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Introduction: Traditional statistical methods cannot find quantitative relationship
from environmental data.

Methods: We selected gene expression programming (GEP) to study the
relationship between pollutant gas and PM2.5 (PM10). They were used to
construct the relationship between pollutant gas and PM2.5 (PM10) with
environmental monitoring data of Xi’an, China. GEP could construct a formula
to express the relationship between pollutant gas and PM2.5 (PM10), which is more
explainable. Back Propagation neural networks (BPNN) was used as the baseline
method. Relevant data from January 1st 2021 to April 26th 2021were used to train
and validate the performance of the models from GEP and BPNN.

Results: After the models of GEP and BPNN constructed, coefficient of
determination and RMSE (Root Mean Squared Error) are used to evaluate the
fitting degree andmeasure the effect power of pollutant gas on PM2.5 (PM10). GEP
achieved RMSE of [8.7365–14.6438] for PM2.5; RMSE of [13.2739–45.8769] for
PM10, and BP neural networks achieved average RMSE of [13.8741–34.7682] for
PM2.5; RMSE of [29.7327–52.8653] for PM10. Additionally, experimental results
show that the influence power of pollutant gas on PM2.5 (PM10) situates between
−0.0704 and 0.6359 (between −0.3231 and 0.2242), and the formulas are
obtained with GEP so that further analysis become possible. Then linear
regression was employed to study which pollutant gas is more relevant to
PM2.5 (PM10), the result demonstrates CO (SO2, NO2) are more related to
PM2.5 (PM10).

Discussion: The formulas produced by GEP can also provide a direct relationship
between pollutant gas and PM2.5 (PM10). Besides, GEP could model the trend of
PM2.5 and PM10 (increase and decrease). All results show that GEP can be applied
smoothly in environmental modelling.
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Introduction

PM (particulate matter) has become a dangerous threat for the
health of human beings (Nel, 2005; Sun et al., 2013; Apte et al., 2015;
Bossmann et al., 2016). PM2.5 or PM10 are particles with a diameter less
than 2.5 µm or 10 µm (Francesca Dominici et al., 2014; Pui et al., 2014)
(Ostro et al., 2006; Ma et al., 2011), which have adverse health effects on
respiratory health and cause more complications. The formation
mechanism and process for PM2.5 or PM10 are pretty complex.
Major sources of PM2.5 and PM10 include natural sources (plant
division and spore, soil dust, sea salt, forest fire, volcano eruption
and so on) and artificial sources (combustion of fuel, emission of
industrial production process, and emission of transportation and so
on); all these can be divided into disposable particles (particles that are
emitted from the emission source directly) and secondary particles
(particles that are released from the chemical reaction of emission and
composition of the atmosphere). They mainly consist of water-soluble
ions, particulate organic matter, and trace elements. Gautam et al.
(2016) considers that NO2, SO2, CO, and O3 are the main gaseous
materials which can influence the concentrations of PM2.5 and PM10

under certain environmental conditions, so finding the association
between pollutant gases and PM2.5 (PM10) is of importance.

Because of the adverse effects caused by PM2.5 and PM10 in many
aspects, they are hot topics for research. Although many research
studies have made plenty of achievements, the main research
method is regression, time-series regression, or some existing
mathematical models. In addition, the models adopted in some
research studies can only produce qualitative results without direct
interoperability (shown as a formula), whereas the current research
adopts gene expression programing (GEP), which can effectively avoid
the subjectivity of the empirical model and obtain quantitative results.
We focused on modeling the relationship between PM2.5 (PM10) and
pollutant gases. There are totally five types of pollutant gases, namely,
SO2, NO2, CO, average concentration of ozone in 1 hour, and average
concentration of ozone in 8 hours. We collected relevant data from
Xi’an, Shaanxi province in China, which is seriously threatened by PM,
and then applied GEP to complete this task. The back propagation
neural network (BPNN)was used as the baselinemethod. Experimental
results indicate that the average influence power of pollutant gases on
PM2.5 (PM10) ranges from -0.0704 to 0.6359 (from -0.3231 to 0.2242),
and at the same time, PM2.5 is more seriously affected by pollutant gases
than PM10. Furthermore, the formulas obtained byGEP can portray the
relationship and evolution law between pollutant gases and PM2.5

(PM10), and these results can be applied to predict the
concentrations of PM2.5 and PM10. Furthermore, these formulas can
provide more conclusions about this problem with the assistance of
mathematical analysis, such as the effect of weather or season on PM2.5

(PM10), and even the above methods can be applied in this field for
other perspectives. Finally, linear regression was used to study which
pollutant gas more seriously influences the concentrations of PM2.5 and
PM10. Experimental results show that different pollutant gases affect
PM2.5 and PM10 concentrations with varying degrees, especially CO and
SO2 contribute to PM2.5 more and NO2 is more relevant to PM10

overall. More data, including more abundant information, need to be
employed to build a more generalized model that can help researchers
control air pollutants and study the change of PM2.5 (PM10).
Experimental results show that GEP can be used in environmental
modeling to uncover essential laws hidden in environmental data.

Methods

GEP

Gene expression programing (GEP) was proposed by a
Portuguese scholar, Candida, in 2001 on the basis of genetic
algorithms (GA) and genetic programing (GP) (Ferreira, 2001a).
GEP adopts a dual structure (genotype and phenotype), which
retains the advantages of GA and GP, while at the same time
avoiding their shortcomings. GEP has many advantages, such as a
concise algorithm flow, as shown in Figure 1A, simple
implementation, high precision, and exceptional performance
in complex function finding problems with large amounts of data
(Özcan, 2012; Mostafa and El-Masry, 2016). GEP uses computers
to create a virtual creature population that consists of some
chromosomes to simulate the genetic and evolution processes
of creatures that can be carried out with a series of simulation
genetic operations (e.g., cross-over, mutation, and selection as
the fitness) during multi-generation iterations to guarantee that
the virtual population evolves to the global optima. Cross-over,
mutation, and selection simulate the reproduction, mutation, and
natural selection processes. GEP has an ingenious individual
encoding method, which is uncomplicated and makes
subsequent genetic operations convenient to implement. It
then applies the outstanding computing performance of
computers to iteratively calculate and obtain an optimal
function model. GEP has been fully applied in many fields,
such as human body mechanics (Yang et al., 2016), water
conservancy (Azamathulla, 2012) robotics (Wu et al., 2013),
and agriculture (Yassin et al., 2016).

As the inheritance and expansion of GA and GP, GEP
integrates the advantages of both and has a more powerful
ability to solve problems. The GEP algorithm can be defined
as a nine-meta group: GEP � C, E, P0, M,φ, Γ,Φ,Π,Τ{ }, where C
is the individual’s coding means; E is the individual’s fitness
evaluating function; P0 is the initial population; M is the size of
the population; φ is the selection operator; Γ is the crossover
operator; Φ is the point mutation operator; Π is the string
mutation operator; and Τ is the termination condition. In
GEP, each individual is also known as a chromosome, which
is formed by genes that are linked together by the link operator.
The gene is a linear symbol string which is composed of a head
and a tail. The head involves the variables that come from the
variable set (in this problem, the variable set represents the five
types of pollutant gases) and the functions that come from the
function set, which can be set ahead, but the tail only contains
the variables that come from the variable set. The relationship
between the length of the head (h) and the length of the tail (t) is
expressed as t � h*(n − 1) + 1, where n is the maximum number
of parameters of each function in the function set. Each
individual (chromosome) in the population could be
expressed as a formula (e.g., Figure 1B shows a formula�������������(a − b)*(c + d)√

), and the population could evolve according
to the fitness evaluation function via genetic operations (Γ,Φ,Π).
The genetic operations include point mutation, string mutation,
and recombination. The rules of point mutation are as follows
(shown in Figure 1C): the first element in the head could only be
mutated to be a function in the function set, the other elements
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in the head could be mutated to be a function in the function set
or a variable in the variable set, and the elements in the tail could
only be mutated to be a variable in the variable set. The rule of
string mutation is as follows: a substring in a gene is replaced by
a substring in another gene within a chromosome, including
insertion sequence transposition, root transposition, and gene
transposition (Figure 1D). The rule of recombination is as
follows: the same positions of two chromosomes are
exchanged, including single-point recombination, two-point
recombination, and gene combination (Figure 1E). The
selection operation is roulette wheel sampling, which means
the chromosome showing better fitness could be selected with a
higher probability and the chromosome showing worse fitness
could be selected with a lower probability. This could improve
the population diversity, which is good for evolutionary
computation (Ferreira, 2001b). For the problem given in this
study, the result from GEP is probably a function
f(x1, x2, x3, x4, x5) � tan(x1) + |x2| + log2(x3/x5) + x4/2 which

can perfectly demonstrate the relationship between the
concentration of PM2.5 (PM10) and the concentrations of five
types of pollutant gases (x1, x2, x3, x4, and x5) globally.

BP neural network

The BP neural network (Liu et al., 2015), whose structure is
shown in Figure 2, is a commonly used artificial network
architecture. The BP neural network makes use of fully
connected neurons to form a feedforward network and then
adjusts the weights of each pair of connections and the biased
value of each neuron with a gradient descent algorithm that is
based on the chain law of derivatives.

Given the training dataset [x1, d1; ...xi, di; ...;xn, dn], where xi

and di are the independent variable vector and dependent
variable vector, respectively. There are two procedures in the
training process of the BP neural network: first, the output of the

FIGURE 1
Details of GEP. (A) Flowchart of GEP for constructing the relationship between pollutant gases and PM2.5 (PM10). (B) The tree architecture of a gene.
(C) The mutation operation: we show this operation in terms of a gene, and the green element is mutated to be the red ones. (D) String mutation: the
green substring is mutated to be the red substring; here, we only show the insertion sequence transposition. (E) Recombination: the green substring and
the red substring exchanged; here, we only show the single-point recombination.
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kth neuron in the output layer is shown in Eq. 1, where wij, wjk
′ ,

bj, b′k, and f(·) are the weights between the ith input
neuron and the jth hidden neuron, the weight between the
jth hidden neuron and the kth output neuron, the biased value
of the jth hidden neuron, the biased value of the kth output

neuron, and the activation function of the hidden layer,
respectively; second, the weights are adjusted according to
Eq. 3, which originates from the chain rule and error function
e, which is shown in Eq. 2, where δk � dk − outputk. These two
procedures are repeated until the error function converges.
In this research, the input and the output of the neural
network which is applied to obtain an approximate numerical
regression model depicting the association between five types
of pollutant gases and PM2.5 (PM10) are the concentrations of
five types of pollutant gases and the concentration of
PM2.5 (PM10).

outputk � ∑
k

wjk
′ f ∑

j

wij · xi + bj⎛⎝ ⎞⎠ + b′k, (1)

e � 1
2
∑n
i�1

di − outputi( )2, (2)

Δwjk
′ � −η ∂e

∂wjk
′ � η dk − outputk( )f′ netk( )

Δwij � −η ∂e
∂wij

� η ∑L
k�1

δkwjk
′⎛⎝ ⎞⎠f′ netj( )

, (3)

where η is the learning rate which is set in advance.
Because the neural network can fit any nonlinear function
with enough neurons, it has been widely applied in many
fields, such as energy (Yu and Xu, 2014), safety (Wang L. et al.,
2015; Wang Y. et al., 2015), and material science (Zhou
et al., 2015).

FIGURE 2
Architecture of the BP neural network.

FIGURE 3
Probable locations of five monitoring sites.
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Linear regression

Similar to the BP neural network, linear regression (Frank et al.,
2015) is also employed to find a linear expression that portrays the
relationship between independent variables and dependent variables
and is expressed as Eq. 4. It adopts least squares as the objective
function to minimize the error function, which is the same as the
function in the BP neural network. The coefficients of each
independent variable can reflect the relevance and the degree of
correlation with dependent variables. As a basic data mining and
intelligence information processing technique, many achievements
have been made with it, such as energy (Kicsiny, 2014; Wang et al.,
2016) and mechanism (Tosun et al., 2016).

F � a0 + a1*x1 + ... + an*xn, (4)
where x1 − xn stands for the independent variables (the
concentrations of CO, SO2, NO2, O3 within 1 hour, and O3

within 8 hours); F refers to dependent variables (the
concentrations of PM2.5 or PM10). In the present study, n =
5 means five types of pollutant gases.

Results

Dataset

Xi’an, which is located in northwestern China, is badly affected
by PM, and we chose the samples from Xi’an as the research
material. Each sample consists of the concentrations of CO, SO2,

NO2, PM2.5, PM10, and the average concentrations of O3 (Jerrett
et al., 2009) in 1 hour or 8 hours. The dataset is collected from the
environmental website of Xi’an city1 (from 1 January 2021 to
26 April 2021), where the data are obtained from
13 monitoring sites. We selected six groups of datasets
collected at five monitoring sites uniformly distributed in
Xi’an and an overall average dataset of the whole city. The
approximate locations of five monitoring sites are shown as
Figure 3. Moreover, the incomplete samples with missing
value(s) are deleted to facilitate study. For each site, three-
fourth entries were used to train and one-fourth entries were
randomly used to validate the model. For sites 1, 2, 3, 4, 5, and the
average value of the whole city, there are 96, 104, 76, 100, 88, and
116 entries, respectively. The inputs are five types of pollutant
gases (CO, SO2, average concentration of O3 in 8 hours, NO2, and
average concentration of O3 in 1 hour), and the output is the
concentration of PM2.5 (PM10).

Fitting degree evaluation function

In statistics, the coefficient of determination 1 − SSE/SST
(Kumar et al., 2020) is usually used to assess the relevance degree
between two groups of data, where SSE and SST is shown as
Equations 5, 6

TABLE 1 Fitting degrees of GEP and BP neural network with testing data.

GEP

Dataset PM2.5 PM10

Maximum Minimum Mean Maximum Minimum Mean

Monitoring site 1 0.8152 0.3391 0.6359 0.5071 -0.4984 0.2242

Monitoring site 2 0.6406 0.0571 0.4158 0.3453 -0.5467 0.1335

Monitoring site 3 0.5020 -0.2149 0.2091 0.2539 -0.8229 -0.0238

Monitoring site 4 0.6283 -0.1999 0.2711 0.6798 -1.2659 -0.3231

Monitoring site 5 0.6146 0.0902 0.3510 0.4878 -0.2479 0.1152

Average value of whole city 0.6918 -0.0196 0.4280 0.3769 -0.3912 0.1277

BP neural network

Dataset PM2.5 PM10

Maximum Minimum Mean Maximum Minimum Mean

Monitoring site 1 0.4072 -0.0139 0.1979 0.3919 -0.0730 0.1989

Monitoring site 2 0.3897 -0.6140 -0.0285 0.2923 -0.2153 0.0262

Monitoring site 3 0.2128 -0.2436 0.0462 0.3928 -0.9429 -0.0925

Monitoring site 4 0.3163 -0.0504 0.0825 0.2032 -0.7365 -0.1105

Monitoring site 5 0.2827 -0.6901 -0.0704 0.4892 -2.4323 -0.2090

Average value of whole city 0.5796 -0.5143 0.1075 0.2550 -0.2479 -0.0152

1 https://aqicn.org/city/china/xian/wentiju/cn/
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SSE � ∑m
j�1

yj − ŷj( )2, (5) SST � ∑m
j�1

yj − �y( )2, (6)

FIGURE 4
Fitting curves of PM2.5 (GEP). (Note: (A–F) stand for the fitting curves obtained with datasets collected at monitoring sites 1, 2, 3, 4, 5, and average
value of whole city, respectively). Because the samples are randomly selected for training and validated for repeating ten times, we only show the results
with the best coefficient of determination.
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where yj is the observational value of PM2.5 (PM10) and ŷj is the
computational value, which is computed with formulas obtained
with GEP (models obtained with the BP neural network) and
observation values of five types of pollutant gases. �y is the

average value of y. SSE is the residual sum of squares; SST is the
total sum of squares of deviations. Higher values indicate higher
degrees of model fitting. On the other hand, it can be used to assess
the influence power of pollutant gases on PM2.5 and PM10.

FIGURE 5
Fitting curves of PM2.5 (BP neural network). [Note: (A–F) stand for the fitting curves obtained with datasets collected at monitoring sites 1, 2, 3, 4, 5,
and average value of whole city, respectively]. Because the samples are randomly selected for training and validated for repeating ten times, we only show
the results with the best coefficient of determination.
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Experimental settings and
experimental results

First of all, the GEP (Schmidt and Lipson, 2009) and BP neural
network were used to model the influence of pollutant gases on

PM2.5 and PM10. All the methods were implemented using
MATLAB R2016a on a personal computer with an Intel
2.80 GHz i5 processor and 8G RAM. GEP’s initial step and
genetic operations were randomly implemented as probabilities,
and the weights and biased values of BP neural network were also

FIGURE 6
Fitting curves of PM10 (GEP). [Note: (A–F) stand for the fitting curves obtained with datasets collected at monitoring sites 1, 2, 3, 4, 5, and average value of whole city,
respectively]. Because the samples are randomly selected for training andvalidated for repeating ten times,weonly show the resultwithbest the coefficientof determination.
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randomly initiated. In addition, the relationship between pollutant
gases and PM2.5 (PM10) is not exact. Finally, other factors
contributing to PM2.5 (PM10), such as water-soluble ions, are not
considered. Therefore, these two methods were repeated 10 times,
and each dataset was randomly divided into two parts (three-fourth
samples and one-fourth samples) for training models and validating
the fitting degree of models. Because the current study aims to study
the relationship between pollutant gases and PM2.5 (PM10), which is
not consistent with time-series prediction, we randomly divided the

datasets. Moreover, we hope to construct a more diverse dataset to
observe whether GEP could model the trend of increase or decrease
in PM2.5 and PM10 concentrations. The maximum, minimum, and
mean values of fitting degrees are shown in Table 1 so that the rough
effect power of pollutant gases can be explained clearly. Moreover,
the results with the highest fitting result out of 10 repeated
experiments are shown in Figures 4–7, where the computational
values obtained with the trained model (the function model from
GEP and the network model from the BP neural network) and the

FIGURE 7
Fitting curves of PM10 (BP neural network). [Note: (A–F) stand for the fitting curves obtained with datasets collected at monitoring sites 1, 2, 3, 4, 5,
and average value of whole city, respectively]. Because the samples are randomly selected for training and validated for repeating ten times, we only show
the results with the best coefficient of determination.
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observational values are displayed in Figures 4–7 so that the fitting
degree can be illustrated directly with these figures. The difference
between Figures 4, 5 is obvious, namely, the performance of GEP is
better than that of the BP neural networks. Moreover, GEP and BP
neural networks performed similarly for both PM10 and PM2.5,
indicating that pollutant gases did not contribute much more to
PM10 than PM2.5 (Figure 4 versus Figures 5, 6 versus Figure 7).
Similarly, BP neural networks performed no better than GEP for
modeling the relationship between pollutant gases and PM10.
Although GEP cannot completely fit the concentration of PM2.5

(PM10) with pollutant gases, the trend of PM2.5 (PM10) can be
constructed (i.e., increase or decrease). These formulas can be used
to analyze the hidden laws about PM2.5 and PM10 with mathematical
modeling and help predict concentrations of PM2.5 and PM10.

Discussion

Experimental results show that pollutant gases influence PM2.5

concentrations more seriously than PM10. The results from GEP
show that the average influence power of pollutant gases on PM2.5

ranges from 0.2711 to 0.6359 and the average influence power of
pollutant gases on PM10 ranges from -0.3231 to 0.2242. The results
returned by the BP neural network indicate that the average
influence power of pollutant gases on PM2.5 ranges
from −0.0704 to 0.1979 and the average influence power of
pollutant gases on PM10 ranges from −0.2090 to 0.1989. There
are a variety of mathematical operations and formulas, such as
cosine and sine functions, that could facilitate the fitting between
pollutant gases and PM2.5 (PM10). At the same time, BP neural
networks are easily over-fitting, and their interpretability is not

better than that of GEP. The disadvantage of GEP is that it is
computation-intensive; that is, the modeling process takes
significantly longer than BP neural networks. The performance of
GEP and BP neural networks was also evaluated by RMSE
(Doreswamy et al., 2020), which is shown in Table 2. Concretely,
after GEP and BPNN construct the relationship between pollutant
gases and PM2.5 (PM10), the testing data could be fed into the
model (GEP formula or BPNN model) to obtain the computational
values of PM2.5 (PM10). Then, the computational values could be
compared with observational values to figure out the coefficient of
determination and RMSE. A smaller RMSE indicates better
regression performance, and bigger coefficients of determination
indicate better regression performance. The metrics in Table 2 also
show that pollutant gases are more related with PM2.5 than PM10,
and the performance of GEP is better than that of BP neural
networks. In addition, the formulas with highest fitting degrees
obtained by GEP are shown in Table 3.

Then, linear regression was applied to study which pollutant
gases play more important roles than others in affecting the
concentration of PM2.5 (PM10). The influence power of each type
of pollutant gas on PM2.5 (PM10) can be signified by the coefficients
of each item (each pollutant gas), which are shown in Table 4 in
descending order. Table 4 demonstrates that the pollutant gas which
is more related to PM2.5 (PM10) is different for different monitoring
sites. Compared with the average concentrations of O3 in 1 hour and
8 hours, CO and contribute to PM2.5 more, and NO2 and SO2 are
more relevant to PM10 overall.

Compared with relevant research studies on the prediction of
PM2.5 (PM10) concentrations, we summarized the key
information of different algorithms in Table 5. The current
study did not adopt pre-processing procedures for raw data,
algorithms, or evaluation metrics. The algorithms in the
literature include time-series regression, which applied post-
temporal PM2.5 (PM10) data to predict current PM2.5 (PM10),
and regression, which applied the other factors that influence
PM2.5 (PM10) to model the relationship between them. Artificial
intelligence (AI) can be used to predict the concentration and the
main cause of PM2.5 (PM10) to control the air quality index with
the assistance of social monitoring data (vehicle, social events,
meteorological factors, etc.). Moreover, the early warning for
PM2.5 (PM10) could be used to improve the healthcare conditions
of people. Consistent with the literature (Wang P. et al., 2015;
Song et al., 2015), CO and SO2 are the pollutant gases that are
related most with PM2.5 and PM10. The main sources of CO and
SO2 are automobile exhaust and fossil fuel combustion.
Therefore, we should encourage clean energy for household
and industrial use. Moreover, the dataset is from 1 January to
26 April, which has cold temperatures, so the main reason for
pollution is heating in the winter (the heating season in Xi’an
spans from 15 November to 15 March). Because we only include
the pollutant gas as an independent variable in the model, no
further conclusion comes into being.

Hypothesis and limitations

The present research only considers the effect of pollutant gases
on PM2.5 (PM10); there are many other factors such as

TABLE 2 RMSE for GEP and BP neural networks.

Dataset PM10

RMSE RMSE

Monitoring site 1 8.7365 13.2739

Monitoring site 2 9.0657 14.7867

Monitoring site 3 10.7637 45.8769

Monitoring site 4 12.7653 19.7682

Monitoring site 5 15.8766 23.7681

Average value of the whole city 14.6438 25.6792

Dataset PM10

RMSE RMSE

Monitoring site 1 13.8741 29.7327

Monitoring site 2 14.5346 52.8653

Monitoring site 3 17.8643 49.7824

Monitoring site 4 23.8675 41.8654

Monitoring site 5 34.7682 32.8503

Average value of whole city 21.7357 36.5908
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meteorological factors, human behavior, and chemical reactions that
could be considered together. In addition, GEP is computation-
intensive, requiring a significant amount of time. Moreover, the
modeling methods should be improved, such as deep learning (Li

et al., 2023), and applied to the relevant topics. Although the
interpretability is improved by GEP, the formulas are not
consistent with human thoughts; some novel methods could
also be applied to show a more direct relationship, such as

TABLE 3 Formulas with best fitting degrees using GEP.

PM2.5

Dataset Formula

Monitoring site 1 5*x3 + x5/x1 + 3* tan(sinh(2*x2)) − x4

Monitoring site 2 3*x1 − 3* ln(x3) + max(x2 , abs(−x4)) + max(x2 , abs(x4)) − 9*x4 + abs(−x4)

Monitoring site 3 2* log2 sinh x3( )( ) − x5 + abs − 1/x24 + max sqrt x1( ), x2( )( )( )( ) + 3*x2
− x4 + abs x4 + abs −x2( )( )( ) − x5 + sqrt x5 + log2 x1( )( )( )

Monitoring site 4 −3* log2 exp tan − log2 x3( )( )( )( ) − log2 exp x5( )( )
+ cosh log2 x2( )( ) + cosh 3* log10 x1( )( )

Monitoring site 5 sqrt x1( ) + 3*x3 − 9*max x5 , max x4 , x5( )( )
+3*x1 + sqrt x2( ) + max 3*x4 , x3( )

Average value of the whole city 2*x2 − x5 − max(x4 , x5) − x3 + x3* ln(x1)

PM2.5

Dataset Formula

Monitoring site 1 3* log2(1/x2) + 6*x3 + 1/x2 + 18* log2(1/x3)

Monitoring site 2 (x4/ log10 x4( )2*(abs x2)( )2 + 2x1/ −x1( )( )/2 + abs log10 x2( )( )/x4)2 log10 x2( )( )/x4)2
+3*x2 + log 2 x4( )2* log2 x2( ) − x4( ) + 2*x1/ −x2( )/2

Monitoring site 3 log10 log10 x3( )*x1( )*x5 + max x5 , x2* log10 log10 x3( )*min x1 , x3( )( )( )( )
+x2* log10 log10 x3( )*min x1 , x5( )( ) + 2* log10 max 3*max x4 , x2( ), x25( )( )
* x5 + x1( ) + log10 cosh x1( )( )* −x5( )

Monitoring site 4 x2 − log2 log2 x3( )( ) + x5( )/2( )* log10 x1( ) + log10 x3 + x2( )/2*x1/x2( )
* x1 − x2( ) + abs min tan x5 + x2( )/2( ), x2( )( )* log 2 x3( )
+abs min x1 , x2

1x2( )( )* log2 x2( ) − x2 − x5

Monitoring site 5 1/ x4/ x5/abs x1( )( )( ) + x3 − x1( ) + 2* 1/ x4/ x5/x1( )( ) + x3 − x1( )( )
−4* x2/x1*x5( ) + x4/ x1 − 1( )*x3

Average value of the whole city −2*x3 + 2* cosh sqrt 2*x1( )( ) − x1 − 4*x4
+ cosh log2 x2( )( ) + cosh sqrt ln x3( ) + min x1 , x4( )( )/2( )( )

(Note: x1–x5 refer to SO2, NO2, CO, average concentration of O3 in 1 hour, and average concentration of O3 in 8 hours, respectively).

TABLE 4 Correlation degrees of five pollutant gases with PM2.5 and PM10.

Dataset PM2.5 PM10

Monitoring site 1 CO, SO2, average concentration of O3 in 8 hours, NO2, and average
concentration of O3 in 1 hour

CO, average concentration of O3 in 1 hour, average concentration of O3

in 8 hours, SO2, and NO2

Monitoring site 2 Average concentration of O3 in 8 hours, SO2, CO, NO2, and average
concentration of O3 in 1 hour

SO2, NO2, average concentration of O3 in 8 hours, CO, and average
concentration of O3 in 1 hour

Monitoring site 3 CO, NO2, average concentration of O3 in 1 hour, SO2, and average
concentration of O3 in 8 hours

NO2, CO, average concentration of O3 in 8 hour, SO2, and average
concentration of O3 in 1 hour

Monitoring site 4 SO2, average concentration of O3 in 1 hour, NO2, CO, and average
concentration of O3 in 8 hours

NO2, average concentration of O3 in 1 hour, SO2, CO, and average
concentration of O3 in 8 hour

Monitoring site 5 SO2, CO, NO2, average concentration of O3 in 8 hours, and average
concentration of O3 in 1 hour

NO2, SO2, average concentration of O3 in 8 hours, CO, and average
concentration of O3 in 1 hour

Average value of whole
city

CO, NO2, SO2, average concentration of O3 in 1 hour, and average
concentration of O3 in 8 hours

NO2, SO2, CO, average concentration of O3 in 8 hour, and average
concentration of O3 in 1 hours
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fuzzy cognitive maps (Zhang et al., 2019). Moreover, the
computational resource and data resource requirement (large
datasets covering more factors and more regions) impose
significant burden for practice.

Conclusion

GEP was employed to model the impact of pollutant gases on
concentrations of PM2.5 (PM10); the influence power is measured
with the coefficient of determination. BP neural networks were used

as the baseline method. Experimental results show that the influence
power of pollutant gases on PM2.5 and PM10 is between -0.0704 and
0.6359 and between -0.3231 and 0.2242), respectively. The
performance of the models is also compared with RMSE (root
mean squared error) (Doreswamy et al., 2020). GEP achieved an
RMSE of [8.7365–14.6438] for PM2.5 and the RMSE of
[13.2739–45.8769] for PM10, and BP neural networks achieved
the average RMSE of [13.8741–34.7682] for PM2.5 and the RMSE
of [29.7327–52.8653] for PM10. For the coefficient of determination,
GEP and BPNN achieved mean 0.2091–0.6539 and -0.0704–0.1979
(PM2.5) and mean -0.3231–0.2242 and -0.1105–0.1989 (PM10). GEP

TABLE 5 Key points in relevant research studies.

Reference Pre-processing Data (place) Algorithm Evaluation metrics Result

Prediction of daily mean and 1-h
maximum PM2.5 concentrations
and applications in Central
Mexico using
satellite-based machine-learning
models (Gutiérrez-Avila et al.,
2022)

N.A. Geographical location, date,
meteorological factors, and
satellite data, The height of
the planetary boundary
layer (Mexico)

Extreme gradient boosting
(XGBoost)

Mean absolute
errors (MAE)

3.68

PM2.5 analog forecast and
Kalman filter post-processing for
the community
Multiscale Air Quality (CMAQ)
model (Djalalova et al., 2015)

Outlier value is rejected,
such as PM2.5 > 500 and
the incorrect value

The observational
PM2.5 dataset consists of
716 monitoring sites found
in the AirNow data set.
(United States of America)

Kalman filter post-
processing

MAE and correlation
coefficient

50%–75% and
40%–60%

Forecasting air pollution
particulate matter (PM2.5)

Using machine
learning regression models
(Doreswamy et al., 2020)

Fill missing data Taiwan Air Quality
Monitoring Network
(TAQMN) dataset available
for 76 stations in different
locations: geographical
data, chronological data.
and meteorological data
(Taiwan)

Linear regression and
random forest
Regressor, gradient
boosting regressor,
k-neighbors regressor,
MLP regressor, and
decision tree regressor
(CART)

RMSE, MAE, mean square
error (MSE), and coefficient
of determination (R2)

0.8891, 0.0169
0.1302
0.0380 (best
model)

Machine learning-based model
to estimate PM2.5 concentration
levels in Delhi’s atmosphere
(Kumar et al., 2020)

N.A. Various atmospheric and
surface factors such as wind
speed, atmospheric
temperature
pressure, etc. (Indian)

Extra-trees regressor
algorithm with AdaBoost

MAE, RMSE, and R2 14.79, 25.11,
and 92.96%

An improved deep learning
model for predicting daily PM2.5
concentration (Xiao et al., 2020)

Fill missing data and data
normalization, date one-hot
encoding

Satellite data and
meteorological data (China)

Weighted long short-term
memory
Neural network extended
model (WLSTME)

RMSE and MAE 40.67 and
26.10

A hybrid land use regression/
AERMOD model for predicting
intra-urban variation in PM2.5
(Michanowicz et al., 2016)

AERMOD preprocessing Meteorological data
(United States of America)

Land use regression RMSE 1.34
(summer) and
1.43 (winter)

Deep learning-based
PM2.5 prediction considering the
spatiotemporal correlations: A
case study of Beijing, China (Pak
et al., 2020)

Identifying the inherent
interaction between the
given variables with mutual
information-based
spatiotemporal correlation
analysis

Air quality and
meteorological data (China)

CNN–LSTM
(convolutional neural
networks–long short-term
memory networks)

RMSE and MAE 5.357 and
4.971

Machine learning and deep
learning modeling and
simulation for predicting
PM2.5 concentrations (Peng
et al., 2022)

N.A. Meteorological data
(China)

Random forest and
XGBoost

R2 0.761

Combining machine learning
and numerical simulation for
high-resolution
PM2.5 concentration forecast (Bi
et al., 2022)

N.A. Meteorological data and
land use data (China)

Random forest RMSE, mean absolute
percentage error (MAPE),
and R2

16.7, 34.3,
and 0.76
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achieved better RMSE and coefficient of determination metrics than
the BPNN. The results from GEP are more explainable than those
from the BPNN because the formula could directly reflect the
correlation between independent variables (pollutant gas) and
dependent variables (PM2.5/PM10). The formulas obtained with
GEP can be applied to study carefully to draw more conclusions
from every angle. The heterogeneous relationship modeled by GEP in
different seasons or specific regions could be used tomonitor the causality
of PM2.5 and PM10 so that pollution could be restricted. Then, results
show that PM2.5 is more correlated to CO, whereas PM10 is more
correlated to NO2 and SO2, which is inferred using linear regression.
Above methods and relevant conclusions can be beneficial in controlling
and forecasting PM2.5 (PM10) concentrations. Although some
conclusions came into being, there are still some problems to be
solved in the future, such as some negative values that will certainly
not exist, which can be tackled by correcting the unreasonable
chromosomes in GEP, improving the mechanism of the neural
network, adjusting proper algorithm parameters for different datasets,
or adding more attributes that affect PM2.5 (PM10) to the dataset. All of
the above results show that GEP can be applied in environmental
modeling to get more quantitative and explainable conclusions.
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