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With urbanization acceleration, ensuring urbanwater use security and sustainable
water resource management has become a major global challenge. As a
populous country, China faces increasingly severe challenges. Comprehensive
and systematic urban wastewater treatment efficiency (UWTE) assessments
constitute a prerequisite for addressing this problem. Based on
2011–2021 panel data of 30 Chinese provinces, the superefficiency SBM
model was employed for UWTE measurement from national and regional
perspectives. ArcGIS software and the Tobit model were adopted to analyse
the spatial-temporal patterns and factors influencing UWTE. UWTE in most
provinces generally exhibited a fluctuating upward trend, with an uneven
east-high and west-low spatial distribution pattern. The decomposition results
showed that the low UWTE in the eastern region was mainly constrained by scale
efficiency, while in the central region, pure technical efficiency was the primary
constraint. The shunt pipeline construction level, load rate, and wastewater
treatment scale significantly positively impacted UWTE, while economic scale
yielded a negative impact. It is recommended that theChinese government adjust
the outdated construction-without-operation model and implement
differentiated wastewater treatment policies. It is necessary to vigorously
promote rainwater and wastewater diversion pipeline construction, optimize
and upgrade sewer networks and wastewater treatment facilities, and fully
utilize scale effects. These findings provide insights for China and countries
similar to China to facilitate efficient wastewater management practices.
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1 Introduction

Over the 70 years since the founding of New China, the country has experienced the
largest and fastest urbanization process in world history (Wang et al., 2022). With the
comprehensive reform of the household registration system, a total of 130 million
agricultural transfers and other permanent residents have settled in urban areas across
China. By the end of 2022, the urbanization rate of the national permanent population had
reached 65.22%, which was 3.6 times greater than that in 1978 (17.92%). New urbanization
is still progressing in depth, and it is estimated that by 2035, the new urban population will
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increase by approximately 150 million people. With urbanization
acceleration, the total amount of urban wastewater discharge in
China is constantly increasing, the water pollution situation is
becoming increasingly severe, and cities are facing enormous
environmental challenges. The large volume of urban wastewater
is a leading cause of water pollution (Wu et al., 2019). Statistics
indicate that from 2007 to 2022 alone, the national wastewater
discharge increased from 36,101.18 million cubic metres to
63,897.07 million cubic metres, an increase of 76.99%. Urban
domestic wastewater discharge is also increasing each year, and
over the past 10 years, domestic wastewater has accounted for more
than 70% of the total wastewater volume (National Bureau of
Statistics, 2019). Since 1998, it has surpassed industrial pollution
to become the No. 1 source of environmental pollution in China.

Increased urban wastewater discharge also increases health
risks (Wang et al., 2020). Biomass contains large amounts of
organic matter, nutrients such as nitrogen and phosphorus, and
various microorganisms. Direct discharge without proper
treatment can cause serious pollution of the aquatic
environment and threaten human health and the ecosystem
balance. In addition, it threatens the sustainability of water
resources and socioeconomic and environmental systems in
China. In response to the increasing harm caused by water
pollution, the Chinese government has introduced numerous
policies to attempt to control water pollution (Mao et al.,
2019). As a result, the number of urban wastewater treatment
plants (UWWTPs) increased from 1,258 plants in 2007 to
12,586 plants in 2021, with an average annual growth rate of
9.86%. In 2021, the operating cost of UWWTPs across China
reached 112.42 billion yuan, with yearly increases. However, the
operating conditions of Chinese urban UWWTPs have
deteriorated due to issues such as inadequate equipment
(Zhao et al., 2018). Moreover, some cities have
overemphasized investment projects of UWWTPs but
neglected the construction of urban sewers, which has
negatively impacted the transportation and treatment
capabilities of urban wastewater and resulted in the direct
discharge of large amounts of wastewater into the
environment, resulting in environmental destruction and the
loss of renewable water resources (Wu et al., 2018).

The above indicates that the wastewater treatment cost in China
is increasing annually, but the wastewater treatment situation
remains grim. To effectively treat urban wastewater and ensure
the sustainable development of society, not only should the number
of wastewater treatment facilities be increased but also the
operational efficiency should be improved. Systematic
measurement of the efficiency is an important prerequisite for
efficiency improvement. Therefore, it is necessary to
comprehensively evaluate the urban wastewater treatment
efficiency (UWTE) and determine the causes of a low efficiency
to help government departments formulate reasonable UWTE
improvement policies and promote the healthy development
of UWWTPs.

Many empirical wastewater treatment studies have been
conducted. The research methods that have been employed
include life cycle analysis (LCA), data envelopment analysis
(DEA), stochastic frontal analysis (SFA) (Corton and Berg, 2009),
key performance indicators (Benedetti et al., 2008; Quadros et al.,

2010; Silva et al., 2016), grey relationship analysis (Ilangkumaran
et al., 2013; Li et al., 2015), analytic hierarchy processes (Lizot et al.,
2021; Castellet-Viciano et al., 2022), and machine learning
(Torregrossa et al., 2018; Maziotis et al., 2023). Among these
methods, the LCA method aims to assess the environmental
impact by considering the life cycle of products, technologies, or
production activities and to quantify the economic value and
environmental burden at each life stage. In many studies, the
LCA method has been used to investigate wastewater treatment
efficiency (Hospido et al., 2008; Khalkhali and Mo, 2020; Furness
et al., 2021) However, the LCA method mainly focuses on the study
of specific products or technologies, and this method is unsuitable
for environmental performance indicators at the macroscopic level.
When selecting indicators and assigning weights, most performance
indicator assessment methods are subjective. The KPIs and AHP are
equally susceptible to subjective factors. SFA requires assumptions
about the form of the production function, which may limit its
applicability. The results of the GRAmay not be as intuitive as those
of the DEA, because its results are correlations rather than efficiency
values. Machine learning usually requires a large amount of high
quality data for training. The availability of data also limits the use of
this methodology.

Charnes et al. (1978) proposed the DEA technique, which is
the most common method for evaluating wastewater treatment
performance. The advantage of this method is that it can address
multiple-input and multiple-output problems without defining
the form of the production function in advance. It uses
mathematical planning models to determine efficiency based
on actual data, reducing the influence of subjective judgement.
The results are usually presented in the form of efficiency scores
that visually represent the level of efficiency of the DMU relative
to other DMUs. Therefore, this technique is suitable for data
analysis at various scales. Since it was first proposed, it has been
widely applied in UWWTP efficiency assessment, helping
researchers identify the causes of low efficiency levels and
providing a sound basis for management decision-making.
Cubbin and Tzanidakis. (1998), Thanassoulis. (2000),
Alsharif et al. (2008), and Jiang et al. (2020) confirmed the
effectiveness of the DEA method in wastewater treatment
efficiency assessment.

However, this model ignores slack variables, and the efficiency
value can only remain within the (0, 1) interval. Tone. (2001)
introduced the slack-based measure (SBM) model; on this basis,
a superefficiency SBM model was proposed (Tone, 2002). In this
model, the selection issue of orientation is not considered, and the
input and output are not required to strictly change proportionately,
which can overcome the above shortcomings and more accurately
reflect the actual efficiency value. In terms of research methods,
Hernández-Sancho et al. (2011) used a nonradial DEA model to
calculate the energy efficiency index of UWWTPs in Spain. Yang
et al. (2021) adopted a dynamic interactive network SBM model to
evaluate the efficiency of regional industrial water systems in China
from 2008 to 2014, which provided beneficial information for
policymakers to solve the problem of a low system efficiency. In
terms of research content, (Zhang et al., 2021) studied the UWTE
and its driving factors against the background of the river chief
system in China. Chang and Zhu (2021) analysed the relationships
between policy measures such as pollution levies and environmental
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inspections and water resource utilization and treatment in various
provinces in China. In terms of influencing factors, existing studies
have demonstrated that wastewater treatment facilities exhibit a
significant scale effect (Hernández-Chover et al., 2018). In areas
with leading economic development, areas with small populations
and vast natural land attained greater wastewater treatment
efficiency (Feng et al., 2019). The influent concentration and
loading rate can significantly impact wastewater treatment
efficiency (Gómez et al., 2017), while both discharge standards
and influent quality affect treatment efficiency through operating
costs (Yang and Chen, 2021).

The above literature review reveals that there are abundant
relevant research results for wastewater treatment efficiency,
which provide sufficient theoretical support and technical
guidance for this study. However, existing studies still exhibit
certain areas that should be developed and extended further,
which are shown in Table 1. (1) In terms of research methods,
few studies have focused on decomposing UWTE into scale
efficiency (SE) and pure technical efficiency (PTE) and analysing
the contributions of these two components to UWTE. (2) In terms of
research content, the temporal and spatial differences in UWTE
between different regions have not been fully revealed. (3) In terms
of influencing factors, because most Chinese cities have not
implemented rain and wastewater diversion pipelines in the past,
the impact of the construction level of diversion pipelines on the
efficiency has often been ignored (Longo et al., 2018). Therefore, it is
necessary to further analyse the spatiotemporal evolution
characteristics of UWTE and identify the key influencing factors,
which is important for UWTE improvement.

The main contributions of this paper are as follows: (1) The
superefficiency SBM model was adopted to measure UWTE in
China from 2011 to 2021, which was decomposed into PTE and
SE to analyse the impact of decomposition factors. (2) ArcGIS
software was used to describe the spatiotemporal evolution
characteristics and regional heterogeneity of UWTE, which
facilitates the implementation of differentiated wastewater
treatment policies by the Chinese government. (3) Accounting
for the key influencing factor of the construction level of shunt
pipelines, a Tobit model was constructed for further empirical
verification. The effect of each influencing factor on the efficiency
of the UWWTPs was investigated to provide data support for
continuing to vigorously promote rainwater and wastewater
diversion pipeline construction.

2 Materials and methods

2.1 Application of the superefficiency
SBM model

In this subsection, the principle of the superefficiency SBM
model is first described as a way to measure the UWTE of China’s
provinces; then, the selected input‒output variables and collected
data are presented.

2.1.1 Principle of the superefficiency SBM model
In 2002, Tone proposed the nonoriented superefficiency SBM

model, which is shown in Equation (1):

min λSE �
1
m ∑m

i�1
xi/xik

1
q ∑

q

r�1
yr/yrk

(1)

s.t.xi ≥ ∑
n

j�1,j ≠ k

xijλj

yr ≤ ∑
n

j�1,j ≠ k

yrjλj

xi ≥xik

yr ≤yrk

∑
n

j�1,j ≠ k

λj � 1

λ, s−, s+, �y≥ 0

i � 1, 2..., m; r � 1, 2..., q; j � 1, 2..., n j ≠ k( )
The characteristics of the superefficiency SBM model are as

follows: the optimal solution is dimensionless, and the efficiency can
exceed 1. Therefore, these two properties can provide the ranking
and degree of difference between decision-making units (DMUs).
This model is suitable for measuring the efficiency value of multiple
DMUs and can fully reflect the difference in the efficiency value of
each DMU. With the use of this model, UWTE in 30 provinces in
China was measured to study regional differences.

The technical efficiency (TE) can be obtained via the above
superefficiency SBMmodel. TE can be further divided into PTE and
SE. In this study, TE reflects the UWTE of each DMU, which is equal
to the product of PTE and SE. The BCC model is based on variable
returns to scale (VRS), and its results exclude the effect of SE; thus,
its results are called “PTE” (Banker et al., 1984). The output-oriented
BCC model planning equation is shown in Equation (2):

maxφ (2)

s.t∑
n

j�1
λjxij ≤ xik

∑
n

j�1
λjyrj ≥φyrk

∑
n

j�1
λj � 1

λ≥ 0
i � 1, 2..., m; r � 1, 2..., q; j � 1, 2..., n

PTE refers to the efficiency related to technology factors, and SE
refers to the efficiency related to the scale of production (Cooper et al.,
2007). The relationship between them is shown in Equation (3).

SE � TE/PTE (3)

2.1.2 Input‒output variables
Reasonable selection of input and output variables can improve

the accuracy of DEA. The environmental, economic, social, and
resource dimensions should be comprehensively considered to fully
reflect the operational status of the studied UWWTPs. In general,
the consumption of capital, resources or energy represents the input,
while products or services represent the output (Hu et al., 2019;
Banker et al., 1984). Notably, the more model variables there are, the
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more difficult it is to differentiate among DMUs (Morita and
Avkiran, 2009). Therefore, while retaining the necessary
production factors, the number of variables should be reduced as
much as possible.

This study referred to the variables selected in previous
efficiency assessment studies of WWTPs (Dong et al., 2018;
Gémar et al., 2018; Pan et al., 2020; Feng et al., 2022;
Hernández-Chover et al., 2023) and considered the difficulty of
obtaining indicator data and the applicability of indicators in the
selected model. To comprehensively evaluate UWTE, the number
(N), wastewater treatment capacity (WTC), annual operating
expenses (OC) and new fixed assets (NFA) of the UWWTPs
were chosen as input variables. The amount of wastewater
treated (T), removal amount of the chemical oxygen demand
(COD) and removal amount of ammonia-nitrogen (AN) (two
major pollutants in Chinese wastewater) were employed as
output variables.

The data for the above variables were all obtained from the
China Environment Statistical Annual Report. Notably,
2011–2021 data on the input and output indicators for each
province, autonomous region, and municipality directly under
the purview of the Central Government (excluding Tibet) were
collected. Descriptive statistics of the input and output variables are
provided Table 2. The median values of all variables are less than the
mean values, and the standard deviations of all variables are very
large. In addition, significant differences exist between the
maximum and minimum values. These descriptive results
indicate that significant UWTE differences may exist among
different cities. Table 2 shows the Pearson correlation coefficient

between the input and production variables (Cui and Li, 2018). In
Table 3 most coefficients are positive and relatively high, which
ensures that the relationships between the input and output
are close.

2.2 Application of the Tobit model

The principle of the Tobit model is first described to analyse the
factors influencing UWTE; then, the selected influencing factor
variables and hypotheses are presented.

2.2.1 Principle of the Tobit model
The Tobit model, designed by Tobin (1958), is a classic method

for analysing influencing factors; it is an econometric model suitable
for partially continuous or partially discrete dependent variables,
and it serves as a regression model with limited dependent variables.
The Tobit model is shown in Equation (4):

Yi � β0 + βTXi + ε i � 1, 2...m( ) (4)
where Yi is the dependent variable, namely, UWTE; Xi denotes the
explanatory variables, namely, the influencing factors; βT is the
required parameter vector; and ε is a random error vector.

In this paper, the dependent variable in the Tobit model is
UWTE, which is calculated via the superefficiency SBM model. The
obtained efficiency values are discrete values greater than 0. In this
case, the ordinary least squares (OLS) method was employed to
estimate the model parameters. However, the use of the maximum
likelihood (ML) method for estimating Tobit model parameters

TABLE 1 Previous studies on UWTE that use DEA.

Study area Study
period

PTE
and SE

Regional
heterogeneity

Influencing factors References

Spanish 2009 No No plant size, age, characteristics of influent water, type of
aeration in the bioreactor

(Hernández-Sancho et al.,
2011)

China 2008–2014 No Yes No (Yang et al., 2021)

Valencia Region None SE No No (Hernández-Chover et al.,
2018)

Spain 2014 No No volume of wastewater, energy consumed, secondary
treatment technology

(Gómez et al., 2017)

Toronto 2007–2016 No No plant scale, SS/cBOD5/total phosphorus concentration in
influent, average daily influent flow rate

(Wang et al., 2018)

China 2010–2015 No Yes No (Wang et al., 2021)

Minjiang River None No No No (Hu et al., 2018)

China None No No designed capacity, load rate, influent COD
concentration, influent C/N ratio, and the latitude

(Hu et al., 2019)

Valencia Region 2008–2012 No No influent water quality and plant size (Fuentes et al., 2017)

China 2013–2020 No Yes No (Ren et al., 2022)

Germany, Spain and
Switzerland

None No No secondary treatment technology, plant size, influent
dilution and load factor

(Longo et al., 2018)

China 2016 No No influent COD concentration and capacity load rate (Jiang et al., 2020)

China 2011–2021 PTE,SE Yes the construction level of shunt pipelines, load rate,
wastewater treatment scale, and economic scale

This paper
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could yield more accurate results. Therefore, in Tobit regression
analysis, the ML method was chosen to estimate the model
parameters.

2.2.2 Influencing factor variables
Because there are many factors that impact the UWTE, it is

impossible to exhaustively address these factors. In this study, based
on existing research, impact analysis of the UWTEwas conducted by
considering the construction level of shunt pipelines, load rate,
wastewater treatment scale, and economic scale.

2.2.2.1 Shunt pipeline construction level (SP)
Existing studies have shown that low influent concentrations

of water pollutants such as COD could lead to a low efficiency of
UWWTPs (Feng et al., 2022; Dong et al., 2017) because excessive
dilution increases the energy needed to remove a unit amount of
pollutants (di Cicco et al., 2019). An important reason for low
influent concentrations is the insufficient proportion of the
separate system and drainage pipes, resulting in the
confluence of rain and wastewater (Liu, 2023). The urban
drainage network is an important part of urban infrastructure
and is responsible for the collection and transportation of
domestic wastewater, industrial wastewater and surface runoff
rainwater (Lofrano and Brown, 2010). These systems can be
divided into combined and diverted systems (van Daal et al.,
2017). In recent years, most newly built cities have adopted the
split-flow pipe network; however, for various reasons, many old
cities at home and abroad still use the combined pipe network
(Gasperi et al., 2010). Therefore, not only wastewater but also
other external waters may be received, which wastes the ability of

wastewater treatment plant to reduce water pollutants. Water
quantity overload and insufficient water quality loading rates
greatly impact the operation of UWWTPs. In summary, the
construction level of shunt pipelines critically affects UWTE.
In this paper, the ratio of wastewater pipelines to the total
pipelines was used to represent the construction level of
shunt pipelines.

Hypothesis 1. Wastewater pipes affect the influent concentration
of pollutants such as COD. The higher the proportion of wastewater
pipes in the total pipelines is, the greater the UWTE.

2.2.2.2 Wastewater treatment scale (TS)
Wastewater treatment facilities generate a notable scale effect,

which positively affects UWTE. Economies of scale influence
efficiency, especially operational costs, such as personnel, waste
management, and maintenance (Cooper et al., 2007). For
example, when comparing large (>100,000 m3/day) and small
(<10,000 m3/day) UWWTPs, large plants performed better, thus
demonstrating the effect of economies of scale (Zeng et al., 2017). In
this study, the wastewater treatment volume of a wastewater
treatment plant was used to represent the treatment scale.

Hypothesis 2. Due to the scale effect of the UWWTPs, the larger
the annual wastewater treatment volume is, the greater the UWTE.

2.2.2.3 Load rate (LR)
The higher the loading rate is, the higher the facility utilization

rate and the greater the UWTE (Yang and Chen, 2021). In this study,
the ratio of the actual treatment capacity to the design treatment
capacity of the wastewater treatment facility was employed to
represent the loading rate.

Hypothesis 3. The higher the load factor is, the higher the facility
utilization rate and the greater the UWTE.

2.2.2.4 Economic scale (ES)
The economic scale is the basic environment for UWWTP

development, so the economic scale affects the differences in
UWTE. To comprehensively consider the differences in economic

TABLE 2 Descriptive statistics of the input‒output variables (2011–2021).

Descriptive
statistics

Input indicators Output indicators

Q WTC
(10,000 tons/day)

OC
(10,000 yuan)

NFA
(10,000 yuan)

T
(10,000 tons/
day)

COD
(ton)

AH
(ton)

Max 1,978 3,878 7,855.7 192.4 21.16 20,627.2 1,151.5

Min 18 37 1,228,970 887,970.4 3,189.32 2,240,813 222,497

Median 176 502 136,996.8 82,669.3 402.97 347,984.5 33,180.4

Average 250.35 699.78 208,712.6 118,000.5 543.78 472,121.3 44,997.15

Std. Dev 235.98 592.51 203,511.9 117,995.8 481.14 407,074.5 37,734.66

Observation 330 330 330 330 330 330 330

Data source China Environment Statistical Annual Report

TABLE 3 Input‒output variable correlation statistics.

T COD AH

Q 0.6811 0.6222 0.6608

WTC 0.9957 0.9378 0.9387

OC 0.9300 0.9380 0.9362

NFA 0.7472 0.7154 0.7131
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scale among the different provinces, the gross regional product was
used in this study to represent the level of the regional economic
scale (Sun et al., 2021).

Hypothesis 4. The greater the gross regional product is, the greater
the investment in UWWTPs and the greater the UWTE.

Based on the above hypothesis, to study the influencing factors
on UWTE, which derived from the superefficiency SBM model was
used as the dependent variable. Moreover, X1 ~X4 are the four
influencing factors employed as independent variables, and a Tobit
regression model was constructed in Equation (5):

UWTE � C + α1X1 + α2X2 + α3X3 + α4X4 + ε (5)

WhereX1 is the proportion of wastewater distribution pipelines
to total pipelines, X2 is the scale of wastewater treatment, X3 is the
load rate, X4 is the gross regional product, αi is a coefficient, ε is the
error term, and C is a constant term. According to the above
assumptions, it is expected that α1, α2, α3, and α4 are all positive.

Variable definitions and data sources are provided Table 4.
Descriptive statistics of the influencing factor variables are
provided Table 5.

3 Results and discussion

In this study, the superefficiency SBM model was adopted to
measure UWTE in China, and decomposition analysis was
performed. Then, the spatiotemporal evolution characteristics of
UWTE were described via ArcGIS software. Finally, regression
analysis was performed on the UWTE measurement results and
influencing factors via the Tobit model to quantify the influence of
each influencing factor explore the conditions and methods used to
improve UWTE.

3.1 Efficiency evaluation analysis

With the use of MaxDEA12.1 software, the input‒output
indicators of each province were substituted into the
superefficiency SBM model, and the UWTE in the 30 provinces
in China from 2011 to 2021 was calculated as summarized in
Figures 1A–K. UWTE was further decomposed into PTE and SE,
as detailed in Supplementary Appendix Table SA1.

3.1.1 Overall analysis
During the 2011–2021 period, the UWTE in China generally

increased, but the efficiency remained low. The efficiency reached
0.677 in 2011, 0.713 in 2015, and 0.785 in 2021, and the 11-year
average efficiency was 0.749, indicating that there is still much
room for improvement. During the study period, PTE and SE
fluctuated slightly, and PTE remained above SE, as shown
in Figure 2.

3.1.2 Regional analysis
In general, mainland China can be divided into three regions

based on the economic geography: the eastern, central and western
regions. The eastern region is the most developed region in China,
comprising three municipalities directly under the purview of the
Central Government, namely, Beijing, Tianjin, and Shanghai, and
eight coastal provinces (Liaoning, Hebei, Jiangsu, Zhejiang, Fujian,
Shandong, Guangdong, and Hainan). The central region includes
ten inland provinces (Heilongjiang, Jilin, Inner Mongolia, Henan,
Shanxi, Anhui, Hubei, Hunan, Jiangxi, and Guangxi). The western
region comprises one municipality directly under the Central
Government (Chongqing) and nine provinces (Gansu, Guizhou,
Ningxia, Qinghai, Shaan xi, Tibet, Yunnan, Xinjiang, and Sichuan)
and accounts for more than half of the total geographic area of
China. This area has the lowest population density and is the least

TABLE 4 Meaning of the variables and data sources.

Variable Variable definition Data source

UWTE Urban wastewater treatment efficiency Calculated in this paper

SP Ratio of wastewater pipelines to the total pipelines Statistical Yearbook of Urban Construction

TS Tons of wastewater treated Environmental Statistical Annual Report of China

LR Ratio of the designed processing capacity to the actual processing capacity Environmental Statistical Annual Report of China

ES Gross regional product Statistical Yearbook of China

TABLE 5 Descriptive statistics of the influencing variables (2011–2021).

Descriptive statistics UWTE(%) SP(%) TS (hundred million tons) LR (%) ES (trillion yuan)

Max 233.47 75.75 116.41 101.45 12.44

Min 30.83 14.21 0.77 46.31 0.17

Median 63.19 43.27 14.71 77.38 2.01

Average 74.85 42.34 19.85 75.36 2.67

Std. Dev 32.74 9.18 17.56 9.62 2.17

Observation 330 330 330 330 330
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developed area. Due to missing data for Tibet in the statistical
yearbook, Tibet was excluded.

The UWTE, PTE and SE in the above three regions from 2011 to
2021 were calculated, as detailed in Table 6. Table 6 indicates that the
UWTE in the eastern region was the highest, and the value in the
central region was greater than that in the western region. Over the
past 11 years, the UWTE in the eastern region has slightly decreased,
while that in the central and western regions has
significantly increased.

The UWTE, PTE, and SE, of wastewater treatment in the three
major regions all fluctuated, as shown in Figure 3. In particular, PTE,
in the eastern region was significantly greater than SE, and PTE,
significantly promoted the increase in the UWTE. SE, in the central
region was significantly higher than PTE, and SE, exerted a greater

impact on the environmental efficiency than did PTE. PTE, and SE,
slightly differed in the western region, and the extent of the impact of
these efficiency components on UWTE, was basically the same.

3.1.3 Provincial-level analysis
To compare the differences among the various provinces, a

spatial-temporal comparison map of the UWTE for the
2011–2021 period was created based on the calculation results, as
shown in Supplementary Appendix Table SA2.

Clearly, as of 2021, the number of provinces (cities) across China
that reached a relatively high level (>0.8) significantly increased,
indicating that the wastewater treatment level significantly increased
in 2011. Inner Mongolia experienced the greatest increase in
national rankings, rising from 27th to third place. The reason

FIGURE 1
Uwte in China (2011–2021). (A) 2011, (B) 2012, (C) 2013, (D) 2014, (E) 2015, (F) 2016, (G) 2017, (H) 2018, (I) 2019, (J) 2020, (K) 2021.
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may be that Inner Mongolia has certain regional advantages. The
vast amount of land provides certain conditions and guarantees the
construction and operation of wastewater treatment facilities, which
is conducive to improving treatment efficiency. Hainan Province has
experienced the greatest decrease in the national ranking of the
UWTE over the past 11 years, from 4th to 22nd place. The reason
may be that, as a popular tourist city in recent years, the wastewater
volume in Hainan has exceeded the maximum carrying capacity
relative to other provinces. In contrast to developed areas, the
economic development level is low, and financial resources are
relatively insufficient to support the large-scale construction and
upgrading of wastewater treatment facilities, thus affecting
treatment efficiency improvement; Inner Mongolia, Liaoning,
Yunnan, Anhui, Shanxi, Gansu, Hubei, Henan, Jiangsu, Guangxi,
and Chongqing UWTE increased across the efficiency range
compared with 2021, while Hainan, Fujian, Tianjin, and Zhejiang
decreased. In addition, only Shanghai, Beijing, Tianjin, and Henan
have UWTE averages above 1. Notably, Jiangsu is at the bottom of
the list for UWTE.

To explore the contributions of PTE and SE to UWTE in
different provinces, high and low efficiency are distinguished via
0.8 as a cut-off point. All 30 provinces were divided into three
categories, as shown in Table 7. (1) The PTE and SE jointly
promoted UWTE. PTE and SE in these provinces were greater
than 0.8. As shown in Figure 4, 7 provinces fell into this category,

accounting for 23.3% of the total provinces. This is precisely why
Shanghai, Beijing, Tianjin and Henan have efficiency values
greater than 1. These regions have actively promoted
wastewater treatment technology introduction and innovation.
In addition, they are densely populated, making it easy to create
economies of scale. (2) PTE was the main source of UWTE
growth, and SE inhibited UWTE growth. There were
17 provinces of this type, accounting for 56.7% of the total
provinces. This result indicates that the scale of wastewater
treatment facilities may be insufficient. A small scale prevents
the fixed costs from being fully amortized to the output, resulting
in a higher unit output cost and the effect of economies of scale is
not obvious. Jiangsu is a notable example. Although it has
invested substantially, its layout has not been rationalized to
form a scale effect. (3) SE was the main source of UWTE growth,
while PTE inhibited UWTE growth. Only 6 provinces, Zhejiang,
Guangdong, and Shandong, belonged to this category, indicating
that PTE was not the main obstacle to improving UWTE in most
provinces. These results can be clearly seen in Figure 4.

3.2 Influencing factor analysis for the
efficiency scores of WWPTs

3.2.1 Random effects model test
The existence of different individuals in the panel data model

may lead to the occurrence of individual effects. If there are no
individual effects, a fixed effects model can be created. Conversely, a
random effects model should be established. Therefore, before
performing regression analysis, we must first determine the
specific form of the panel data model, namely, we must
determine whether the fixed effects model or the random effects
model should be employed. The null hypothesis (H0: the random
effects model is the correct model) was tested. If the null hypothesis
can be rejected on the basis of the Hausman test, the estimates of the
random effects model may be biased, while the estimates of the fixed
effects model may be more reliable. If the test result does not indicate
that the null hypothesis can be rejected, we can use a random effects
model, which is more effective.

With the help of Stata 17.0 data analysis software, the Hausman test
was adopted to determine whether the fixed effectsmodel or the random

FIGURE 2
Uwte, Pte and Se in China (2011–2021).

TABLE 6 UWTE, PTE and SE in the three major regions of China (2011–2021).

Efficiency Region 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 Mean

UWTE Eastern 0.885 0.802 0.935 0.857 0.824 0.749 0.729 0.858 0.864 0.918 0.911 0.848

Central 0.539 0.684 0.684 0.676 0.677 0.677 0.630 0.754 0.800 0.930 0.746 0.709

Western 0.569 0.562 0.642 0.698 0.586 0.704 0.731 0.686 0.719 0.873 0.686 0.678

PTE Eastern 1.076 0.976 1.108 1.059 1.040 1.060 1.050 1.023 1.035 1.007 1.120 1.050

Central 0.618 0.710 0.693 0.728 0.711 0.755 0.684 0.787 0.842 0.945 0.787 0.751

Western 0.889 0.866 0.871 0.949 0.805 0.909 0.958 0.926 0.883 0.999 0.796 0.896

SE Eastern 0.817 0.821 0.843 0.801 0.788 0.714 0.703 0.838 0.835 0.910 0.823 0.808

Central 0.915 0.955 0.988 0.934 0.942 0.914 0.932 0.961 0.955 0.983 0.953 0.948

Western 0.828 0.782 0.859 0.844 0.803 0.822 0.814 0.815 0.897 0.910 0.894 0.843
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effects model should be used. The p-value was 0.8544, which was not
significant at the 1%, 5%, or 10% level. Therefore, themodel could not be
rejected. The null hypothesis indicates that there are individual effects in
the panel data. Therefore, the effect of using the random effects model is
better; thus, it was chosen as the panel data model.

3.2.2 Regression result analysis
With the use of Stata 17.0 software, a random effects model was

applied to evaluate the factors affecting UWTE in China. The
regression estimation results are listed in Table 8.

Through regression analysis, we found that the shunt pipeline
construction level, load rate, and wastewater treatment scale
significantly positively impacted UWTE, while the economic scale
had a negative impact. These results support hypotheses 1, 2, and
3 but contrast with Hypothesis 4.

3.2.3 Robustness analysis
3.2.3.1 Endogenous test

To alleviate the endogeneity problem of omitted variables, a
multiperiod difference-in-differences (DID) model is constructed. The
idea of setting is as follows: the samples are divided into experimental
and control groups according to the shunt pipeline construction level.
The average value is then taken as the demarcation; those higher than the
samplemean are set as the experimental group; and those lower than the
mean are set as the control group. The regression results are shown in
Table 9, and the conclusion still holds.

FIGURE 3
UWTE, PTE and SE in the three major regions of China
(2011–2021) (A) Eastern region (B) Central region (C) Western region.

TABLE 7 Statistical table of high and low efficiency subgroups.

Efficiency Connotation Provinces

PTE>0.8 and SE > 0.8 PTE and SE jointly promoted UWTE Shanghai, Beijing, Tianjin, Henan, Anhui, Guizhou, Yunnan

PTE>0.8 and SE < 0.8 PTE was the main source of UWTE
growth

Jiangsu, Shanxi, Jiangxi, Hubei, Hunan, Guangxi, Sichuan, Gansu, Xinjiang, Shaanxi, Hebei, Fujian,
Chongqing, Inner Mongolia, Liaoning, Jilin, Heilongjiang

PTE<0.8 and SE > 0.8 SE was the main source of UWTE
growth

Qinghai, Ningxia, Hainan, Guangdong, Shandong, Zhejiang

FIGURE 4
Contributions of PTE and SE to UWTE in each province.
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3.2.3.2 Subsample regression
Considering that the selection of the sample time windowmay have

an impact on the results of the study, the random effects Tobitmodel for
regression is again adopted after excluding the first and last 2 years of
sample data. The results are listed in Table 10, which shows that the
coefficients and significance of the variables have not changed
substantially, confirming the robustness of the primary conclusions.

4 Discussion

4.1 The spatial-temporal pattern of UWTE

With urbanization acceleration, ensuring urban water use security
and sustainable water resource management has become a major global
challenge. Comprehensive and systematic UWTE assessments constitute
a prerequisite for addressing this problem. In this study, we discuss the
spatial and temporal evolution of UWTE from three perspectives.

1. From a national perspective, the UWTE in China has generally
showed a fluctuating upward trend, but it has remained low.
The main factor was the low SE because the small scale

prevented the fixed costs from being fully amortized to the
output, resulting in a higher unit output cost and the effect of
economies of scale was not obvious.

2. From a regional perspective, the UWTE shows an uneven pattern
of high-east and low-west. The decomposition results show that
PTE in the eastern region was significantly greater than SE, and
PTE significantly promoted an increase in UWTE. This may have
occurred because the eastern region exhibits favourable water
resource endowment conditions and location advantages,
abundant human and financial resources, and advanced
technology for efficient wastewater treatment. This
technological innovation has increased the efficiency. However,
SE in the eastern region was the lowest. This may be due to the
high population mobility in this region, which faces higher
variability and seasonal wastewater flow, making it difficult for
treatment facilities to maintain stable high-load operation
conditions throughout the year. The potential capacity of the
treatment facility should be fully utilized. SE in the central region
was significantly higher than PTE, and SE exerted a greater impact
on the environmental efficiency than did PTE. These results
suggest that the contribution of PTE to environmental
efficiency improvement was relatively low. This may be due to

TABLE 8 Tobit regression results for the factors influencing UWTE in China.

Explanatory variables Coefficient estimates Standard error Z value p-value

SP 0.577pp 0.259 2.22 0.026

TS 0.830pp 0.406 2.04 0.041

LR 1.774 ppp 0.197 8.99 0.000

ES −7.079pp 3.086 −2.29 0.022

cons −80.890ppp 17.579 −4.60 0.000

Note: ppp, pp and p denote significance at the 1%, 5% and 10% levels, respectively.

TABLE 9 Endogeneity test results for the factors influencing UWTE in China.

Explanatory variables Coefficient estimates Standard error Z value p-value

SP_d 0.153p 0.088 1.73 0.084

TS 0.902pp 0.413 2.18 0.029

LR 1.771ppp 0.201 8.82 0.000

ES −7.000pp 3.122 −2.24 0.025

cons −61.734ppp 15.157 −4.07 0.000

Note: ppp, pp and p denote significance at the 1%, 5% and 10% levels, respectively.

TABLE 10 Robustness test results for the factors influencing UWTE in China.

Explanatory variables Coefficient estimates Standard error Z value P-value

SP 0.511p 0.296 1.73 0.084

TS 1.1295ppp 0.472 2.74 0.006

LR 1.764ppp 0.215 8.21 0.000

ES −10.740ppp 3.607 −2.98 0.003

cons −76.617ppp 19.132 −4.00 0.000

Note: ppp, pp and p denote significance at the 1%, 5% and 10% levels, respectively.
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the wastewater treatment technology adopted in this area, which is
not advanced enough. PTE and SE in the western region differed
slightly, and the extent of the impact of these efficiency
components on UWTE was basically the same.

3. From a provincial perspective, UWTE in Shanghai has always
remained at the forefront in China. As of 2021, the number of
provinces and autonomous regions (cities) across China that
reached a relatively high level (>0.8) had significantly
increased, indicating that the level of wastewater treatment
has increased considerably over the last 11 years. After
decomposing the UWTE, we found that SE was the main
obstacle to improving the UWTE.

4.2 Influencing factors of UWTE

After analysing the spatial and temporal evolution of UWTE, an
in-depth discussion of the influencing factors is necessary to arrive at
targeted measures to improve UWTE.

1. The proportion of wastewater pipelines to total pipelines imposed
a significant positive effect on UWTE, which is consistent with the
above hypothesis. The UWTE in some areas was low. The main
reason is that mixed-flow drainage systems encompass less rain
and wastewater shunts, and the mixing of natural water into
wastewater pipes is more common, resulting in a lower
concentration of pollutants in the influent and a reduction in
pollutants per unit of wastewater treatment. Therefore, it is
necessary to enhance pipeline network renovation to promote
rainwater diversion and reduce the “useless work” of wastewater
treatment facilities.

2. The load factor was the main influencing factor of UWTE, which
is consistent with the original hypothesis. The load rate is closely
related to the construction of the supporting pipe network of
wastewater treatment facilities, which is consistent with the results
of Li et al. (2017). Therefore, it is very important to improve the
planning of wastewater treatment facilities and strengthen the
construction of supporting pipelines.

3. The wastewater treatment scale significantly positively affected the
UWTE, which is consistent with the hypothesis. This shows that
wastewater treatment exhibits a notable scale effect, and that most
provinces are currently at the stage of increasing returns to scale,
which is consistent with the conclusions of other researchers (Wu
et al., 2021; Fuentes et al., 2020; He et al., 2019). Therefore, it is
necessary to increase the wastewater treatment scale and rate,
which can facilitate UWTE improvement.

4. The gross regional product significantly negatively affects UWTE,
which is inconsistent with the hypothesis. In general, the higher the
economic development level is, the greater the strength of the
construction of wastewater treatment facilities and distribution
networks. The observed negative effect may have occurred because
although more effort was invested in the installation of wastewater
treatment facilities, less effort was invested in the effective use of
these facilities. Under the guidance of GDP, the construction of
wastewater treatment facilities is considered the main factor
contributing to GDP growth (Shi et al., 2017). Therefore, local
governments usually emphasize the construction of wastewater
treatment facilities rather than the effective use of these facilities.

Many UWWTPs have been built in China but have not been put
into operation (Bian et al., 2014). The high degree of vacancy of
wastewater treatment facilities not in operation due to construction
leads to high input redundancy and affects UWTE improvement.

4.3 Policy implications

Based on the study results, a series of suggestions for future work
by the Chinese government are proposed.

1. To increase UWTE, the Chinese government should first propose
a clear action plan. Such measures include adjusting the outdated
model of construction without operation, adopting a new model
of effectively using existing wastewater treatment facilities,
absorbing the advanced wastewater treatment management
experience of developed countries, actively adopting cutting-
edge technologies of developed countries, and regulating such
adopted technologies. Transformation should be conducted
according to local conditions, and technological innovation of
UWWTPs should be encouraged.

2. To improve UWTE, PTE and SE increases should be realized
simultaneously. Moreover, the government should implement
differentiated wastewater treatment policies with considering
spatial heterogeneity. For example, the eastern region should
emphasize SE improvement; the government should encourage
the integration and sharing of resources among wastewater
treatment companies and promote joint construction and
sharing of wastewater treatment facilities to reduce construction
and operating costs and improve SE; and the central region should
focus on PTE improvement. Wastewater treatment facilities
should be upgraded, and a pairing support mechanism should
be established to guide the transfer of advanced wastewater
treatment technology from the eastern region to the central
and western regions. Each region should be proactive and
adopt effective measures tailored to local conditions to promote
coordinated development among various regions.

3. To enhance UWTE, the influencing factors should be
comprehensively considered. On the one hand, local authorities
should continue to vigorously promote the construction of
rainwater and wastewater diversion pipelines, optimize and
upgrade sewer networks and wastewater treatment facilities,
build new wastewater pipelines, and separate wastewater and
rainwater in different pipelines to increase the influent
concentration and ensure the water quantity, loading rate and
water quality loading rate. On the other hand, the scale effect of
the infrastructure system should be fully utilized to operate the
system more effectively.

4.4 Study limitations and future studies

Like most studies, this study has several limitations. First, in terms
of research perspective, this paper measures UWTE in thirty provinces
in China from a macro perspective, and owing to the different resource
endowments and development situations within the provinces, more
in-depth research can be carried out at the municipal or enterprise level
in the future. Second, in terms of data availability, the data in this paper
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come mainly from official announcements, and in the future more
comprehensive and detailed data can be obtained through field
research. Last, in addition to objective factors, UWTE is also
affected by policy factors, which can be account for via
comprehensive analysis in the future.

5 Conclusion

In this study, the DEA model, geographic analysis, and the Tobit
model were adopted to calculate UWTE in 30 provinces in China from
2011 to 2021, and the spatiotemporal patterns and factors influencing
UWTE were analysed. The main conclusions are as follows.

1. The UWTE in most provinces generally exhibited a fluctuating
upwards trend, with an uneven east-high and west-low spatial
distribution pattern. The decomposition results showed that
the low UWTE in the eastern region was constrained mainly by
scale efficiency, while in the central region, pure technical
efficiency was the primary constraint.

2. The Tobit analysis results showed that UWTE was affected by
factors such as the shunt pipeline construction level, load rate,
wastewater treatment scale, and economic scale. Notably, only the
economic scale yielded a negative effect. The possible reason is
that local governments usually emphasize the construction of
wastewater treatment facilities rather than the effective use of these
facilities. The high degree of vacancy of wastewater treatment
facilities not in operation due to construction results in a high
input redundancy and affects UWTE improvement.
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