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The unprecedented growth in population and swift industrial advancements exert
considerable strains on the ecosystem, particularly within medium-sized and
large urban landscapes. The critical investigation into the intricate links between
current and prospective land utilization, as well as the ecosystem service value
(ESV), holds considerable empirical relevance for the calibration of land usage
frameworks, thereby contributing to the sustainable evolution of extensive urban
zones. Utilizing GlobeLand 30 data, the present research probes into the pattern
of land transformation and the spatial-temporal dispersal of ESV in Henan’s
Yellow River vicinity over a span from 2000 to 2020. For the enhancement of
land usage alignment, a Markov-PLUS fusion model was devised to gauge three
disparate ESV transition scenarios slated for 2030, namely, natural development
scenario (NDS), cropland protection scenario (CPS), and ecological protection
scenario (EPS). The principal determinants of land transformation within the
2000–2020 period were recognized as elevation, populace concentration,
and atmospheric temperature. Amid the rapid accretion of construction land
engulfing substantial cropland and grassland areas, there was an ESV diminution
to the tune of 1.432 billion RMB between 2000 and 2020. The ESV’s high-value
regions were discerned within relatively undisturbed ecosystem zones, with the
lower-value sections identified in cropland and constructed areas, where human
interventions exerted pronounced effects on the ecosystem. In accordance with
the 2030 land usage simulations and analyses, in contrast to alternative scenarios,
the EPS exhibited the least fluctuation in land type alterations in 2030,
demonstrated the most pronounced escalation in cold spot concentration,
and reached a peak agglomeration level. This underscores that the EPS not
only offers a refinement in land utilization configuration but also mediates the
equilibrium between economic and ecological considerations. The insights
derived from this investigation afford innovative evaluative methods for spatial
planning, ecological recompense, and sustainable land exploitation within large-
and medium-scale urban domains.
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1 Introduction

The judicious utilization of land epitomizes a vital modality for
the symbiotic relationship between human civilization and nature,
performing a key function in fostering human sustainability and
conserving ecological equilibrium (Besser and Hamed, 2021).
Ecosystem services, encompassing the tangible and intangible
benefits furnished by ecosystems for human subsistence through
ecological structure and function, operate under multifaceted
constraints such as population expansion, economic progression,
resource limitations, and environmental factors (Fu, 2020). As
fundamental supports for human survival, ecosystem services
both influence and are influenced by human activities.
Specifically, demographic escalation and economic growth
instigate human-induced land alterations, which consequently
modify the land-use configuration. The ensuing ecological
ramifications of varying land use types reciprocally influence
spatial distribution patterns of land utilization, thereby inducing
disruptions in the ecosystem’s functional aspects. These
transformations most directly affect the ecosystem service value
(ESV) (Hao et al., 2021). The Yellow River, venerated as China’s
cradle river, and its surrounding ESV have garnered substantial
attention. The implementation of pertinent ecological conservation
policies within the Yellow River Basin has rendered high-quality
development therein an essential task for adjacent provinces and
regions, particularly in Henan Province, an agricultural stronghold
in central China (Gong et al., 2023; Liu et al., 2023). In recent epochs,
relentless urbanization and human interventions have perceptibly
altered the ecosystem’s structure, impairing its functionality (Yang
et al., 2021). In the urbanization trajectory of Ningxia Province, the
equilibrium between the ecosystem, resources, and the environment
has been undermined, intensifying the ecological vulnerability in the
Yellow River’s upper reaches (Lin M. et al., 2020a; Fang et al., 2020).
Over-extraction of groundwater and deforestation have precipitated
a precarious ecological milieu in this region. The ecologically fragile
zones, exemplified by drastic landscape transformations in the
Galapagos Islands (Benítez et al., 2018) and demographic
pressures threatening the ecosystem in Alaphuzha, Kerala (Prasad
and Ramesh, 2019), have become focal areas for scholarly
investigation. Such incessant human interventions have
augmented the rate of conversion between land categories,
notably swelling construction land areas, thereby fracturing the
urban ecosystem’s supply-demand balance (Liu et al., 2015,
pp. 1990–2010). This direct consequence manifests in land use/
land cover (LULC) interchange (Yuan et al., 2018; Rimal et al.,
2019), subsequently instigating rapid modifications in the
ecosystem’s structure and function within a confined timeframe
(Zhang et al., 2020a; Gomes et al., 2021). As a conspicuous indicator
of human influences on ecosystems, alterations in land usage have
ascended as a global research nexus for appraising ESV’s
evolutionary characteristics through the lens of land-use
transformations (Zhang et al., 2020b; Cao et al., 2021).

The valuation of ecosystem services transcends mere historical
and current scenario analysis, extending to the prognostication and
simulation of spatial distribution of future ESV in the context of land
use alterations, thereby furnishing an empirical foundation for
pertinent agencies (Wang et al., 2020; Liu et al., 2024). In the
pursuit to forecast forthcoming land use type modifications,

scholars have sequentially devised models such as the Markov,
logistic, gray prediction, CA, CLUS-S, and FLUS models (Lin W.
et al., 2020b; Hu et al., 2020; Liu et al., 2020; Tan et al., 2020; Peng
et al., 2021). Despite these advancements, these models manifest
discernible deficiencies, often concentrating on isolated aspects like
spatial or structural optimization of land use types, and neglecting
the multifaceted shifts in land use configurations (Wang et al., 2018).
Through sustained endeavors, Liang (Liang et al., 2021) introduced
the patch-generating land-use simulation (PLUS) model in 2021,
which, while preserving merits of adaptive inertial and roulette
competition mechanisms (Liu et al., 2017), enhances patch
simulation protocols. Thus, it accommodates not merely spatial
variations but also structural adaptations in land use types (Liu et al.,
2017; Rao et al., 2018; Liang et al., 2021). More saliently, the model’s
simulation precision has been markedly augmented, finding
extensive applications in future land simulation. Concurrently,
the integration of the PLUS model with gray multi-objective
optimization (GMOP) (Li et al., 2021), the INVEST model (Fang
et al., 2022; Shen and Zeng, 2022; Tian et al., 2022), and the Markov
model (Yang et al., 2021; Han et al., 2022) facilitates evaluations of
present and forecasts of future ecosystem service provision, ESV,
ecosystem carbon neutrality (Li et al., 2020; Wang et al., 2022), and
more. The PLUS model thereby performs an instrumental function
in supporting regional sustainable development.

When scrutinizing ecosystem services’ worth, the attributes of
ecologically fragile zones with stable ecosystems and prevalent forest
and grassland regions have captivated broad scholarly interest.
Nevertheless, within large and medium-sized urban areas, where
construction land perpetually proliferates and cropland maintains a
baseline, an emergent imperative arises to investigate ESV
alterations to judiciously orchestrate land use composition. This
is indispensable for the sustenance of regional sustainable growth.
To bridge this research void concerning ESV dynamics within
expansive urban zones, the current study amalgamated analyses
of land use change degree, driving factor contribution rate, Moran
index, and hot spot to assess both present and prospective ESV
distribution trends and evolutionary traits in Henan Province’s
Yellow River region. Initially, 13 determinative factors were
harnessed to anticipate land use type pixel numbers via the
Markov chain. Subsequently, the PLUS model was employed to
emulate land-use type transitions in three distinct scenarios for
2030. Lastly, the spatiotemporal evolutionary properties of ESV,
inclusive of concentration areas and cold and hot spot domains of
ESV alteration, were evaluated. This inquiry thus offers a valuable
reference for shaping land spatial planning and ecological
compensation strategies in large and medium-sized cities.

2 Research region and dataset

2.1 Research region

The Yellow River region within Henan Province encompasses
8 cities and 1 county, namely, Zhengzhou, Luoyang, Kaifeng,
Jiaozuo, Xinxiang, Sanmenxia, Puyang, and Jiyuan cities, along
with Anyang Hua County, cumulatively extending across
59,200 km2. Geographically situated between longitudes
112°12′and 115°1′E and latitudes 34°47′and 35°44′N, the
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topography is characterized by an elevated eastern terrain that
gradually descends towards the west. The study region’s diverse
geomorphological features include mountains, hills, basins, and
highlands, under the influence of a continental monsoon climate
delineated by four pronounced seasons. The climatic conditions
are featured by mean precipitation of 550–650 mm/year and mean
temperature of 12.0°C–14.8°C (Figure 1). As of the conclusion of
2022, the regional population reached 41,946,400 individuals, with
an urbanization rate of 66.87%, a figure that significantly
transcends the 56.45% urbanization rate observed within Henan
Province as a whole. Marked by a high population density, the
rapid trajectory of economic development and urbanization within
the study area has engendered a complex juxtaposition between
urban growth and ecological consequences, thereby presenting
intricate challenges to the sustainable evolution of territorial space.
Furthermore, the initiation of strategies focused on ecological
preservation and sustainable development has elevated
significances of these goals. Specifically, within Henan
Province’s Yellow River vicinity, the approach to ecological
protection and the construction of ecological civilization have
been escalated to unprecedented standards, reflective of the
area’s contemporary significance.

2.2 Dataset

Land cover information was sourced from GlobeLand 30 data
(http://www.globallandcover.com/), compiled by the National
Geographic Information Centre, possessing an overall accuracy
reaching 85.72% and a spatial resolution of 30 m × 30 m,
including integration of shrubland into woodland. The research

region is featured by several types of land uses, including
construction land, water, grassland, forest, cropland, and unused
land. To assess influence of land-use alterations along the Yellow
River in Henan Province spanning the period from 2000 to 2020, a
set of 13 representative driving factors were selected for analysis.
Elevation data were acquired from the ASTER GDEM dataset
(http://www.gscloud.cn/) with a 30 m × 30 m spatial resolution,
from which slope data were extracted. Data pertaining to gross
domestic product (GDP), population spatial distribution, soil type
spatial distribution, precipitation, and average temperature were
obtained from the Resource and Environment Science and Data
Centre of the Chinese Academy of Sciences (https://www.resdc.cn/),
with a spatial resolution of 1 km × 1 km. Distances to primary roads,
highways, and railways were sourced from the National Geographic
Information Resources Catalog Service (https://www.webmap.cn/),
while distances to hospitals, schools, and governmental facilities
were derived from the 2018 Gaode Map POI dataset.

Within the scope of the study, the aforementioned 13 selected
driving factors were subject to standardization and resampling to
ensure conformity with a uniform coordinate system and spatial
resolution of 30 m × 30 m. Additionally, distances from first-class
roads, high-speed roads, railways, hospitals, schools, and
government locations were determined utilizing Euclidean
distance analysis within the framework of ArcGIS10.7.
Subsequently, the mask tool was employed to extract the driving
factor data pertinent to the definitive study region.

Calculations pertaining to the output, sown area, and average
price of agricultural products were conducted through integration
with the Henan Statistical Yearbook and the Compilation of Cost
and Income Data of National Agricultural Products, following a
comprehensive statistical and analytical process.

FIGURE 1
The research region.
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3 Methods

The analytical methodology coupling Markov and
PLUS models includes two steps (Figure 2). First, the
PLUS model was used for simulating the spatial distribution

of land use/land cover (LULC) in the year of 2030 under the
defined scenarios. Second, these simulated results were
leveraged to analyze the spatiotemporal evolution of
the ecosystem services value (ESV) corresponding to
each scenario.

FIGURE 2
Research framework.
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3.1 Markov model

The Markov model, extensively utilized for predicting the scale
of land use demand, operates under the assumption that the land use
pattern at a given time t+1 is influenced solely by its state at the
preceding moment t. The mathematical formulation of this process
is represented by (Gong et al., 2023):

Xt+1 � Pij × Xt (1)

where Xt symbolizes land use transformation status at t, where t
denotes a specific year, and Pij constitutes the transfer matrix of land
use, encapsulating the probability of transition from the initial state i
to the concluding state j.

3.2 PLUS model

The PLUS model is an advanced land use change simulation
approach known for its comprehensive and dynamic
characteristics (Liang et al., 2021). The modeling process
involves several key steps. First, it is necessary to ensure that
the row number of the land cover data within the study region is
consistent, and that the type number starts from 1 to determine the
land use expansion area across two distinct phases. Next, the Land
Expansion Analysis Strategy Model (LEAS) is used, which explains
the intrinsic change mechanism of land use within a given range,
thereby determining the rate of change for different land types
under specific driving factors (Rao et al., 2018). Following this, a
Cellular Automata (CA) Model is utilized for simulating future
land use types (Liu et al., 2017), and it is combined with a Markov
model to predict the pixel number and area for land use types in
subsequent years. Finally, a validation step is performed, where the
simulated data are compared with actual land use information,
evaluating overall accuracy, kappa coefficient, and figure of merit
(FOM). The PLUS model has been empirically validated as reliable
in predicting land use.

The Kappa coefficient is a significant metric for assessing the
similarity between predicted outcomes and real-world conditions
(Singh et al., 2018). Its mathematical expression is as follows:

Kappa � Pa − Pb

Pc − Pb
(2)

where Pa represents the ratio between the actual situation and the
predicted result, Pb represents the ratio between the random
prediction and the actual situation, and Pc represents the
prediction accuracy rate under ideal situations. Kappa has a
value range of 0–1; a value closer to 1 indicates that the land
simulation result is more congruent with the real situation,
reflecting a superior simulation effect.

FOM serves as an essential measure to verify spatial agreement
between forecast results and actual scenarios (Pontius et al., 2008).
Its mathematical expression is as follows:

FOM � B

A + B + C +D
(3)

whereA represents the number of pixels altered by the actual change
of the patch, but it is predicted to remain unaltered; B signifies the

number of pixels accurately forecasted; C symbolizes the number of
pixels affected by incorrect regional predictions; and D reflects the
number of pixels attributed to areas that have not changed but were
forecasted as altered. The value range of FOM is [0–1], and a value
closer to 1 corresponds to a simulation result that closely matches
the actual situation, indicating a superior simulation effect (Hou
et al., 2022).

3.3 Ecosystem service value coefficient
correction and its calculation

In the context of the Yellow River area of Henan Province,
ESV in the study region was classified into 11 distinct categories,
according to the Xiegaodi value equivalent method,
tailored to unique land use characteristics in this region (Xie
et al., 2017). This required modification of the correlation
coefficient of the value equivalent factor per unit area, as
formulated in:

Ei � 1
7
∑
k

i�1

mi × Pi × Ci

M
(4)

where Ei symbolizes the economic value of grain per unit area
(yuan/hm2), i is the crop type, mi, Pi andCi are mean sown area,
mean price and mean yield per unit crop area, respectively, k stands
for the quantity of all crops, and M is the total crop area.

ESV is further articulated as:

ESV � ∑
6

j�1
Si × Ei( ) (5)

where Si corresponds to the land use area associated with type i, and
Ei represents ESV corresponding to type i.

During 2000 to 2020, wheat, corn, and soybean were identified
as the principal grains cultivated in the Yellow River region of Henan
Province. The associated average price, yield, and sown area for
these crops were computed, leading to the derivation of the revised
coefficient, calculated at 1,380.14 RMB/hm2, following Eq. 4. It was
found that the ESV index corresponding to construction land
equaled zero (Zhang et al., 2022). Consequently, the ESV
coefficient of unit area along the Yellow River in Henan Province
was obtained, discounting the impact of construction land on the
ESV (Table 1).

3.4 Exploratory spatial data analysis

For a more refined analysis of the spatial distribution
characteristics of ESV, the research region was partitioned into
2,623 square grids, each measuring 5 km × 5 km. This division was
informed by existing research and allowed for exploratory spatial
analysis and additional operations, balancing the need for accuracy
with the goal of reducing computational labor (Su et al., 2020; Li
et al., 2021). A vital aspect of this analysis involved the use of the
spatial global analysis of the Moran index to express the spatial
aggregation distribution of ESV. Furthermore, a hot spot analysis
function was employed to identify significant distribution
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locations of high- and low-value regions within ESV space. This
characterization facilitated the discernment of the cold and hot
spot distribution pattern of ESV, enabling a subsequent
examination and interpretation of the underlying law.

The hot spot analysis functions by pinpointing statistically
significant hot spot and cold spot areas through the spatial
clustering method, utilizing the z-score and p-value as evaluative
metrics. The core algorithm is G*

i , expressed mathematically as:

G+
i �

∑
n

j�1
wijxj

∑
n

j�1
xj

(6)

where G+
i signifies the hot (cold) point cell value, xj represents

the attribute value of unit j, wij stands for the matrix of weight,
and n refers to the total quantity of units. G*

i denotes the z score,
where a larger z-score is indicative of a higher concentration
among the elements, constituting a hot spot region in space.
Conversely, a smaller z-score conveys a disparate degree of
aggregation among the elements, designating a cold spot
region in space.

4 Results

4.1 Changes of land use areas

As shown in Table 2, cropland, forest, and construction land are
the dominant types of land use in 2000–2020, constituting 55.68%,
24.72%, and 14.18% of the total area, respectively. During this
period, the following alterations in land use were observed:
Cropland and Grassland show a consistent decrease in area.
Forest and Water present an initial increase in area followed by a
decrease. Construction Land and Unused Land is featured by a
continuous increase in area. Water Area is relatively stable.

Examining the quantitative aspects of these changes, the following
was noted: Construction land increased by 3,617.22 km2, representing
44.30% of the total change. Cropland decreased by 3,518.09 km2,
amounting to 43.09% of the total change. Grassland shrank by
564.78 km2, constituting 6.92% of the total change. Forest expanded
by 439.75 km2, equivalent to 5.39% of the total change.Water area grew
by 24.16 km2, comprising 0.30% of the total change. Unused land area
escalated by 1.42 km2, accounting for 0.02% of the total change.

From the perspective of dynamic land use change (Table 2), an
analysis of the construction land and cropland from 2010 to

TABLE 1 ESV coefficients per unit area along the Yellow River region of Henan Province (RMB/hm2).

Primary type Secondary type Cropland Forest Grassland Water Unuse land

Supply Services Food production 1,525.05 322.03 322.03 903.99 6.90

Raw material production 338.13 740.67 473.85 503.75 20.70

Water supply −1801.08 381.84 262.23 7,507.95 13.80

Regulating services Gas regulation 1,228.32 2,429.04 1,665.37 2,891.39 89.71

Climate regulation 641.76 7,268.73 4,402.64 4,064.51 69.01

Purifying the environment 186.32 2,162.22 1,453.75 6,314.13 282.93

Hydrological regulation 2063.31 5,258.33 3,224.92 87,273.07 165.62

Support Services Soil conservation 717.67 2,958.10 2028.80 2,235.82 103.51

Maintaining nutrient circulation 213.92 225.42 156.42 172.52 6.90

Biodiversity 234.62 2,695.87 1844.79 7,190.52 96.61

Cultural Services Aesthetic landscape 103.51 1,196.12 814.28 4,568.26 41.40

Total ESV — 5,451.55 25,638.38 16,649.07 123,625.92 897.09

TABLE 2 Changes of LULC in 2000–2020.

LULC type Area/km2 Land change dynamics/%

2000 2010 2020 2000–2010 2010–2020 2000–2020

Cropland 36,517.47 35,369.91 32,999.39 −0.31 −0.67 −0.48

Forest 14,211.88 14,767.17 14,651.64 0.39 −0.08 0.15

Grassland 2,990.36 2,456.05 2,425.58 −1.79 −0.12 −0.94

Water 744.07 814.81 768.23 0.95 −0.57 0.16

Construction land 4,788.00 5,843.72 8,405.22 2.20 4.38 3.78

Unuse land 19.15 19.22 20.58 0.04 0.71 0.37
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2020 revealed significant alterations. The changes were quantified as
4.38% for construction land and −0.67% for cropland. These figures
were markedly higher than the values of 2.20% and −0.31% obtained
for the period from 2000 to 2010, illustrating a twofold increase in
the dynamic attitude of these land types. Additionally, the dynamic
attitude of grassland underwent a noteworthy transformation.
During the period from 2000 to 2010, the change was recorded
at −1.79%, whereas from 2010 to 2020, it diminished to −0.12%. This
change represents a 15-fold decrease in the dynamic attitude of
grassland over the time span considered.

Construction land is characterized by its fast expansion, which
was predominantly facilitated by the conversion of cropland and
grassland. Conversely, these areas were minimally augmented by
forest, water area, and unused land. This transformation can be
attributed to the acceleration of urbanization and agricultural
modernization, which have introduced new demands for the
utilization of cropland and construction land. Consequently,
these demands have precipitated continuous modifications in
land use patterns over time.

4.2 Analysis of driver contributions

Within the framework of the PLUS model, LEAS was employed
for determining contribution rates of driving factors to each type of
land use in 2000–2020 (Table 3), along with the spatial distribution
(Figure 3). The contribution rate data provide a significant measure
of the influence exerted by driving factors on land use types, with
values approaching 1 indicating an increasing impact of the
corresponding factor on the observed land use.

For cropland, temperature exerted the most substantial
influence. Appropriate temperatures are instrumental in crop
production, while an escalation in population density and GDP
amplifies the necessities for food supply and corresponding demand
for cropland (Zhang and Xie, 2019; Tian et al., 2022). In the case of

forest change, the predominant drivers were elevation, temperature,
and precipitation. Forests were primarily located in the western part
of the Yellow River region of Henan Province, an area typically
characterized by higher elevations, conducive temperatures, and
abundant precipitation. Temperature and population density
emerged as the central drivers of grassland change, signifying
that grasslands are responsive to temperature fluctuations and are
influenced by areas with elevated population densities (Liang et al.,
2021; Zhai et al., 2021; Tian et al., 2022). Construction to support
denser populations was the principal factor engendering changes in
water availability, encroaching on either cropland or grassland (Zhai
et al., 2021; Guo et al., 2022; Wang et al., 2022). In the context of
construction land changes, population density was the primary
driver, as increasing population densities necessitated additional
construction land to house the burgeoning populace (Tian et al.,
2022); this includes the requirement for specific distances to schools
and government resources to enhance living conditions, education,
and transportation accessibility. Collectively, assessment of drivers
influencing land use contribution underscored that elevation,
population density, and temperature were critical determinants in
land use conversion. This observation is congruent with prevailing
understanding and perceptions of land use dynamics, irrespective of
the specific type of land use.

4.3 Spatial distribution of ESV

The Moran index values for the Yellow River region within
Henan Province during the years 2000, 2010, and 2020 were
recorded as 0.674, 0.656, and 0.674, respectively. These positive
values indicate a positive correlation between ecosystem service
value (ESV) and an agglomeration trend.

In 2000, the ESV for this region amounted to 70,523.7 million
RMB; by 2010, it had increased to 71,306.7 million RMB, but in
2020, it fell to 69,917 million RMB. This pattern demonstrates an

TABLE 3 Contribution of drivers to each land use type for 2000–2020.

Divers Cropland Forest Grassland Water Construction land Unuse land

Elevation 0.0969 0.1623 0.1524 0.1816 0.1026 0.2661

Slope 0.0299 0.0493 0.0588 0.0101 0.0191 0.0392

Population density 0.0929 0.0691 0.1006 0.2559 0.1265 0.0680

GDP 0.0953 0.0822 0.0751 0.0712 0.0773 0.0587

Precipitation 0.0881 0.0867 0.0696 0.0612 0.0673 0.1930

Temperature 0.1217 0.1611 0.1616 0.1199 0.1043 0.0347

Soil 0.0467 0.0218 0.0452 0.0807 0.0498 0.0361

Distance to primary roads 0.0682 0.0628 0.0520 0.0429 0.0536 0.0587

Distance to highways 0.0632 0.0539 0.0451 0.0313 0.0543 0.0594

Distance to railways 0.0772 0.0699 0.0557 0.0417 0.0729 0.0518

Distance to hospitals 0.0826 0.0472 0.0407 0.0208 0.0618 0.0245

Distance to government 0.0709 0.0482 0.0606 0.0421 0.0903 0.0806

Distance to schools 0.0663 0.0855 0.0827 0.0406 0.1203 0.0291
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initial increase followed by a decline, and the overall ESV decreased
by 1,432 million RMB over the 20-year period (Table 4). This
decrease is indicative of the continual reduction in cropland and
grassland area, which contributed to the decline in ESV. Conversely,
the ESV of unused land did not exhibit significant fluctuations.
Specifically, the ESVs of cropland and grassland decreased by
1917.9 million RMB and 940.3 million RMB, respectively, while
those of forest and water area increased by 1,127.5 million RMB and
298.7 million RMB, respectively.

The ESV distribution along the Yellow River in Henan Province
was assessed using the spherical kriging interpolation method.

Subsequently, the ESV from 2000 to 2020 was categorized into
six intervals employing the natural discontinuities method
(Figure 4), enabling a spatial analysis and evaluation. Generally,
the spatial distribution of ESV in this region remained relatively
stable. Areas with high values are clustered in southern parts of
Sanmenxia and Luoyang cities, as well as the northern regions of
Jiyuan and Jiaozuo cities. These locales are primarily characterized
by extensive grassland and forest coverage, and the ecosystem is
comparatively intact. The strategy of converting cultivated land back
to forest also contributed to an increase in forestland area,
incrementally enhancing ESV. Conversely, areas with low values
are in the northern parts of Luoyang, Zhengzhou, Jiaozuo, Xinxiang,
and Hua County, along with Puyang and Kaifeng cities. The
abundance of cropland and construction land in these areas has
significantly compromised the ecosystem. Human activities related
to production and daily living have inflicted serious damage,
resulting in a substantial negative impact on ESV.

4.4 Projections of different types of
land uses

4.4.1 Validation and assurance of simulation model
Employing land use records from the years 2000 and 2010 as

foundational data, this research integrated development
probabilities of influential factors and the proportion of
individual land use types to the aggregate classification into the
PLUS model. Simulations were executed to depict land use
categorizations for the years 2010 and 2020, with the ensuing
outcomes being cross verified against real-world instances. The
analysis manifested an overall precision of 89.7% and 88.7% for
2010 and 2020 respectively, with corresponding kappa statistics of
0.820 and 0.811, and FOM metrics of 0.136 and 0.088. A kappa
statistic exceeding 0.8 (Huang et al., 2019; Lin W. et al., 2020b)
corroborated the efficacy of the PLUS model simulation in the
Henan Province’s Yellow River zone, substantiating the authenticity
of the methodology for foreseeing future transformations in land
utilization.

4.4.2 Land use type projections for
multiple scenarios

To investigate the evolving trends of population, economy, and
regulatory influence on land use, this research simulated land use
type distributions under three distinct scenarios in Henan Province’s
Yellow River region for 2030.

The natural development scenario (NDS) holds the
development likelihood for 2020–2030 constant with the
probability of 2010–2020, disregarding additional variables. In
contrast, the cropland protection scenario (CPS) acknowledges
the vital need to conserve cropland near the Yellow River in
Henan Province. It is necessary to ensure the reasonable
expansion of construction land, but also to strictly observe the
quantity of cultivated land. This means mitigating the probability
of converting forestland and cropland to construction land by 30%,
while simultaneously augmenting the construction land’s
conversion probability to cropland by 10%. Other lands follow
the natural trend of development. Meanwhile, the ecological
protection scenario (EPS) is aligned with contemporary ecological

FIGURE 3
Thirteen types of driving factors affecting LULC.
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conservation demands, prioritizing land use forms that fortify
ecosystem stability, emphasis needs to be placed on increasing
the amount of grassland, forest, and cropland. Consequently
reducing the probability of converting grassland, forest, and
cropland to construction land by 40% while raising the
probability of construction land to cropland by 40%. Other lands
follow the natural trend of development. The domain weight was
determined according to land use type proportions.

Under NDS, a comparative study with 2020 reveals a reduction
in cropland by 1,874.84 km2, forest by 132.26 km2, and grassland by
21.82 km2. Conversely, expansions in water and construction land
areas are observed, increasing by 39.88 km2 and 1999.02 km2,
respectively (Figure 5; Tables 5, 6). In monetary terms, ESV

declined by 921.0 million RMB during this period. This
reduction comprises a decrease in cropland ESV by
1,022.1 million RMB, offset partially by an increase in water ESV
by 493.1 million RMB. The accelerated growth of construction land,
encompassing substantial portions of cropland, forest, and
grassland, has instigated significant concerns for both ecological
integrity and food safety. The emergent data points to a pronounced
structural disequilibrium among the various land use categories.

Under CPS, and in comparison to the state in 2020, there were
reductions in the areas of cropland by 947.44 km2, forest by
111.13 km2, and grassland by 27.2 km2. Concurrently, increments
were observed in water and construction land areas, increasing by
27.46 km2 and 1,058.31 km2, respectively (Figure 5; Tables 5, 6). In

TABLE 4 ESV changes during 2010–2020 (×108 RMB/hm2).

LULC type ESV ESV change

2000 2010 2020 2000–2010 2010–2020 2000–2020

Cropland 199.077 192.821 179.898 −6.256 −12.923 −19.179

Forest 364.370 378.606 375.644 14.237 −2.962 11.275

Grassland 49.787 40.891 40.384 −8.896 −0.507 −9.403

Water 91.986 100.731 94.973 8.745 −5.758 2.987

Construction land 0.000 0.000 0.000 0.000 0.000 0.000

Unuse land 0.017 0.017 0.018 0.000 0.001 0.001

Total ESV 705.237 713.067 690.917 7.830 −22.150 −14.320

FIGURE 4
Spatial ESV distribution during 2000–2020.
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relation to NDS forecasted for 2030, the overall ESV experienced a
growth of 413.8 million RMB. This alteration is characterized by
augmentations in the areas of cropland, forest, and grassland,
accompanied by a moderated expansion rate in construction
land. Specifically, the decline in ESV pertaining to cropland was
halved in comparison to the NDS, a finding that is congruent with
the objectives of cropland conservation, leading to an enhanced
rationalization of the land use architecture.

Under EPS, a comparative analysis with 2020 reveals a decrease in
cropland area by 406.38 km2, forest by 98.17 km2, and grassland by

10.87 km2. Concurrently, the construction land and water areas have
increments of 497.28 and 18.07 km2, respectively (Figure 5; Tables 5, 6).
When contrasted with the 2030 cropland protection scenario, the
overall ESV rose by 239.3 million RMB. This includes a decrease in
the areas of cropland, construction land, and grassland equal to 2/5 of
the reduction observed in the CPS, and a 4/5 reduction in forest area.
Such findings point to an optimized land use structure within the EPS,
emphasizing a harmonized balance between economic demands and
ecological preservation. Although the overall ESV contracted by
267.9 million RMB relative to 2020, a restorative trend is

FIGURE 5
Spatial LULC distribution in 2030.

TABLE 5 Projected LULC area and pixels under three different scenarios in 2030 (km2 and numbers).

Year Scenarios Cropland Forest Grassland Water Construction land Unuse land

2020 — 32,999.39 14,651.64 2,425.58 768.23 8,405.22 20.58

2030 NDS 31,124.55 14,519.38 2,393.76 808.11 10,404.24 20.58

Pixels 34,582,834 16,132,649 2,659,741 808,831 11,649,336 22,863

CPS 32,051.95 14,540.51 2,398.34 795.69 9,463.53 20.61

Pixels 35,613,278 16,156,120 2,664,818 814,207 10,584,933 22,899

EPS 32,593.00 14,553.47 2,414.70 786.30 8,902.50 20.66

Pixels 36,214,447 16,170,517 2,683,004 873,672 9,891,663 22,951

2020–2030 NDS −1874.84 −132.26 −31.82 39.88 1999.02 0.00

CPS −947.44 −111.13 −27.24 27.46 1,058.31 0.03

EPS −406.38 −98.17 −10.87 18.07 497.28 0.08
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discernible, signaling that policies fostering the transition of cropland to
forest coupled with sustainable development initiatives have
engendered a symbiotic enhancement for both ecological
stewardship and socioeconomic sustainability.

4.4.3 ESV changes over space
The hot spot analysis conducted for the three scenarios within

the study area divulged distinct patterns (Figure 6). Under NDS, hot
spot regions were primarily clustered and largely confined to areas
where ecosystem integrity was most robust. Conversely, cold spot
regions were predominantly localized within Zhengzhou, Xinxiang,
and Jiaozuo cities, where urbanization processes have been
expedited. The consequential vast expansion of construction land

has wielded a considerable impact on ecosystem functionality,
culminating in a decline in ESV. In the context of CPS, both
cold spot and hot spot concentrations manifested a minor
increment, reflective of the fact that containment of cropland and
forest areas can decelerate the rate of ESV degradation. Lastly, under
EPS, clustering of cold spots escalated more markedly, and the
spatial clustering of these cold spots intensified.

5 Discussion

The correlation between land use structure and ESV is
pronounced, with varying degrees of impact on ESV. Utilizing

TABLE 6 Total ESV in 2030 compared with 2020 (×108 RMB/hm2).

LULC type ESV ESV change

2030NDS 2030CPS 2030EPS 2020-2030NDS 2020-2030CPS 2020–2030EPS

Cropland 169.677 174.733 177.682 −10.221 −5.165 −2.215

Forest 372.253 372.795 373.127 −3.391 −2.849 −2.517

Grassland 39.854 39.930 40.203 −0.530 −0.454 −0.181

Water 99.904 98.368 97.208 4.931 3.395 2.234

Construction land 0.000 0.000 0.000 0.000 0.000 0.000

Unuse land 0.018 0.018 0.019 0.000 0.000 0.001

Total ESV 681.707 685.845 688.238 −9.210 −5.073 −2.679

FIGURE 6
Spatial distribution of ESV hot/cold spots across various scenarios in 2020–2030.
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the Markov-PLUS coupled model, it is feasible to not only enhance
the land use structure but also to balance both quantitative and
spatial optimization objectives. This harmonization contributes to
the dual goals of fostering ecological civilization construction and
sustaining social and economic development, thereby promoting the
synergistic evolution of ESV. In the context of the cropland
protection and ecological protection scenarios, the simulated ESV
exceeded that of the 2030 natural development scenario. This
outcome signifies the capacity of combining Markov and PLUS
models to refine land-use patterns and capitalize on the benefits
associated with ESV. Through a detailed hot spot analysis of ESV in
2030 across the three scenarios, specific cold spot and hot spot
regions were identified under varying conditions. By managing these
targeted areas and concentrating on strategic renovation, the model
facilitates precise, well-reasoned utilization of land resources.

5.1 A coupled model of land use along the
Yellow River region in Henan Province

For urban regions within the Yellow River Basin, the central
dilemma in accessing ESV lies in preserving ecosystem stability to
the greatest extent possible, all the while facilitating rapid economic
expansion and ensuring sustainability. A variety of coupled models
have been deployed in major urban centers or ecological function
zones; however, due to the pronounced disparities in the geographic
characteristics such as " lakes, fields, forests, rivers, mountains, and
grasslands” across different cities, these coupled models are not
universally applicable. Tailored strategies must be crafted in
alignment with the unique conditions of the study area.

Leveraging the foundational Markov model, the PLUS model was
integrated to architect a coupled land use model specifically for the
Henan Province region along the Yellow River. Thismodel is attuned to
the particular attributes of the study region, allowing for the formulation
of regionally specific scenarios and the attainment of predefined
objectives. By simulating land use data across three disparate
scenarios, comparisons were made regarding both the changes in
land use types and the spatial distribution of ESV’s cold and hot
spot areas. The establishment of diverse land use scenarios through this
method offers valuable insights that can guide comprehensive land use
planning and regional ecological preservation in the future.

5.2 Study limitations and future research

In the broader context, governmental policies are pivotal in
shaping changes in land use, with specific actions such as converting
farmland to forestry having substantial impacts on ESV.

Furthermore, this study undertook a correction process for ESV
coefficients to enhance their accuracy within China, particularly in
the Henan Province region along the Yellow River.
Notwithstanding, the study established the correction coefficient
for construction land at zero, meaning it did not account for the
extent of construction land’s influence on ESV. This omission only
partially represents the true impact on ESV of construction land
when deployed, resulting in residual uncertainty in the findings.
Significant spatial heterogeneity characterizes the Yellow River
region in Henan Province, primarily due to substantial

environmental variations. To accurately reflect these regional
differences, it is advisable to refine spatiotemporal coefficients for
ecosystem service values using data such as net primary productivity
(NPP) and precipitation. Furthermore, conducting accuracy
assessments through comparative analysis of simulation outcomes
under different domain weights is essential to enhance the credibility
of future land use simulations and validate the model’s reliability.
Consequently, integrating a variety of factors in future land use
planning is crucial for developing more accurate predictive models
and thereby deriving more precise outcomes. Additionally,
implementing standardized, precise, and sustainable strategies
will promote the effectiveness of land use planning and ecological
conservation efforts in the region.

6 Conclusion

In addressing the challenge of population and economic growth
impacting ecosystem service value (ESV) within large neutral cities,
this study proposed the Markov-PLUS coupled model to sustain
ESV stability through the optimization of land use structure. The
model’s accuracy was validated using data from the Yellow River
region of Henan Province. This investigation encompassed an
analysis of changes in land area, the effect of key driving factors
on land use, and ESV trends in the Yellow River region of Henan
Province from 2000 to 2020. Additionally, the study simulated types
of land use under three distinct scenarios for 2030 and performed
cold and hot spot analysis of ESV for discerning spatial and temporal
distribution laws of ESV.

The findings revealed that elevation, population density, and air
temperature were primary contributors to changes in land use during
2000–2020. The occupation of significant amounts of cropland and
grassland by rapidly expanding construction land led to a decrease in
ESV by 1.432 billion RMB over this period. High-value ESV zones
corresponded to areas with relatively intact ecosystems, while low-value
ESV regions were predominantly found in cropland and construction
land, where human activities exerted considerable influence on the
ecosystem. Land use for 2030 was simulated and assessed. In the
ecological protection scenario, optimization of the land use structure
was achieved along with a balanced consideration of economic and
ecological aspects, leading to a synergistic realization of ecological
civilization construction and sustainable socioeconomic development.
Concurrently, hot spot analysis showed relative stability in cold and hot
spot areas under various 2030 scenarios. Notably, under the ecological
protection scenario, there was a more pronounced increase in cold spot
concentration, coupled with higher agglomeration.

Indeed, the utilization of the Markov-PLUS coupled model,
combined with multiscenario analysis, offers a valuable reference
framework for the sustainable growth of large and medium-sized
cities, land use optimization, and ESV preservation. Within the
principles of territorial spatial planning, recognition of regional
disparities and specificities is integral, as is the bolstering of
ecological protection, to ascertain the sustainable utilization of
land resources, thereby culminating in the high-quality
advancement of large and medium-sized urban areas. In areas
where ecosystems are thriving, it is prudent to further enhance
the ecosystem service functions. Give full play to the advantages of
different regions, increase the coverage of woodland, grassland and
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other vegetation, and maintain the stability of the ecosystem to the
maximum extent. Conversely, in locales experiencing a swift
diminishment in cropland, stringent adherence to cropland
protection measures is paramount, with primary focus on
controlling and diminishing the loss of ecosystem service
functions. At the same time, ensure the effective expansion of
urban development boundaries, and coordinate the relationship
between land use, urban expansion and ecological environment
in the process of urban development along the Yellow River region
of Henan Province. The achievement of regional governance
mandates the creation of an ecological coordinated development
mechanism and the formulation of a novel blueprint for ecological
protection in the Yellow River region of Henan Province.

Future inquiries necessitate a consideration of governmental
decisions and an enhancement of the correction techniques for the
ESV coefficients. The derivation of a more holistic method for
attaining the corrected coefficients is required, as this would
furnish more precise ESV data to steer the future planning of
comprehensive land use. Such precision is instrumental in
fostering expeditious and stable development across ecological,
economic, and agricultural domains within the Yellow River
region of Henan Province.
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