum, maximum, mean, standard
deviation, and confidence intervals. This work gives a more detailed
insight into the distribution and variation of convergence times
under various parameter settings. One of the most important tasks
of statistical metrics is to provide researchers with indications of the
regularity and stability of such estimates that allow making adequate
decisions in the optimization of the algorithms.

• Consistency: The mean convergence time is 5.072 s with a
standard deviation of 0.9194 s.

• Confidence Interval: The 95% confidence interval ranges
from 4.642 to 5.502 s, indicating reliable estimates.

In Table 9, an ANOVA test (Djaafari et al., 2022) is used to
determine whether the differences in convergence times based on
changes in the parameter values are significant. This type of
statistical analysis aids in ascertaining if some parameter setting
is significantly delaying the convergence time. With the analysis of
ANOVA results, the researchers can easily see the influential
parameters.

Table 10 conducts a one-sample t-test (Abualigah and Ali, 2020;
Muhammed Al-Kassab, 2022; Vankelecom et al., 2024) to compare
convergence times to a theoretical mean of zero. This statistical
analysis examines the statistical significance and size of differences
in observed and anticipated convergence times. Through t-tests, the
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reliability of estimates of convergence time can be tested under
different parameter settings and causes of variability or bias in the
optimization process can be identified.

Minimization results are encapsulated in Table 11 for the AD-
PO-GuidedWOA algorithm at different parameter values. Analogy-
based comparison and parameter-based comparison among
different parameter combinations of the researchers to give the
effectiveness of the algorithm in minimizing objective functions or
fitness values. This table provides important information on the
relationship between parameter settings and the level of depreciation
achieved that helps in directing additional optimization attempts.

Table 12 provides a statistical summary of minimization results,
comprising minimum, maximum, mean, standard deviation, and
confidence intervals. This analysis gives an overall view of the
distribution and variation of minimization outcomes under
various parameter settings. Through these statistical measures,
the consistency and dependability of minimization estimates can
be evaluated, thus enabling well-informed decision-making in
algorithm optimization.

Table 13 performs an ANOVA test to assess whether the
differences in minimization outcomes are statistically significant
due to variations in parameter values. This statistical analysis is
endorsed to identify which parameter settings have an important
influence on the level of minimization reached. Relating to the
ANOVA results, the researchers can prioritize the efforts of
optimization of parameters that influence the algorithm’s effect
in the minimization of the objective functions or fitness values.

Table 14 conducts one-sample t-tests to compare minimization
outcomes with a theoretical mean of zero. This statistical analysis
tests the statistical significance and the size of the differences
between observed and expected minimization levels. Through
conducting t-tests for each parameter setting, researchers can
check the reliability of minimization estimates and also recognize
potential sources of variability or bias in the optimization process.
These results help in a better understanding of the performance of
the algorithm and support the optimization efforts in the future.

Sensitivity analysis confirms the robustness of the AD-PO-
Guided WOA algorithm. Optimal parameter tuning ensures
quick convergence and effective minimization, highlighting the
importance of sensitivity analysis in optimizing algorithm
performance.

7 Discussion

This current study will further highlight the combined feature of
the Adaptive Dynamic Puma Optimizer (AD-PO) and Guided
Whale Optimization Algorithm to investigate the performance of
the optimized model proposed for the classification and forecasting
of rainfall. The performance of the algorithm has been further
evaluated in comparison with several existing documented
methods present in the literature.

In the classification task, our algorithm of AD-PO-Guided
WOA achieved excellent accuracy of 95.99%, significantly
outperforming traditional classifiers like Random Forest (RF;
87.14%), Extreme Gradient Boosting (XGBoost; 83.95%),
K-Nearest Neighbor (KNN; 82.38%), and Decision Tree (DT;
81.08%). The statistical significance of our algorithm’s

performance was further proved by Wilcoxon’s rank-sum test to
have a significant improvement over the others, holding a
p-value of <0.05.

Conclusively, the MSE of the AD-PO-guided WOA-LSTM
model in rainfall prediction was noticeably improved at
0.005078 compared to the baselines of ARIMA, at 0.02425,
SARIMA, at 0.012407, and standard LSTM, at 0.013976. This
corroborates a high predictive accuracy of our integrated method.

It is to be compared with some of the existing works like the
AdaBoost algorithm with One versus All (OvA) SVM by Belghit
et al., 2023, and several Neural Networks architectures by Barrera-
Animas et al., 2022 which, apart from offering better accuracy
satisfactorily, show far more robustness and reliability in
conditions that constantly change. The intensive sensitivity
studies and the results of Wilcoxon’s rank-sum test further
confirm this inherent variability in the rainfall data. In general,
the proposed AD-PO-Guided WOA algorithm enhanced the
classification and forecasting accuracy of the rainfall, being useful
for environmental and resource management applications. The
improvement of the applicability of the model may also be
increased in future work by incorporating more meteorological
variables and broadening the geographical area using more
rainfall gauge data.

8 Conclusion

Rainfall classification entails the systematic categorization and
examination of different types of rainfall based on factors such as
intensity, duration, distribution, and the associated meteorological
conditions. Understanding these rainfall patterns and classifications
is crucial across a spectrum of applications, including agriculture,
water resource management, weather forecasting, and climate
studies. The analysis of diverse aspects of rainfall aids in making
well-informed decisions in areas like agricultural planning, efficient
water resource utilization, precise weather predictions, and a deeper
comprehension of climate-related phenomena. The potential of
machine learning and metaheuristic algorithms becomes evident
in their capacity to effectively address and overcome the challenges
associated with rainfall classification. The paper introduces a novel
algorithm named Adaptive Dynamic Puma Optimizer (AD-PO),
which has been enhanced with the integration of the Guided Whale
Optimization Algorithm (Guided WOA) for the specific purpose of
rainfall classification. In the methodology, the dataset undergoes
training using five distinct classifiers: Random Forest (RF), Extreme
Gradient Boosting (XG Boost), K-Nearest Neighbor (KNN), and
Decision Tree (DT). Subsequently, the proposed voting ensemble,
the AD-PO-Guided WOA algorithm, consolidates predictions from
these classifiers, employing a voting mechanism to select the
predominant class. The effectiveness of the suggested AD-PO-
Guided WOA algorithm is validated through a comparative
analysis with other commonly utilized optimization algorithms
documented in recent literature. Notably, the proposed voting
algorithm exhibits superior performance metrics, achieving an
accuracy of 94.11%, surpassing other voting classifiers. To
validate the robustness of the proposed algorithms, rigorous
assessments are conducted using statistical tests, including the
Wilcoxon rank-sum test, along with detailed descriptive statistics.
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9 Future work

For the future work in the context of rainfall classification and
algorithmic advancement, there exist numerous pathways for
prospective research and enhancements:

1. Optimization Refinement: Further refining the
parameters of the proposed AD-PO-Guided
WOA algorithm is imperative for enhancing its overall
efficacy. Exploring additional metaheuristic
techniques or amalgamating diverse algorithms has the
potential to expedite convergence and augment
classification accuracy.

2. Incorporation of Novel Features: Enriching the algorithm’s
capabilities by integrating novel meteorological features or
alternative data sources is a promising avenue. Adapting the
algorithm to evolving meteorological conditions, especially in
the context of climate change, is essential for its
continued relevance.

3. Real-Time Adaptation: Adapting the algorithm for real-time
applications, particularly in domains with time-sensitive
requirements like weather forecasting, is paramount. This
necessitates optimizing the algorithm for efficiency and
scalability to handle substantial datasets and provide timely
predictions.

4. Comprehensive Robustness Testing: Undertaking thorough
robustness testing across various conditions, including extreme
weather events and diverse geographical regions, is pivotal.
Such testing offers insights into the algorithm’s reliability and
generalizability, ensuring its applicability in diverse real-
world scenarios.

5. Enhanced Explainability and Interpretability: The
development of methodologies to interpret and elucidate
the decision-making process of the algorithm is
advantageous, especially in applications where
transparency and interpretability are crucial. A clear
understanding of the algorithm’s reasoning behind
specific classifications can foster trust and facilitate
broader adoption.

6. Diversification into Other Domains: Investigating the
adaptability of the AD-PO-Guided WOA algorithm beyond
rainfall classification is worthwhile. Evaluating its performance
in various fields such as environmental monitoring, ecological
studies, or any domain with analogous classification challenges
can uncover its versatility.

7. Collaboration with Subject Matter Experts: Engaging in
collaborations with experts in meteorology, hydrology, and
related domains can offer valuable insights and domain-
specific knowledge. Integrating this expertise into the

algorithm’s development process can contribute to the
creation of more accurate and contextually relevant models.

8. Regular Benchmarking against Leading Models:
Consistently benchmarking the algorithm against the latest
state-of-the-art models is vital for assessing its competitiveness.
Staying abreast of advancements in machine learning and
optimization techniques will serve as a guide for future
enhancements.
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