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Hydropower stations are important infrastructures for generating clean energy.
However, they are vulnerable to natural disasters such as earthquakes, which can
cause severe damage and even lead to catastrophic failures. Therefore, it is
essential to develop effective strategies formaximizing hydropower station safety
against earthquakes. To evaluate the potential shear rate of surrounding rock
layers, the shear wave velocity (Vs) parameter can be used as a useful tool. This
parameter helps to determine the velocity at which shear waves travel through
the rock layers, which can indicate their stability and susceptibility to earthquakes.
This study will investigate the significance of the Vs parameter in evaluating the
potential shear rate of rock layers surrounding hydropower stations and how it
can be used to ensure their safety and efficiency in earthquake-prone regions.
Furthermore, a novel approach is proposed in this research, which involves using
extreme learning machine (ELM) technology to predict Vs and enhance the
seismic safety of hydropower stations. The ELM model predicts the Vs of the
soil layers around the hydropower station, a crucial factor in determining the
structure’s seismic response. The predicted Vs is then used to assess seismic
hazard and design appropriate safety measures. The ML-ELM model
outperformed both the ELM and empirical models, with an RMSE of
0.0432 μs/ft and R2 of 0.9954, as well as fewer outlier data predictions. This
approach shows promise for predicting Vs in similar environments, and future
research could explore its effectiveness in other datasets and practical
applications.
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1 Introduction

Shear wave velocity (Vs) is an important parameter in rock
mechanics and earthquake engineering as it helps to determine the
potential shear rate of the surrounding rock layers (Goodman, 1991;
Barton, 2006). The Vs are a type of seismic wave that move
perpendicular to the direction of the wave propagation (Ohta
and Goto, 1978). They are responsible for causing the most
damage during earthquakes as they can create significant ground
motion and lead to soil liquefaction and landslides (Keefer, 1984;
Verma et al., 2014). By measuring the Vs, engineers can determine
the stability of the rock layers and their susceptibility to earthquakes
(Hussien and Karray, 2015). Rock layers with high Vs are more
stable and less likely to experience significant shear rates during an
earthquake. In contrast, rock layers with low Vs are more susceptible
to damage and can experience significant shear rates during an
earthquake (Lee and Trifunac, 2010). In hydropower systems, the
stability of the surrounding rock layers is essential for ensuring the
safety and effectiveness of the system (Jiang et al., 2019). A stable
foundation is necessary for supporting the weight of the dam,
turbine, and other components of the hydropower system (Han
et al., 2022). If the rock layers are unstable, they can shift or deform
during an earthquake, leading to damage to the system (Yao
et al., 2022).

Therefore, by evaluating the Vs parameter, engineers can
determine the potential shear rate of the surrounding rock layers
and take appropriate measures to ensure the safety and effectiveness
of hydropower systems in earthquake-prone areas (Li et al., 2022).
This may involve strengthening the foundation, adding additional
support, or implementing other measures to mitigate the impact of
earthquakes on the system (Antonovskaya et al., 2019). The Vs is a
important parameter in evaluating the potential shear rate of
surrounding rock layers and ensuring the safety and effectiveness
of hydropower systems in earthquake-prone areas (Siegel, 2016). By
using this parameter, engineers can determine the stability of the
rock layers and take appropriate measures to mitigate the impact of
earthquakes on the system (Zheng et al., 2021). Traditional methods
for predicting Vs rely on laboratory tests or field measurements,
which are time-consuming and expensive (Maleki et al., 2014; Adjei
et al., 2020). Moreover, these methods may not provide sufficient
spatial coverage or resolution to capture local variations in soil
properties.

The Vs data gathered from vertical seismic profile (VSP)
petrophysics well logging can be applied as Vs evaluation for the
purpose of hydropower station safety against earthquakes (Liu et al.,
2010). The VSP petrophysics well logging is a technique used to
measure the subsurface properties of rocks and soil layers (Shao
et al., 2022). It involves drilling a borehole and lowering a geophone
or accelerometer to measure the velocity of sound waves and Vs as
they travel through the subsurface layers. The data collected from
VSP petrophysics well logging provides detailed information about
the subsurface structure, including the Vs (Salahdin et al., 2022).
Therefore, it can be applied as a reliable tool for evaluating
hydropower station safety against earthquakes.

Presently, the field of machine learning (ML) is witnessing
remarkable growth in the domains of engineering, tool
development, and management, which has demonstrated its
efficacy in the realm of construction management and risk

evaluation of hydropower structures (Cao et al., 2023). This
technology holds immense promise in enabling proactive safety
control by using advanced data analytics to monitor environmental
conditions and detect potential safety hazards in real-time, thereby
averting catastrophic events and ensuring the safety of dams (Hariri-
Ardebili and Pourkamali-Anaraki, 2018a). One wayML can assist in
this task is by detecting patterns in the data that human analysts
might miss. For example, algorithms can learn to recognize subtle
changes in seismic activity that might indicate an impending
earthquake, or identify correlations between weather conditions
and seismic events (Hariri-Ardebili and Pourkamali-Anaraki,
2018b). Another important application of ML is in developing
models to simulate the behavior of hydropower structures during
an earthquake (Wang et al., 2021). This could help engineers design
structures that can better withstand seismic forces, or improve
emergency response plans to minimize the risk of
catastrophic failure.

This research uses a novel approach using vertical seismic profile
data, typically collected to assess subsurface formations in oil and gas
wells, near various dam construction sites. The innovative
methodology aims to facilitate geotectonic assessment of the
foundation formations of dams and hydropower stations.
Previous studies have not utilized this model for risk assessment
in hydropower facilities. Previous research has mainly concentrated
on estimating shear wave velocity using standard petrophysical data
to determine rock properties in geosciences and petroleum
engineering. By using this data to evaluate the geological
structures underlying these infrastructure projects, researchers
can gain valuable insights into potential risks and challenges
associated with their construction and operation. This approach
represents a significant advancement in geotechnical engineering,
enabling more accurate and comprehensive evaluations of
foundation formations important for ensuring the safety and
stability of dams and hydropower stations. Additionally, the
research introduces a new methodology using Extreme Learning
Machine (ELM) models to predict the Vs of rock layers in
hydropower station foundations. The Vs is important in
determining the seismic response of structures and plays a vital
role in enhancing seismic safety. The proposed approach uses ELM-
enabled Vs prediction to assess seismic hazards and design
appropriate safety measures. By accurately predicting Vs, this
method can assist engineers and policymakers in making
informed decisions to mitigate potential risks associated with
seismic activity.

1.1 Research background

There is ongoing research into using ML techniques to help
predict and mitigate the risk of earthquakes threatening hydropower
stations. These techniques involve analyzing a wide range of data
sources, including seismic data from sensors on the ground, satellite
images, weather data, and historical records of earthquakes.

Kien-Trinh T., et al. (2020) in their study presents a new
approach for deformation predicting of hydropower dams using
a hybrid method that combines deep learning with a coronavirus
optimization model. This technique enhances the performance of
the long short-term memory (LSTM) model by improving its ability
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to capture nonlinear relationships between inputs and outputs. The
experiment was tested on real-world data from the Hoa Binh
hydropower dam in Vietnam and achieved promising predicting
results (Bui et al., 2022). Rico et al. (2019) emphasized the
significance of safety in managing dams and explored the
potential of ML in dam safety control. They suggested that
advanced data analytics can be used to monitor environmental
conditions and detect safety risks, allowing for proactive safety
control. By collecting and analyzing real-time data, this approach
can effectively prevent disasters and ensure dam safety (Rico et al.,
2019). Tang et al. (2022) proposes a Bayesian network model to
analyze dam risk in their paper. The approach integrates MLmodels
and domain knowledge. The study explores the potential of using
such models in disaster risk reduction. The authors suggest that the
proposed model can help policymakers make more informed
decisions on dam safety (Tang et al., 2022).

Some researchers put more emphasis on the analysis of ML
models based on Vs and seismic responses. Vs data and seismic
responses of sensors are important for predicting earthquakes using
ML because they provide key indicators of the state of the Earth’s
subsurface. By analyzing these data, researchers can identify patterns
and correlations that may indicate an increased likelihood of an
earthquake occurring. The study by Zhang et al. (2021) emphasizes
the potential of deep learning techniques, specifically Deep Neural
Network (DNNs), in enhancing the precision and dependability of
soil liquefaction prediction. The researchers aimed to examine the
effectiveness of DNNs in predicting soil liquefaction using Vs data.
They gathered data from various sources, including laboratory tests
and field measurements, and used a five-layer DNNmodel to predict
LPI values based on Vs (Zhang et al., 2021).

The study by Won et al. (2021) emphasizes the significance of
accurately predicting potential damages to building structures
caused by seismic activities. The authors aimed to address this
limitation by developing a new ML-based approach that
considers soil-structure interaction effects. The authors developed
a deep learning-based approach that incorporates building
characteristics, soil properties, and ground motion data. The
proposed model was trained and evaluated using data from real-
world earthquakes and compared with existing seismic damage
prediction methods (Won and Shin, 2021).

Derakhshani and Foruzan (2019) demonstrate the potential of
deep learning techniques for predicting strong ground motion
parameters, which can have significant implications for seismic
hazard assessment and infrastructure design. The authors
propose a deep neural network that is trained using a large
database containing strong motion records from various
earthquakes around the world (Derakhshani and Foruzan, 2019).
Kim et al. (2020) explore the development of ground motion
amplification (GMA) models for Japan using ML techniques.
GMA models are commonly used to evaluate seismic hazards
and help with site selection for important infrastructure. They
compare the performance of several ML models and assess the
accuracy of their developed GMA models. The study highlights the
potential of usingML techniques in earthquake engineering research
for developing accurate and efficient predictive models (Kim et al.,
2020). Shreedharan et al. (2021) in their study explores how ML
techniques can be used to predict the evolution of lab earthquakes’
timing and shear stress using active seismic monitoring. The study

emphasizes the potential of usingMLmodels to improve earthquake
predicting in the future (Shreedharan et al., 2021).

The current research stands out as superior to previous literature
in several ways. Firstly, the data acquisition method used in this
study is highly advanced and sophisticated, enabling researchers to
collect data on the actual depth of the rock formation. This level of
precision is unparalleled in previous studies, which relied on less
accurate methods of data collection. Additionally, the continuous
data collection approach used in this research is a significant
improvement over previous studies that only gathered data at
specific intervals. Secondly, the current study relies on the
specific characteristics of the foundation stone to withstand
overload, which is a important factor in assessing the potential
risks for a hydropower complex. This approach is a marked
improvement over previous studies that did not consider this
important factor. Finally, the ability to detect the maximum value
of the shear modulus for a rock bed is a significant advancement in
this field. This information is vital in assessing potential risks and
designing an effective hydropower complex. Overall, the current
research is superior to previous literature due to its advanced data
acquisition method, continuous data collection, and focus on
important factors that were previously overlooked.

2 Methodology

The methodology that has been put forward comprises three
primary stages, namely, data collection, ELM-based prediction of
Vs, and assessment of seismic hazard through the evaluation of the
shear modulus of foundation rock. The first step involves gathering
relevant data from various sources to ensure that the subsequent
analysis is comprehensive and accurate. The second step entails
using the ELM-based approach to predict the Vs, which is a
important parameter in assessing seismic hazards. This method
has been chosen due to its proven effectiveness in accurately
predicting Vs in various geological settings. Finally, the third step
involves evaluating the seismic hazard based on the predicted Vs and
other relevant factors such as shear modulus magnitude and
frequency. This comprehensive methodology provides a robust
framework for accurately assessing seismic hazards, which is
essential for ensuring public safety and minimizing damage
caused by earthquakes.

2.1 Data collection and description

The data set of this research exhibits the seismic characteristics
and strength properties of the rock formations of the foundation of
hydropower plants. It contains more than 3,200 data points that
have obtained the electrochemical, physical, radiogenic and seismic
characteristics of the ground rock mass through the petrophysical
well logging data of the boreholes from an oil field in the East of Iran
(Figure 1). Nine input variables are used for analysis including:
Measured Depth (MD), which denotes the depth at which specific
measurements or observations are taken in a wellbore or formation.
Rock Type (RT) classifies geological formations based on their
composition, texture, and other characteristics. Gamma Ray Log
(GR) measures gamma radiation emitted by the formation, aiding in
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lithology identification and log correlation. Rock Density (RHOB)
quantifies the density of the formation, assisting in porosity and
lithology estimation. Thermal Neutron Porosity (TNPHI) measures
the formation’s porosity using thermal neutrons, revealing fluid
presence within the rock. Shallow Electrical Resistivity (Hall-S)
gauges the formation’s resistance to electrical current flow at a
shallow depth, inferring lithology and fluid content. Deep Electrical
Resistivity (Hall-D) measures the formation’s resistance to electrical
current flow at greater depths, furnishing information on formation
properties. Photo-electric Index (PEF) measures the rock’s response
to incident photons, commonly used for lithology and mineral
composition identification. Compressive Wave Velocity (Vp)
represents the velocity of compressional waves traveling through
the formation, offering insights into rock stiffness and porosity. The
dataset also includes Vs recorded during vertical seismic logging as
well as full-set borehole logging data. A summary of the data
description of the research is presented in Table 1.

2.2 Machine learning models

This study uses four powerful machine learning models to
estimate Vs parameters. Each of the proposed models possesses
different flexibilities and operational mechanisms, competing with
each other for better performance and higher accuracy after
adaptation and training with the dataset used in this research.

2.2.1 Extreme learning machine (ELM)
ELM is a single-hidden layer feedforward neural network

(SLFN) paradigm developed for efficient learning and

generalization (El-Bably and Fouad, 2022). Unlike traditional
neural network training methods which iteratively adjust all
parameters, ELM uniquely fixes the hidden layer parameters and
only optimizes the output weights, leading to significantly faster
training times (Huang et al., 2019). ELM aims to address the
limitations of traditional neural networks, such as slow
convergence and local minima entrapment (Kaur et al., 2023).
The core principle behind ELM is the random assignment of
input weights and biases, followed by the determination of
output weights through a straightforward linear optimization
process (Deng et al., 2015). This methodology leverages the
universal approximation capability of SLFNs, ensuring that
random hidden nodes can approximate any continuous function
given a sufficient number of neurons. Figure 2 illustrates the
operational mechanism and pattern recognition, along with the
schematic architecture of the ELM model.

2.2.2 Multi-layer extreme learning machine
(ML-ELM)

Multi-Layer Extreme Learning Machine (ML-ELM) extends the
conventional Extreme Learning Machine (ELM) by incorporating
multiple hidden layers, thus enhancing its capacity to model
complex data patterns (Baghirli, 2015). The ML-ELM retains the
core advantage of ELM—efficient training—while exploiting deep
architectures for improved feature extraction and representation
(Wang et al., 2019). ML-ELM combines the fast-training advantage
of ELM with the deep learning concept of hierarchical feature
learning (Tang et al., 2014). By stacking multiple layers of ELM,
each layer learns an abstract representation of the input data,
progressively capturing higher-order features. This deep

FIGURE 1
Graphical location of the study field in southwest Iran for prediction of Vs to determination of the and enhance the seismic safety of
hydropower stations.
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architecture enables ML-ELM to handle more complex functions
and patterns compared to single-layer ELM. Figure 3 illustrates the
operational mechanism and pattern recognition, along with the
schematic architecture of the ML-ELM algorithm model.

2.2.3 Multi-layer perceptron neural network
(MLP-NN)

The MLP-NN is a fundamental architecture in deep learning,
characterized by multiple layers of interconnected neurons (Zhang
et al., 2023). It is a versatile model capable of learning complex non-

linear relationships in data, making it widely applicable in various
domains such as image recognition, natural language processing,
and predictive modeling (Garcia et al., 2005). MLP-NN consists of
an input layer, one or more hidden layers, and an output layer
(Alqadhi et al., 2021). Each layer, except the input layer, contains
neurons that are interconnected with neurons from the previous and
subsequent layers (Alqadhi et al., 2021). The network learns by
adjusting the weights and biases of connections between neurons
through a process called backpropagation, optimizing a chosen loss
function. Figure 4 illustrates the operational mechanism and pattern

TABLE 1 Data description for prediction of Vs to determination of the and enhance the seismic safety of hydropower stations.

Variable Abbreviation Max Min Mean SD Var.

Measured depth MD 3417.7 3642.4 3229.05 50.59 2559.67

Rock type (encoded) RT 5 1 2.5 4.23 3.55

Gamma ray log GR 106.24 1.10 16.50 18.67 348.43

Rock density RHOB 3.17 1.20 2.58 0.17 0.03

Thermal neutron Porosity TNPHI 90 40 55 0 0

Shallow electrical resistivity Hall-S 14.34 0.71 4.20 2.95 8.71

Deep electrical resistivity Hall-D 15.21 0.5 4.63 3.43 3.22

Photo-electric index PEF 10.04 3.17 4.78 1.82 1.77

Compressive wave velocity Vp 120.72 38.54 53.30 7.14 7.15

Shear wave velocity Vs 2.94 1.46 2.29 0.31 0.10

FIGURE 2
Graphical illustration of the ELM for predicting Vs to determination of the and enhance the seismic safety of hydropower stations.
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recognition, along with the schematic architecture of the MLP-
NN model.

Multi-layer Perceptron (MLP) Neural Networks andMulti-layer
Extreme Learning Machines (ELMs) are both prominent models in
the realm of artificial neural networks, yet they differ significantly in
nature, working mechanisms, and applications (Afzal et al., 2024).
MLP, a classic neural network architecture, consists of multiple
layers of interconnected neurons, each layer transforming the input
data successively to generate complex representations
(RamaKrishna et al., 2014). Through backpropagation, MLP
optimizes its weights to minimize prediction errors, making it
suitable for tasks requiring high accuracy but susceptible to
overfitting and slow training due to iterative optimization. In
contrast, Multi-layer ELMs, an advancement in the ELM
paradigm, use a single-layer feedforward network followed by a
random projection to a higher-dimensional space, facilitating rapid
training by directly solving the output weights. While MLPs excel in
tasks like image recognition and natural language processing due to
their ability to capture intricate patterns, Multi-layer ELMs are
favored in scenarios where computational efficiency and
scalability are crucial, such as large-scale data processing and
real-time applications like speech and gesture recognition.

2.2.4 Multiple linear regression (MLR)
Multiple Linear Regression (MLR) is a statistical method used to

model the relationship between multiple independent variables and
a single dependent variable (Zaefizadeh et al., 2011). It is widely used
in data science and machine learning for predictive modeling, where
the goal is to estimate the value of the dependent variable based on
the values of the independent variables (Zare Abyaneh, 2014).

Independent variables. MLR assumes a linear relationship
between the independent variables (X1, 2, . . . ,Xp) and the
dependent variable (Y). Mathematically, it can be represented as
(Eq. 1) (Shams et al., 2021):

Y � β0 + β1X2 + . . . + βpXp + ε (1)

Where:Y is the dependent variable, X1,X2, . . . ,Xp are the
independent variables, β0, β1, β2, . . . , βp are the coefficients
representing the relationship between the independent and
dependent variables, and ε is the error term assumed to follow a
normal distribution with mean 0 and constant variance. Figure 5
illustrates the operational mechanism and pattern recognition, along
with the schematic architecture of the MLR model.

2.3 K-fold cross-validation technique

Cross-validation is an important method for assessing the
effectiveness of ML models. During this process, data is
segmented into both training and testing sets, which are used to
train and evaluate the model’s performance (AlBadawy et al., 2018;
Schratz et al., 2019). This process can be carried out multiple times
until the model has been thoroughly tested. A common variation of
cross-validation is k-fold cross-validation, where data is partitioned
into k subsets (Owen and Perry, 2009). During each iteration of the
process, the model is trained on a different k-1 of these subsets while
the remaining subset is used as the test set to assess the resulting
performance (Owen and Perry, 2009). This process is repeated k
times and the results are averaged to give an overall estimate of the

FIGURE 3
Graphical illustration of the ML-ELM for predicting Vs to determination of the and enhance the seismic safety of hydropower stations.
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FIGURE 4
Graphical illustration of the MLP-NN for predicting Vs to determination of the and enhance the seismic safety of hydropower stations.

FIGURE 5
Graphical illustration of the MLR for predicting Vs to determination of the and enhance the seismic safety of hydropower stations.
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model’s performance. The cross-validation technique is used to
avoid overfitting in ML models whereas provides an estimate of a
model’s performance on unseen data, which can help to identify
overfitting.

3 Results and discussion

3.1 Implementation of cross validation

The process of evaluating an Extreme Learning Machine
(ELM) model involves selecting the best architecture and data
subsets for training and testing. One method for choosing
subgroups involves randomly allocating 30% of the data
records to the test subset and the remaining 70% to the
training subset. However, this approach caused overfitting
throughout the feature selection method, resulting in some
characteristics having an excessive impact on predictions. The
7-fold cross-valid technique was applied as part of a more
effective strategy to deal with this issue. The dataset was split
using this method into seven distinct, non-overlapping segments,
of which one was chosen as an assessment subset and the other six
were designated as the training subset. The model with the lowest
RMSE to predict Vs versus recorded Vs was chosen after the ELM

model was tested 70 times (10 times per training/test subset
combination). Every of the 10 training/test sample mixtures
underwent the same procedure, and the outcome of the
investigated feature selection was judged based on the average
of the 10 lowest RMSE scores acquired over the course of seven
iterations. The 7-fold validation sequence is depicted in Figure 6.
The overfitting issue during feature selection was resolved by
using the 7-fold cross-validation method, which led to the ELM
model’s predictions being more accurate and dependable.

3.2 Error parameters

The utilization of metrics such as mean square error (MSE),
standard deviation (SD), absolute average relative error (AARE),
root mean square error (RMSE), R-square, and average relative error
(ARE) can provide valuable insights into the effectiveness of ML
models in analyzing and interpreting data. MSE measures the
accuracy of the ML models by determining the average squared
difference between the predicted and actual values, while SD
provides a measure of the variability of data points around the
mean. AARE calculates the average difference as a percentage of the
actual value, while RMSE makes it easier to determine the level
of error.

FIGURE 6
Illustration of k-fold cross validation based on the train/test evaluation.
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R-square measures how well the ML models fit the data, with a
value closer to 1 indicating a better fit. ARE provides a percentage
value of the average difference between predicted and actual values,
giving an idea of the ML models accuracy level. Overall, these
metrics are important for evaluating ML models performance in
predicting statistical data and selecting the most suitable ML models
for a particular task. By using these parameters, the accuracy and
reliability of statistical analysis and predictions can be significantly
improved (Eqs 2–7).

AAE � ∑n
i�1

VsM−VsP
VsM

( )
i

n
(2)

AARE � ∑n
i�1

VsM−VsP
VsM

( )
i

∣∣∣∣∣ ∣∣∣∣∣
n

(3)

SD �

���������������������������������������������∑n
i�1

1
n ∑n
i�1

VsMi − VsPi( )i( ) − 1
n ∑n
i�1

VsMi − Vsi( )mean( )( )2

n − 1

√√
(4)

MSE � 1
n
∑n
i�1

VsMi − VsPi( )2 (5)

RMSE � �����
MSE

√ � 1
n
∑n
i�1

VsMi − VsPi( )2 (6)

R2 � 1 −
∑N
i�1

VsPi − VsMi( )2

∑N
i�1

VsPi − ∑n

I�1VsMi

n( )2 (7)

3.3 Model performance

Over time, researchers have focused on developing empirical
equations that can accurately determine Vs Several researchers have
contributed to this field (Table 2). Each of these researchers has
presented their respective empirical equations to determine Vs, and
Table 2 lists these equations and their related equations. By
combining the knowledge and expertise of these researchers,
scientists can use empirical equations to accurately and efficiently
determine Vs As such, these empirical equations continue to play an
important role in the field of geophysics and contribute significantly
to our understanding of subsurface structures and properties.

The aim of this study is to prediction of Vs using robust ML
models. In this article, 70% of the dataset was randomly assigned for

training, while 15% was earmarked for testing, with the remaining
15% used for validation. Comparative analysis of the outcomes
derived from the different ML models including ELM, ML-ELM,
MLR, and MLPNN, and experimental equations was conducted
based on Table 3. The results show the performance of the ML-ELM
Model is better than ELM, MLP-NN, and MLR models and
empirical equations.

The statistical parameters for predicting Vs are given in Table 3,
and the results presented in this table show the accuracy and
performance of each artificial intelligence model and empirical
equations. The ML-ELM model outperforms the ELM model and
empirical equations in terms of accuracy. The ML-ELM model
performs exceptionally well, achieving RMSE = 0.0412 μs/ft,
AARE = 1.545%, and R2 = 0.9963 for the training subset,
RMSE = 0.0436 μs/ft, AARE = 1.584%, and R2 = 0.9954 for the
testing subset, and RMSE = 0.9936 μs/ft, AARE = 1.617%, and R2 =
0.9936 for validation subset.

To evaluate the accuracy of different models, statistical
parameters such as RMSE and R2 can be used. The values for
these parameters for predicting Vs are given in Table 3, while
Figures 7, 8 offer an in-depth comparison of the performance
accuracy of various artificial intelligence models and empirical
equations. From the observations presented in Figure 7, it can be
inferred that the ML-ELM model outperforms the ELM, MLP-NN
and MLR models in terms of performance accuracy. On the other
hand, Figure 8 indicates that the performance accuracy of the
Krishna et al. empirical equations is superior to that of the other
models. Based on these findings, it can be concluded that the order of
models, arranged according to RMSE values, is ML-ELM < MLP-
NN < ELM < MLR < Lee < Krishna et al. < Miller and Stewart <
Bailey and Dutton < Hossain et al. However, in terms of RMSE
values, the ranking of the models is ML-ELM > MLP-NN > ELM >
MLR Lee >Krishna et al. >Miller and Stewart > Bailey and Dutton >
Hossain et al.

Figure 9 present information on the cross-plot diagram for
testing subset for predicting Vs using ELM, MLP-NN, MLR and
ML-ELM models. The cross-plot diagram provides insight into
the accuracy of the performance of the algorithms. By examining
the cross points between the measured and predicted data, we can
visually observe the accuracy of the performance. Additionally,
the R2 mathematical relationship can be used to obtain a
statistical parameter value from the chart features. Figure 9
shows that the R2 value for the entire subset is approximately
0.99 for ML-ELM and 0.98 for ELM. After analyzing Figure 9, it is
evident that the ML-ELM model outperforms the ELM model.

TABLE 2 The Vs empirical equation for other researchers.

Authors Reference Equations

Krishna et al. (1989) Krishna et al. (1989) Vs � 2.924*Vp − 4170.9

Miller and Stewart (1991) Miller and Stewart (1990) Vs � 0.8*Vp − 861

Hossain et al. (2012) Hossain et al. (2012) Vs � 0.76*Vp − 0.76

Bailey and Dutton (2012) Bailey and Dutton (2012) Vs � 0.75*Vp − 562.5

Lee (2013) Lee (2013) Vs � 0.59*Vp − 0.6
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Both ML-ELM and ELM are neural network models that are
frequently used for regression analysis to predict continuous
variables. The ML-ELM model comprises multiple hidden
layers with neurons that receive input data and activate based
on the input values. Each neuron in the hidden layer uses a non-
linear activation function to combine weighted connections from
the previous layer.

Figure 10 show the histograms of the Vs prediction errors for the
four ML models used in this article: ML-ELM, MLP-NN, MLR and
ELM. As shown in Figure 10, the prediction errors for the ML
models are symmetrically distributed around zero and approximate
normal distributions. The spreads are relatively narrow, and there
are no positive or negative biases observed. The ML-ELM model is
associated with the lowest Vs prediction error range. The figure also

shows that the accuracy performance of the ML models follows the
order ML-ELM > ELM > MLP-NN > MLR.

A practical approach to evaluating the impact of input variables
on output variables involves using the Pearson correlation (as
represented by Eq. 8). This metric operates simply, where a score
of +1 indicates a complete and positive correlation, −1 signifies a
complete and negative correlation, and zero denotes no correlation
between the variables. This method offers valuable insights into the
interplay of various factors, facilitating comprehension of their
influence on the final result.

R �
∑n
i�1

βi − �β( ) αi − �α( )���������������������∑n
i�1 βi − �β( )2∑n

i�1 αi − �α( )2
√ (8)

TABLE 3 Determination of the statical parameter for prediction of Vs to determination of the and enhance the seismic safety of hydropower stations.

Models Data set AAE AARE MSE RMSE R2

ML-ELM Train 0.029 1.545 0.0017 0.0412 0.9963

Test 0.032 1.584 0.0019 0.0436 0.9954

Validation −0.012 1.617 0.0022 0.0469 0.9936

MLP-NN Train −0.026 3.314 0.0148 0.1217 0.9873

Test 0.102 3.355 0.0163 0.1277 0.9863

Validation −1.747 5.841 0.0336 0.1833 0.9842

ELM Train −0.0338 4.3082 0.01924 0.1387 0.8392

Test 0.1326 4.3615 0.02119 0.1456 0.8366

Validation −2.2711 7.5933 0.04368 0.2090 0.8097

MLR Train −0.04394 5.60066 0.025012 0.1582 0.7714

Test 0.17238 5.66995 0.027547 0.1660 0.7652

Validation −2.95243 9.87129 0.056784 0.2383 0.7433

Krishna et al. Train −377.595 377.595 73.0392 8.5463 0.7133

Test −402.756 402.756 86.93 9.3236 0.7111

Validation −448.215 448.215 102.3083 10.1148 0.6883

Miller and Stewart Train −1333.806 1333.806 905.9102 30.0983 0.5469

Test −1403.119 1403.119 1038.8412 32.2311 0.5367

Validation −1528.503 1528.503 1178.842 34.3343 0.5168

Hossain et al. Train −1592.188 1592.188 1286.6335 35.8697 0.5141

Test −1659.034 1659.034 1430.025 37.8157 0.4924

Validation −1780.359 1780.359 1589.8436 39.8728 0.4993

Bailey and Dutton Train −1371.216 1371.216 956.1241 30.9213 0.5407

Test −1437.231 1437.231 1083.0399 32.9096 0.5211

Validation −1556.787 1556.787 1219.9496 34.9278 0.5042

Lee Train −1213.228 1213.228 747.1721 27.3344 0.6833

Test −1265.12 1265.12 831.4952 28.8357 0.6336

Validation −1359.303 1359.303 927.093 30.4482 0.6205
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After investigating the results derived from the correlation
coefficient regarding both the input variables and the Vs, it is
evident that parameters such as GR, Hall-S, Hall-H, Vp, TNPHI,

RHOB, and PEF exhibit a positive correlation coefficient with the Vs
as shown in Eq. 9. Conversely, parameters MD and RT show a
negative correlation coefficient with the output parameter, as shown

FIGURE 7
Illustration of comparison between RMSE and R2 for ELM, ML-ELM, MLP-NN and MLR models for prediction of Vs to determination of the and
enhance the seismic safety of hydropower stations.

FIGURE 8
Illustration of comparison between RMSE and R2 for empirical equation models for prediction of Vs to determination of the and enhance the seismic
safety of hydropower stations.
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in Eq. 10. Additionally, according to Figure 11, certain variables such
as Vp, GR, Hall-S, Hall-H, PEF, and RHOB significantly influence
the Vp.

Vs∝GR,Hall − S,Hall −H,Vp,TNPHI,RHOB, and PEF (9)
Vs∝

1
MDandRT

(10)

The Anderson-Darling normality chart is a tool used to assess
the normality of data distribution by plotting cumulative probability
(P) against standardized values (Vs), where data points should
ideally fall along a straight line if the distribution is normal.
However, analysis reveals that the data distribution for both the
MLR and MLP-NN models deviates notably from normality,
evidenced by their respective Anomaly Distance (AD) values of
3.508 and 3.007, along with p values below 0.005. Conversely, the
ELM model displays a somewhat normal distribution, with a slight
deviation indicated by an AD of 2.826 and p-value under 0.005.
Remarkably, the ML-ELM model demonstrates the most normal
distribution among the four models, with an AD of 2.031 and
p-value below 0.005. This suggests greater accuracy in predictions
for the ML-ELM model compared to the others. The Anderson-
Darling normality Figure 12 serves as a valuable tool for evaluating
data distribution normality and model accuracy. Based on these
findings, it is evident that the ML-ELMmodel stands out as the most
accurate, while the MLP-NN and MLR models exhibit the least
accuracy due to their significant departure from normality.

Another method for comparing model performance is “Score
Analysis.” In this approach, each model is assigned a score based on
its performance relative to the best and worst values of each
performance parameter. Specifically, a score of “n” is assigned to
the model with the best value for a parameter, where in this study, n
equals 12, representing the number of computational models under
analysis. Conversely, a score of 1 is given to the model with the worst
value for the same parameter, separately for both training and
testing results. Subsequently, the total score for each model is
computed by summing up its individual scores. In this article,
each statistical parameter receives a designated score. Graphical
Table 4, show a comparison of the total scores for the models used in
predicting the Site Score. As depicted in the table, the total scores for
ML-ELM, ELM,MLP-NN andMLR across the three subsets are 109,
105, 97, and 79, respectively. Hence, it is inferred that the accuracy
ranking of the models is MLR < ELM < MLP-NN < ML-ELM.

Figure 13 illustrates the Taylor diagram, utilized to compare the
performance of ML-ELM, ELM, MLP-NN, and MLR models for
predicting Vs and enhancing seismic safety at hydropower stations.
The x-axis represents the correlation coefficient, ranging from 0 to 1,
indicating the correlation between predicted and actual values. A
correlation coefficient closer to 1 signifies better model performance.
The y-axis denotes the standard deviation, reflecting the dispersion
of predicted values. A smaller standard deviation implies greater
model accuracy. As depicted, the ML-ELM model exhibits superior
performance among the four models, boasting a correlation
coefficient of 0.99 and a standard deviation of 0.2. This indicates

FIGURE 9
Illustration of the cross-plot diagram for testing subset for prediction of Vs (based on ELM andML-ELMmodels) to determination of the and enhance
the seismic safety of hydropower stations.
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high accuracy and low dispersion in its predictions. Subsequently,
model performance descends in accuracy from MLP-NN,
ELM, to MLR.

3.4 Shallow and deep learning competition

As shown in the results of this article, both ELM and ML-ELM
exhibit higher accuracy compared to other ML models (MLPNN
and MLR). In this section, the differences between these two robust
ML models are explored. ELM is a single-layer neural network that
uses random weights to map input data to output data. The hidden
layer of an ELM comprises a large number of neurons, with
randomly generated weights between the input layer and hidden
layer. The output layer is then trained using a linear regression
model to minimize the error between the predicted output and the
actual output. On the other hand, ML-ELM is a multi-layer neural
network consisting of multiple hidden layers. Each hidden layer in
ML-ELM performs a non-linear transformation on the input data
before passing it to the next layer. The weights between each layer
are trained using backpropagation, adjusting the weights based on
the error between predicted output and actual output. The main

FIGURE 10
Illustration of the Histogram of Error for prediction of Vs (based on MLR, MLP-NN, ELM and ML-ELM models) to determination of the and enhance
the seismic safety of hydropower stations.

FIGURE 11
Illustration of the heat map for input/output variable and
determination of the correlation coefficient for prediction of Vs (based
on MLR, MLP-NN, ELM and ML-ELM models) to determination of the
and enhance the seismic safety of hydropower stations.
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advantage of ELM over ML-ELM lies in its simplicity and speed.
Since ELM has only one hidden layer with random weights, it can be
trained much faster than ML-ELM. Additionally, ELM requires

fewer computational resources since it does not involve
backpropagation. However, ML-ELM also offers advantages over
ELM. With multiple hidden layers featuring non-linear

FIGURE 12
Illustration of the Analysis of Anderson–Darling analysis for prediction of Vs based on four ML models (ML-ELM, ELM, MLP-NN and MLR) to
determination of the and enhance the seismic safety of hydropower stations.

TABLE 4 Determination of the comparative analysis for four ML models for prediction of Vs to determination of the and enhance the seismic safety of
hydropower stations.

Models Dataset AAE AARE MSE RMSE R2 Sum Total

ML-ELM Train 5 12 1 12 12 42 109

Test 4 11 2 9 9 35

Validation 6 10 3 7 6 32

MLP-NN Train 7 9 4 5 3 28 105

Test 3 8 5 11 11 38

Validation 10 3 10 8 8 39

ELM Train 8 7 6 6 5 32 97

Test 2 6 7 4 2 21

Validation 11 2 11 10 10 44

MLR Train 9 5 8 3 7 32 79

Test 1 4 9 2 4 20

Validation 12 1 12 1 1 27
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transformations, ML-ELM can learn more complex patterns in data,
making it more suitable for tasks requiring high accuracy
and precision.

3.5 Practical application and limitations

Determining the shear modulus of bedrock is important for
superstructures because it helps to understand the ability of the
bedrock to resist shearing forces (Van Nguyen et al., 2017). This
information is essential in assessing the stability and safety of
large structures such as bridges, dams, high-rise buildings, or any
structure that has to withstand significant loads. It is also
important in designing the appropriate foundation for the
structure. In the case of a hydropower station, determining
the shear modulus of the foundation bedrock is important in
several ways. The shear modulus information enables the
engineers to estimate how much load the foundation can
support without collapsing or causing any damage to the
construction. Moreover, it helps in judging the depth and
thickness of the foundation required to ensure the efficient
and safe operation of the hydropower station for an extended
period. Furthermore, knowing the shear modulus helps in
designing a suitable dam foundation that can resist the forces
of water pressure and sedimentation. This essential information
allows the engineers to design the most resilient dam foundation

that will aid in ensuring the efficient operation of the hydropower
station, reducing the risk of failure and increasing its lifespan.
The primary constraint of this research is the challenge in
acquiring petrophysical data exclusive to oil and gas wells,
which must be obtained in proximity to hydropower stations
within dam structures. While many regions may lack the
advantage of oil-rich areas and oil wells being located near
hydropower facilities, in regions where such proximity exists,
the findings of this study can be effectively applied.

This study has provided an estimation of data that is used
following a verification process to construct a calculating model for
the shear modulus parameter. Due to the nature of dynamic
recording by petrophysical charts, the data needs to be
converted into static form in order to be able to use advanced
soil/rock mechanics models. Data conversion from dynamic to
static form is done by empirical correlation. The converting
procedure is validated by conducting a regression model
between estimated variables and actual tri-axial static
mechanical tests on some core samples extracted from two
under-construction dam sites. The framework of the
conversation procedure is exhibited in Figure 14. Finally, an
integrated depth-dependent data model of the shear modulus of
rock layers is created based on the atomic physics and structural
features of the rock by ML models. The continuous display of the
shear modulus related to the rock layers in this research is shown
in Figure 15.

FIGURE 13
Illustration of the Tylor Diagram for prediction of Vs based on four ML models (ML-ELM, ELM, MLP-NN and MLR) to determination of the and
enhance the seismic safety of hydropower stations.
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4 Conclusion

In this study, a large dataset of 3,200 data points was analyzed to
gain insights into the rock formations of hydropower plants’
foundations. The dataset contained information about Measured

Depth (MD), Rock Type (RT), Gamma Ray Log (GR), Thermal
Neutron Porosity (TNPHI), Shallow Electrical Resistivity (Hall-S),
Deep Electrical Resistivity (Hall-D), Photo-electric Index (PEF),
Compressive Wave Velocity (Vp), and shear wave velocity (Vs)
recorded during vertical seismic logging. Additionally, full-set

FIGURE 14
Geomechanically framework for dynamic to static conversation.

FIGURE 15
Shear modulus of underground rocks determined by ML models for prediction of Vs to determination of the and enhance the seismic safety of
hydropower stations.
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borehole logging data were used for predicting Vs. To prevent
overfitting, cross-validation was used. The study used four newly
developed models, multiple linear regression (MLR), ML-ELM,
multilayer perceptron neural network (MLP-NN) and extreme
learning machine (ELM), to predict Vs. The results shown that
four ML models outperformed available empirical correlations for
predicting Vs. Although ELM is simpler and faster than ML-ELM
since it has only one hidden layer with random weights and does not
involve backpropagation, ML-ELM has the advantage of learning
more complex patterns in data due to its multiple hidden layers with
non-linear transformations. The ML-ELM model achieved higher
prediction accuracy than other models which used in this article
with an RMSE = 0.0412 μs/ft, AARE = 1.545%, and R2 =
0.9963 compared to ELM, MLR and MLP-NN and empirical
models. The ML-ELM model also generated fewer outlier data
predictions than other ML models evaluated. These results
suggest that the ML-ELM model is a promising tool for
predicting Vs in similar settings. Further research could explore
the effectiveness of the ML-ELM model on other datasets and its
potential application in practical scenarios. Seismic activity is highly
complex, and even with advanced data analytics tools, there are still
many unknown factors that influence when and where an
earthquake will strike. As such, current efforts are focused on
improving our understanding of seismic phenomena and
developing more sophisticated tools to detect and respond to
earthquakes as they occur.
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