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Introduction: In the digital era, new digital infrastructures (NDIs) play a pivotal
role in fostering economic growth and technological innovation. However, their
ecological impact, particularly on carbon dioxide emissions, remains
underexplored. Addressing this gap holds significant practical and
theoretical value.

Methods: Utilizing panel data from 283 Chinese cities spanning 2009 to 2020,
this study employs a two-way fixed-effects model to empirically assess the
influence of NDIs on urban carbon emissions (UCE). Additionally, a mediation
effect model is used to examine the mechanisms of this influence.

Results: The findings reveal that: (1) NDIs significantly mitigate UCE levels, a
conclusion supported by robustness tests involving instrumental variables and
the exogenous policy shocks of smart city pilot programs; (2) NDIs primarily
impact UCE through two channels: the digital economy and green technology
innovation; and (3) heterogeneity analysis indicates that NDIs predominantly curb
carbon emissions in cities with lower administrative levels, while positively
contributing to UCE intensity in higher administrative level cities. Notably,
NDIs substantially reduce UCE in non-old industrial cities, with a negligible
effect in old industrial cities.

Discussion: This research expands the understanding of the economic-
environmental implications of NDIs, offering valuable insights for policymakers
regarding NDIs’ environmental impacts. It also provides strategic guidance for
urban low-carbon transitions in the big data era.
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1 Introduction

Climate change, driven by factors such as carbon emissions and rising temperatures due
to human energy consumption, poses a significant environmental challenge, profoundly
affecting human health and wellbeing. Addressing issues like climate change requires
collective action and widespread participation across society. According to BP, a leading
global oil company, the demand for global primary energy surged by 5.8% in 2021.
Concurrently, carbon dioxide emissions from energy use, industrial processes, exhaust
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flaring, and methane emissions increased by 5.9%, totaling
3.39 billion tons of carbon dioxide. Additionally, the global
demand for natural gas rose by 5.3% in the same year. These
trends have heightened international concern over climate change
and environmental issues. In response, over 200 countries have
ratified the Paris Agreement, aiming to limit the global average
temperature increase to below 2°C above pre-industrial levels, with
ambitions to keep it under 1.5°C.

As the world’s largest carbon emitter, China accounts for
approximately 28.8% of global carbon emissions (Liu et al.,
2015). Consequently, China bears significant responsibility in
addressing climate change and reducing carbon emissions. China
has dedicated substantial efforts to carbon reduction and has
implemented various legislative measures to promote energy
conservation and emission reduction. Following the Paris Climate
Conference in 2007, China formulated and released its first national
plan to address climate change, the “National Climate Change
Programme” (Heggelund, 2007). At the Copenhagen Climate
Conference in 2009, China committed to reducing its carbon
emissions per unit of GDP by 40%–45% by 2020 (Dalmedico
and Aykut, 2013). In September 2020, China announced the dual
carbon goals of peaking carbon dioxide emissions before 2030 and
achieving carbon neutrality by 2060. Currently, China’s efforts in
carbon emission reduction have been practical and substantial.
However, given the enormous volume of carbon emissions,
China requires more effective strategies to fulfill its emission
reduction commitments. In the context of this ambitious “dual-
carbon” target, the development of strategies for reducing UCE has
become a critical agenda for the Chinese government and society.

In 2021, the Chinese government issued the “Implementation
Plan for the Peak Carbon and Carbon Neutral Targets”, elevating the
construction of NDIs to a national and strategic priority. These
NDIs, guided by innovative development concepts and driven by
technological advancements, focus on digital transformation,
intelligent upgrading, and integrated innovation. They primarily
encompass 5G base stations, big data centers, artificial intelligence,
industrial internet, and new energy vehicle charging infrastructure.
Unlike traditional industrial infrastructures, NDIs are inherently
energy-intensive, necessitating continuous energy investment and
consequently leading to increased energy consumption (Bashroush
et al., 2022; Hao et al., 2022). The relationship between the
development of NDIs and UCE remains a topic of debate. Some
studies highlight a “carbon lock-in effect” in NDIs, where carbon
dioxide emissions persist throughout their lifecycle (Seto et al.,
2016). Conversely, other studies suggest that NDIs can reduce
UCE by improving energy efficiency (Hong et al., 2023) and
facilitating industrial restructuring (Ren et al., 2021). This paper
aims to explore the complex relationship between NDIs and UCE,
seeking to ascertain whether the construction of NDIs promotes or
inhibits UCE, understand the underlying mechanisms, and identify
any heterogeneity in its impact. Addressing these questions is crucial
not only for China’s green development and its dual-carbon
objectives but also provides significant practical and theoretical
insights for global efforts to mitigate UCE.

This paper conducts an empirical evaluation of the impact of
NDIs on UCE in China. Utilizing a two-way fixed-effects model, this
study analyzes data from 283 prefecture-level cities spanning the
years 2009–2020. The novel contributions of this research are

threefold. Firstly, from a research perspective, this study diverges
from the prevalent focus on the effects of transportation
infrastructure on employment, economic growth, and the
environment. Instead, it concentrates on the environmental
implications of NDIs, specifically their influence on UCE
intensity. Secondly, regarding research content, this paper
acknowledges the diversity in city characteristics, including
administrative levels, industrial foundations, and developmental
scales. It examines the heterogeneity of impacts across various
city types, particularly distinguishing between old industrial cities
and others. Furthermore, it explores the mechanisms through which
NDIs affect UCE, emphasizing the roles of the digital economy and
green technological innovation. Thirdly, from a practical standpoint,
the study provides empirical evidence supporting the intensified
development of NDIs. It contributes a scientific basis for national
policies aimed at achieving China’s dual-carbon goals, underscoring
the strategic importance of NDIs in China’s transition to a low-
carbon economy.

The remainder of this paper is structured as follows: Chapter
2 presents the literature review and theoretical analysis, offering a
comprehensive review of existing studies and establishing the
theoretical framework underpinning this research. This chapter
sets the academic context of the study and identifies the gaps
that the current research aims to fill. Chapter 3 details the
research design, including model specifications, descriptions of
the data sources, and analytical techniques used in the empirical
evaluation. Chapter 4 presents the results of the empirical analysis,
providing a data-driven exploration of the impact of NDIs on UCE.
Chapter 5 delves deeper into the underlying mechanisms and
examining the heterogeneity in the impacts of NDIs on UCE
across different city types. Chapter 6 engages in a critical
discussion of the findings, situating them within the broader
scholarly discourse and highlighting their theoretical and
practical implications. Chapter 7 synthesizes the key insights
from the study, drawing conclusions and offering policy
recommendations based on the empirical evidence. Finally,
Chapter 8 discusses the limitations of the study and suggests
directions for future research.

2 Literature review and
theoretical analysis

2.1 Literature review

As global environmental challenges intensify, scholarly attention
to carbon emissions research has significantly increased, resulting in
a substantial body of theoretical and empirical studies. The existing
literature relevant to this paper can be broadly classified into two
primary categories:

The first category includes literature focused on carbon
emissions, particularly emphasizing the quantification of emission
levels across various regions and industries and examining factors
influencing these emissions. This body of work encompasses a
diverse range of studies using different methodologies and
perspectives. (1) Regional and industrial carbon emission
measurement: Shaari et al. (2021) utilized the panel ARDL
method to explore the impact of rural population growth on
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CO2 emissions across several developing countries. Their findings
revealed that while increases in energy use and economic growth
elevate CO2 emissions in the long term, rural population growth
does not lead to changes in CO2 emission levels. Yao et al. (2016)
analyzed panel data from China’s provincial-level industrial sector
using the meta-frontier non-radial Malmquist CO2 emission
performance index to assess changes in CO2 emission
performance and its driving forces. This study is instrumental in
understanding regional emission dynamics. (2) Predictive modeling
of carbon emission trends: Fatima et al. (2021) employed a nonlinear
ARDL model and wavelet analysis to examine the asymmetric and
time-varying effects of global energy prices on China’s
CO2 emissions. Kong et al. (2022) developed a system dynamics
model to forecast China’s carbon emissions, indicating that China is
unlikely to meet its 2030 carbon peaking target, underscoring the
challenges in emission reduction. (3) Empirical estimation using
remote sensing data: Wang et al. (2022) devised a model to estimate
carbon emissions from construction land in Chengdu, China,
integrating remote sensing data and emission statistics. This
approach represents a technological advancement in emission
measurement. (4) Policy impact analysis: Chen and Mu (2023)
explored the effect of carbon trading policies on total carbon
efficiency in China using a DID model. Similarly, Yu et al.
(2022) applied producer theory and the DID method to analyze
the impact of China’s carbon trading system on agricultural green
total factor productivity. These studies offer valuable insights into
policy effectiveness. Additionally, several other studies (Meo et al.,
2023; Cheng et al., 2018; Lu et al., 2016; Shi et al., 2017; Chaudhry
et al., 2022) have examined carbon emissions from different
perspectives using varied methodologies, contributing to a more
comprehensive understanding of the issue. Collectively, these
studies not only enhance the measurement and understanding of
carbon emission levels but also provide critical insights into the
effectiveness of policies and practices aimed at managing and
reducing emissions.

The second category of literature primarily addresses the
economic effects of traditional infrastructure, notably
transportation infrastructure. This body of work can be further
subdivided into two main areas: the impact on technological
innovation and the environmental implications. (1) Impact on
technological innovation: Studies in this area generally concur
that transportation infrastructure positively influences the level of
technological innovation, albeit with regional variations in impact.
For example, Wang et al. (2018) analyzed data from Chinese firms
(1998–2007) to explore the impact of highway infrastructure on
corporate innovation. Their findings demonstrate a significant
correlation between increased road density and enhanced
innovation levels in companies. Similarly, Dong et al. (2020),
examining city panel data from China (2006–2015), found that
the introduction of high-speed railroads, by shortening inter-city
commuting times, facilitates increased research output, particularly
in larger cities. (2) Environmental impact of transportation
infrastructure: The environmental impact, especially concerning
carbon dioxide emissions, is a crucial aspect of this category.
According to the International Energy Agency, approximately a
quarter of global CO2 emissions in 2018 were attributable to
transportation. Churchill et al. (2021) investigated the impact of
transportation infrastructure on CO2 emissions using a 150-year

dataset from OECD countries. Their results suggest that
transportation infrastructure significantly contributes to the
increase in CO2 emissions, with economic growth and
population acting as mediators. Furthermore, Krantz (2017)
reported that about 30% of Sweden’s annual CO2 emissions are
associated with the development of transportation infrastructure.
Collectively, these studies highlight the dual role of transportation
infrastructure in both fostering technological innovation and
contributing to environmental challenges. They emphasize the
necessity to balance the positive economic effects with the
potential environmental costs associated with the development of
transportation infrastructure.

Despite the growing importance of NDIs, only a limited number
of studies have focused on their environmental effects, particularly
in the context of UCE. The existing literature in this area is divided.
One perspective suggests that NDIs substantially increase carbon
emissions, posing a challenge to environmental sustainability. (1)
Energy intensity of NDIs: It is commonly understood that NDIs are
inherently energy-intensive. Andrae and Edler (2015) projected that
by 2030, the electricity consumption in data centers could increase
up to fifteen-fold, accounting for 8% of the global demand. This
projection underscores the significant energy requirements of
emerging digital technologies. (2) Energy consumption versus
efficiency in 5G networks: Madlener et al. (2022) argued that the
surge in energy consumption due to the deployment of 5G networks
could potentially offset gains in energy efficiency. According to their
analysis, the net result is an overall increase in energy consumption.
(3) Empirical findings from Chinese cities: Tang and Yang (2023)
conducted an empirical study using panel data from 215 Chinese
cities. Their findings reveal that digital infrastructure notably
increases total carbon emissions, per capita carbon emissions,
and carbon intensity in these cities. (4) Energy consumption
from digital devices: The advent of the big data era,
corresponding with the development of NDIs, has led to an
increased use and demand for digital devices. The operational,
standby, and replacement phases of these devices are particularly
energy-intensive, contributing to heightened energy consumption
and carbon emissions (Asongu et al., 2018). These studies
collectively indicate that while NDIs hold immense potential for
innovation and economic growth, they also present significant
environmental challenges. Specifically, they contribute to
increased energy consumption and carbon emissions, which are
critical considerations in the context of global sustainability efforts.

The second perspective in the literature posits that NDIs can
play a pivotal role in reducing UCE. This viewpoint is supported by a
range of empirical studies: Dong et al. (2022) analyzed the impact of
information infrastructure on greenhouse gas (GHG) emissions
using panel data from 281 Chinese cities. Their study concludes
that information infrastructure significantly enhances urban GHG
emission performance. The key mechanisms identified include
technological innovation and industrial structure upgrading. Wu
et al. (2021) employed the Slack-Based Measure (SBM) model
alongside OLS, spatial Durbin model, mediating effect model,
and DID model to evaluate the energy-saving and emission-
reduction efficiency of Internet development, using city-level data
from China. Their findings indicate that Internet development
markedly improves energy-saving and emission-reduction efforts.
Luo and Yuan (2023) utilized the ‘Broadband China’ policy as a
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quasi-natural experiment to examine the impact of network
infrastructure construction on energy saving and emission
reduction. Analyzing data from 263 Chinese cities with a DID
model, they found that network infrastructure construction
enhances energy utilization rates via green technology innovation
and energy efficiency, thereby reducing carbon emission intensity.
Nie et al. (2023) explored the influence of digital infrastructure on
urban green innovation using a two-way fixed-effects model based
on panel data from 280 Chinese cities. Their results suggest that
digital infrastructure fosters economic agglomeration, supports the
growth of digital inclusive finance, and heightens public
environmental awareness. These factors collectively contribute to
promoting urban green innovation. These studies collectively
illustrate that NDIs, through various channels, can significantly
contribute to improving energy efficiency and reducing UCE.
They underscore the multifaceted role of NDIs in fostering a
more sustainable urban environment.

An examination of the existing literature reveals two key insights
regarding the relationship between NDIs and UCE. Firstly, there is
no definitive consensus on this relationship; it remains a subject of
considerable debate within the academic community. The divergent
findings and perspectives in the literature underscore the complexity
and multifaceted nature of this topic. Secondly, a notable gap in
current research is the insufficient focus on the specific impact of
China’s NDIs development on UCE. Most studies have not
thoroughly explored the internal transmission mechanisms
driving these impacts, nor have they adequately examined the
potential heterogeneity in these effects. This lack of detailed
investigation into the nuances of China’s context, especially
considering its status as a major global player in both NDIs
development and UCE, highlights a significant area for further
research. Therefore, this paper seeks to bridge these gaps by
providing a comprehensive analysis of the relationship between
NDIs and UCE in China. It aims to elucidate the internal
mechanisms at play and investigate the existence of
heterogeneous impacts across different urban contexts. This
approach not only contributes to the academic discourse but also
offers practical insights for policymakers and stakeholders involved
in urban planning and environmental sustainability. By doing so, the
paper provides a more nuanced understanding of how China’s NDIs
development intersects with UCE, offering both theoretical and
practical contributions to the field.

2.2 Theoretical analysis and research
hypotheses

In recent years, the rapid development of NDIs, exemplified by
big data, 5G, artificial intelligence, and the industrial internet, has
had a significant impact on the level of UCE. This paper aims to
elucidate the transmission mechanism of NDIs’ impact on UCE
from the perspectives of the digital economy and green technology
innovation, subsequently proposing corresponding research
hypotheses.

Existing empirical studies indicate that the construction of NDIs
can effectively reduce UCE, significantly lower haze concentrations,
and improve environmental quality (Zhu et al., 2023; Xiao et al.,
2024). Additionally, the construction of NDIs facilitates the

interconnection of governments, enterprises, and individuals,
leading to changes in production and distribution processes, and
improvements in efficiency. As NDIs expand, governments at
various levels are increasingly striving to build smart and digital
governments. The shift of government affairs and public services
from offline to online platforms reduces the need for travel and the
use of paper and other office supplies, thereby decreasing energy
consumption and carbon emissions. In the realm of production,
NDIs construction aids enterprises in optimizing their production
processes, factor allocation, and energy usage, contributing to energy
savings and emission reductions (Lin and Zhou, 2021).
Furthermore, within the circulation sector, NDIs ensure the
efficient operation of logistics systems, thus enhancing goods
circulation efficiency. This enhancement, in turn, reduces energy
consumption in the distribution chain, paving the way for low-
carbon development. Based on these observations, this paper posits
the following research hypothesis:

Hypothesis 1: The implementation of NDIs can
effectively reduce UCE.

NDIs can reduce the level of UCE by promoting the
development of the digital economy. It is well-established that
NDIs not only improve total factor productivity (Tang and Zhao,
2023) but also drive the rapid growth of the digital economy, a fact
supported by numerous studies (Zha et al., 2022; Sun and Chen,
2023). Characterized by high innovation, strong penetration, and
wide coverage, the digital economy impacts energy consumption
and carbon emissions by reducing search, matching, and transaction
costs. Most empirical studies indicate that the development of the
digital economy can effectively inhibit carbon emissions and
improve carbon emission performance (Ma et al., 2022; Zhang
et al., 2022). The in-depth development of the digital economy
has led to various new modes and business forms, such as mobile
payments and the sharing economy, which influence energy
consumption and carbon emissions by altering consumer
consumption habits. The platform economy aggregates numerous
merchants and consumers, reshaping the shopping process through
online selection and purchasing, thereby reducing energy
consumption associated with consumer travel. Additionally, it
enables merchants and producers to more accurately gauge
consumer demand, allowing timely adjustments to production
and sales plans. This reduces production waste and saves costs,
consequently lowering energy consumption in the production
process. Moreover, the sharing economy, by enhancing the
utilization rate of social resources and avoiding redundant
production of goods, contributes to energy savings and emission
reduction in the real economy. Based on this understanding, the
following research hypothesis is proposed:

Hypothesis 2: NDIs can curb the level of UCE by fostering the
digital economy.

The construction of NDIs can reduce the level of UCE by
fostering green technological innovation. NDIs can effectively
promote green technology innovation (Liu and Ma, 2020; Li
et al., 2024). Recent studies indicate that NDIs has a significant
positive effect on substantive green innovation (Han et al., 2024). On
one hand, leveraging the technical advantages of big data, artificial
intelligence, and other related technologies, NDIs fundamentally
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overcome the spatial and temporal constraints on factor flow.
Technologies such as 5G and the Internet significantly accelerate
the speed of information dissemination and facilitate knowledge
exchange and sharing through instant messaging, telecommuting,
and other means, thereby enhancing the efficiency of technological
innovation (Xu et al., 2021). On the other hand, existing literature
has established that technological innovation can help reduce the
level of UCE (Zhu et al., 2021; Cheng et al., 2021). Green technology,
which encompasses technologies aimed at reducing ecological load
and improving resource utilization efficiency, plays a crucial role.
The innovation and advancement in green technology are effective
methods for improving energy utilization efficiency and reducing
carbon emission intensity. Green technology is increasingly being
incorporated in enterprise production and residential life. It enables
the adoption of advanced energy-saving and clean production
processes, replacing older, high-energy-consumption, and high-
pollution methods. This shift promotes the green transformation
of industrial structures and the green upgrading of energy
consumption. Furthermore, advancements in green technology in
the energy sector accelerate the development and utilization of clean,
renewable, and new energy sources. This is conducive to the low-
carbon transformation of the energy consumption structure, thus
reducing resource and energy consumption at both the production
and consumption ends, and achieving control at the source. Based
on this understanding, the following research hypothesis
is proposed:

Hypothesis 3: NDIs can reduce UCE by promoting green
technological innovation.

3 Research design

3.1 Modeling

As a commonly used method in environmental economics, the
two-way fixed effects model is widely employed in studies examining
the impact of infrastructure and policy interventions on
environmental outcomes. This paper draws on relevant research
(Ran et al., 2023) and adopts the two-way fixed effects model to
empirically test the impact of NDIs on UCE. The specific model is
set up as follows:

UCEi,t � α0 + α1NDIi,t + λXi,t + μi + δt + εi,t (1)
where UCEi,t represents the level of UCE in city i in year t, NDIi,t
denotes the level of NDI in city i in year t, Xi,t is the set of control
variables; μi signifies the city fixed effect, δt is the time fixed effect,
and εi,t represents the random error term. The coefficient α1
measures the effect of NDIs on UCE, a negative value of α1 that
is statistically significant would indicate that NDIs can inhibit the
level of UCE.

The two-way fixed effects model is chosen for several reasons:
First, control for unobserved heterogeneity. This model accounts for
unobserved heterogeneity that may remain constant within cities
and across different cities over time, such as city-specific policy
environments or economic trends, which can influence UCE levels.
Second, by including both city and time fixed effects, the model can
better distinguish the impact of NDIs on UCE from other

confounding factors that vary across cities and over time. This
enhances the causal interpretation of the results, thereby improving
the robustness and credibility of the study’s conclusions. Finally, the
two-way fixed effects approach is widely used in empirical research
on environmental economics and urban development. The
application of this model in our study aligns with previous
research on the environmental impacts of infrastructure and
policy interventions. For instance, Liu and Zhu (2024) used a
two-way fixed effects model to analyze the impact of green
finance on the intensity and efficiency of carbon emissions,
which is consistent with the empirical strategy employed in
this paper.

3.2 Definition of variables

3.2.1 Explained variables
To measure the level of UCE, various methods exist. In this

study, carbon emission intensity is chosen as the explained variable.
The Open-Data Inventory for Anthropogenic Carbon Dioxide
(ODIAC), a high-resolution global emission data product,
provides detailed spatial resolution of carbon dioxide emissions
from fossil fuel combustion. This data is published by the National
Institute for Environmental Studies (NIES) of Japan and is available
for download from the Center for Global Environmental Research
website. We utilize the ODIAC data to compile panel data of total
carbon emissions for each city in China from 2009 to 2020. The data
is summarized by region, and the ratio of total carbon emission to
regional GDP is used as a proxy variable for the carbon emission
intensity of cities. Additionally, for the purpose of robustness testing,
per capita carbon emission is also employed.

3.2.2 Core explanatory variables
Accurately portraying the NDIs of each city presents a

significant challenge in current research. As NDIs is a relatively
new concept, there is no uniform evaluation method established in
the academic world. As previously mentioned, NDIs is an
infrastructure system driven by technological innovation and
based on the information network. Given the Internet’s crucial
role in its construction and development, this paper, drawing on
related research (Shen et al., 2023), employs the logarithm of
Internet access ports as a proxy variable for NDIs. This method
is considered to have a certain level of rationality. Additionally, text
analysis methods have been widely used for indicator measurement.
With reference to related studies (Wu et al., 2022), this paper utilizes
the frequency percentage of words such as ‘5G’, ‘big data’, and ‘data
centers’ in government work reports, as well as regional per capita
telecommunication business income, as alternate proxy variables for
NDIs. These measures are used in a robustness test to provide a
more comprehensive understanding of NDIs’ portrayal. The
inclusion of words frequency and telecommunication business
income offers an innovative approach to capturing the essence
and scale of NDIs development within different urban contexts.

3.2.3 Mediating variables
The mediating variables in this paper are the digital economy

and green technology innovation. In terms of the digital economy,
this study follows the approach used by Wei et al. (2022). Four
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indicators are selected: the number of Internet broadband access
users per 100 people, the proportion of computer software
employees among urban employees, the total amount of
telecommunication services per capita, and the number of cell
phones per 100 people. These four indicators are then
standardized, and their dimensionality is reduced using the
principal component analysis method to derive the digital
economy development index. Regarding the level of green
technology innovation, it is quantified by the logarithm of the
number of green utility model patent applications. The data for
these applications are compiled after filtering the classification
numbers in accordance with the WIPO Green Patent List. This
method ensures that the measurement accurately reflects the volume
and significance of green technological innovations, as indicated by
the patent applications in this category.

3.2.4 Control variables
In reference to existing studies, this paper selects the following

city-level control variables: Government investment in science and
technology (X1): This is measured by the proportion of government
expenditure on science and technology within the total general
budget expenditure. Urbanization level (X2): This is quantified by
the ratio of the urban resident population to the city’s total
population. Population density (X3): This is calculated by taking
the logarithm of the number of people per square kilometer. Level of
economic development (X4): This is determined by taking the
logarithm of the GDP per capita. Level of financial development
(X5): This is measured using the ratio of loan balances of financial
institutions to GDP. Industrial structure (X6): This is quantified by
the ratio of the value added of the tertiary industry to that of the
secondary industry. Fiscal autonomy (X7): This is measured by the
ratio of local budget revenues to local budget expenditures. Each of
these variables has been chosen for its relevance and potential

impact on the study’s outcomes. By including these control
variables, the paper aims to account for various factors that
might influence the relationship between NDIs and UCE.
Detailed definitions and explanations of all variables are provided
in Table 1.

3.3 Data sources

This paper utilizes panel data from 283 prefecture-level cities in
China, spanning the years 2009–2020. The sources of this data are
diverse and comprehensive: Carbon emission data is obtained from
the Center for Global Environmental Research. Data on green
technology innovation is sourced from the State Intellectual
Property Office (SIPO). Other city-level variables are primarily
derived from the China Statistical Yearbook, the China Urban
Statistical Yearbook, and the China Stock Market & Accounting
Research Database (CSMAR). In cases where the data had missing
values, linear interpolation was employed to estimate and fill in these
gaps. The descriptive statistics for each variable are presented in
Table 2, providing a detailed overview of the data characteristics and
their distribution. This data collection and preparation method
offers a solid foundation for the subsequent analysis, ensuring
that the study is based on accurate and representative data
reflecting the various dimensions of the research topic.

4 Results of empirical analysis

4.1 Benchmark regression

Table 3 reports the results of the baseline regression examining
the impact of NDIs on UCE. Column (1) of the table displays the net

TABLE 1 Variable definitions.

Variable Symbol Definitions

urban carbon emissions UCE The ratio of total carbon emission to regional GDP, utilize the ODIAC data to compile panel data of total carbon
emissions for each city

new digital infrastructures NDIs The logarithm of Internet access ports

Government investment in science and
technology

X1 The proportion of government expenditure on science and technology within the total general budget
expenditure

Urbanization level X2 The ratio of the urban resident population to the city’s total population

Population density X3 The logarithm of the number of people per square kilometer

Level of economic development X4 The logarithm of the GDP per capita

Level of financial development X5 The ratio of loan balances of financial institutions to GDP

Industrial structure X6 The ratio of the value added of the tertiary industry to that of the secondary industry

Fiscal autonomy X7 The ratio of local budget revenues to local budget expenditures

digital economy Digit Measured by a development index derived from principal component analysis of four standardized indicators
related to internet usage, software employment, telecommunication services, and cell phone ownership

green technology innovation Innov Quantified by the logarithm of the number of green utility model patent applications, compiled based on the
WIPO Green Patent List classification

Data sources: the Center for Global Environmental Research (https://db.cger.nies.go.jp/dataset/ODIAC/DL_odiac2022.html)), the State Intellectual Property Office (SIPO) (https://www.cnipa.

gov.cn/col/col61/index.html), the China Stock Market & Accounting Research Database (CSMAR) (https://data.csmar.com), the China Statistical Yearbook, the China Urban Statistical

Yearbook.
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effect of NDIs without incorporating any control variables or fixed
effects. In Column (2), both city fixed effects and year fixed effects
are added. Column (3) further includes city-level control variables in

the analysis. Across all regression results, the coefficients are
negative and statistically significant at the 5% level. This
consistent pattern indicates that NDIs significantly reduce UCE,
thereby promoting low-carbon urban development. Consequently,
Hypothesis 1, which posits that NDIs effectively curb UCE, is
substantiated by these findings. These results not only validate
the hypothesized relationship between NDIs and UCE but also
provide empirical evidence supporting the role of NDIs in
facilitating sustainable urban growth.

4.2 Robustness tests

To ensure the reliability of the core findings, this paper
undertakes a series of robustness tests, which primarily involve
replacing the explained variables and the core explanatory variables,
as detailed below:

First, replacing the explained variables: Considering the
differences in economic development levels across various
regions, this study replaces the previously used UCE intensity
with per capita carbon emissions (PCE), accounting for regional
population disparities. Additionally, sulfur dioxide emissions, a
common indicator for measuring environmental pollution, are
used to reflect regional environmental pollution levels. In this
robustness test, urban sulfur dioxide emission intensity (USE) is
calculated by dividing sulfur dioxide emissions by the gross regional
product and is used instead of carbon emission intensity. The
regression results, presented in columns (1) and (2) of Table 4,
show that the coefficients of NDIs are significantly negative at the
1% level, aligning with the benchmark regression results. Second,
replacing the core explanatory variables: In line with existing studies,
two alternate explanatory variables are employed. The word
frequency share of government work reports on NDI (WFS) is
used as one explanatory variable, and urban per capita
telecommunication business income (CTI) is used as a proxy
variable for NDIs. The regression results, displayed in columns
(3) and (4) of Table 4, indicate that the coefficients are significantly
negative, thereby affirming the robustness of the paper’s core

TABLE 2 Descriptive analysis of variables.

Variables Obs Mean Std. Dev Min Max

Explained variable UCE 3,396 0.514 0.405 0.044 4.416

Explanatory variable NDIs 3,396 4.663 1.078 1.115 7.77

Control variable X1 3,396 1.616 1.628 0.057 20.683

X2 3,396 54.977 15.062 18.493 100

X3 3,396 5.73 0.973 1.659 9.42

X4 3,396 10.625 0.619 8.41 13.056

X5 3,396 0.979 0.619 0.116 9.622

X6 3,396 0.986 0.557 0.109 5.348

X7 3,396 0.458 0.225 0.054 1.541

Mediating variables Innov 3,396 4.173 1.713 0 9.302

Digit 3,396 0.227 1.154 −1.0201 12.571

TABLE 3 Benchmark regression results of the impact of NDIs on UCE.

(1) (2) (3)

UCE UCE UCE

NDIs −0.1296*** −0.1541*** −0.0689***

−(−40.75) −(−7.81) −(−3.77)

X1 −0.0008

−(−0.33)

X2 0.0021***

(2.80)

X3 −0.1815***

−(−6.50)

X4 −0.2866***

−(−19.23)

X5 0.09***

(15.37)

X6 0.0431***

(4.30)

X7 0.0925*** (2.70)

Constant 1.1189*** (44.22) 1.2337*** (18.15) 4.6157*** (21.28)

City Fixed No Yes Yes

Year Fixed No Yes Yes

N 3,396 3,396 3,396

R2 0.1875 0.1938 0.2170

Note: *p < 0.10, **p < 0.05, ***p < 0.01; values in parentheses are t values.
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findings. These robustness tests validate the stability and reliability
of the study’s conclusions, demonstrating that the observed
relationship between NDIs and UCE remains consistent under
various analytical conditions.

4.3 Endogenous processing

4.3.1 Instrumental variable
In reality, carbon emissions are influenced by a myriad of

factors, and the control variables in this study do not encompass
all the relevant factors. Consequently, the issue of endogeneity due to
omitted variables is likely to arise. Furthermore, there exists a
bidirectional relationship between NDIs and UCE: while NDIs
significantly impacts carbon emissions, the level of UCE can also
influence the construction of NDIs, indicating potential
reverse causality.

To address these concerns, this paper employs the instrumental
variable method for an endogeneity test. Drawing on the studies by
Ivus and Boland (2015) and Feng et al. (2007), this study calculates
the land topographic relief degree (LTRD) of China using ArcGIS.
LTRD reflects the complexity of local terrain, which affects the
installation and deployment of NDIs. Generally, higher LTRD
indicates greater costs and difficulties in NDIs construction,
thereby satisfying the relevance condition as an instrumental
variable. Additionally, as a natural factor, LTRD is not directly
related to UCE, fulfilling the exogeneity requirement. Moreover,
considering that LTRD is constant and does not change over time, a
two-stage least squares (2SLS) regression was conducted. This
regression utilized the product of LTRD and the number of
Internet users in the country in the previous year as an
instrumental variable, following the approach of Ji and Yang
(2020). This methodology provides a robust way to mitigate the
endogeneity concerns and substantiate the reliability of the findings
in this study.

The instrumental variables regression results are detailed in
columns (1) and (2) of Table 5. The findings from the first stage of

the regressions reveal that the coefficients on the instrumental
variables are significantly positive and successfully pass the weak
instrumental variables test. In the second stage of the regression, the
results demonstrate that the coefficients of the core explanatory
variables, which are the focus of this paper, are significantly positive.
This indicates that NDIs have a substantial inhibitory effect on UCE,
confirming the hypothesis that employing instrumental variables
can effectively mitigate endogenous problems. Meanwhile, Table 5
employs the Anderson canonical correlation LM statistic for
identification tests. The p-values for these statistics are indicated
within pointed brackets. Additionally, the Cragg-Donald Wald F
statistic is used for the weak instrumental variable (IV) test. The
critical values derived from the Stock-Yogo test are displayed within
square brackets. These values represent the critical thresholds at the
10% significance level. This approach ensures that the instruments
used in the study are both valid for identification and not weak,
thereby providing robustness to the regression results. This rigorous
statistical analysis is crucial for validating the instruments used in
the regression models. By passing these tests, the study’s
methodology is strengthened, ensuring that the findings are
based on reliable and valid statistical procedures.

Furthermore, this study also utilizes the lagged one-period data
of NDIs as an instrumental variable for an endogeneity test. The
corresponding results are presented in columns (3) and (4) of
Table 5. These results similarly show that the coefficients of the
instrumental variables are significantly positive in the first-stage
regression and pass the weak instrumental variable test. The second-
stage regression results further confirm that the coefficients of the
core explanatory variables are significantly positive, reinforcing the
conclusion that NDIs exert a significant inhibitory effect on UCE.
This consistency in results underlines the effectiveness of using
instrumental variables to address the issue of endogeneity in
this context.

4.3.2 Exogenous policy shocks
In addition to the IV-2SLS estimation, this paper identifies

exogenous policy shocks as quasi-natural experiments and

TABLE 4 Robustness test.

(1) (2) (3) (4)

PCE USE UCE UCE

NIC −0.1437*** (−3.26) −44.1743*** (−8.64)

WFS −0.0570**

−(−2.45)

CTI −0.0917*** (−3.00)

cons 9.4784*** (18.14) 63.2393 (1.04) 4.5223*** (20.89) 4.5432*** (21.02)

Control Variables Yes Yes Yes Yes

City Fixed Yes Yes Yes Yes

Time Fixed Yes Yes Yes Yes

Observations 3,396 3,396 3,384 3,396

R2 0.0619 0.2451 0.1930 0.1935

Note: *p < 0.10, **p < 0.05, ***p < 0.01; values in parentheses are t values.
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employs the difference-in-difference (DID) model to further address
the endogeneity issue. The construction of NDIs is influenced by a
variety of factors. In December 2012, China issued the “Circular on
Carrying Out National Smart City Pilot Work,” which emphasizes
informatization infrastructure as a key component of smart city
development. This directive provides a feasible metric for measuring
NDIs in this study. Utilizing the smart city pilot policy as a proxy for
NDIs help mitigate the issues arising from mutual causality between
variables. The smart city initiative, focusing on urban innovation
and the enhancement of intelligent and comprehensive development
through NDIs construction and improvement, is rooted in
digitalization. It is a crucial policy measure for boosting digital
infrastructure capacity. Importantly, this policy is not directly linked
to carbon emissions. Consequently, this study considers smart city
construction as a quasi-natural experiment for empirical testing.
This approach allows for a more accurate assessment of the
relationship between NDIs and UCE, strengthening the validity
of the study’s findings.

The Ministry of Housing and Urban-Rural Development has
announced three batches of national smart city pilots. Following the
approach of Beck et al. (2010), this article constructs a multi-
temporal DID model to assess the policy’s impact on UCE. The
specific model settings are as follows:

UCEi,t � α0 + α1Smarti,t + γXi,t + μi + δt + εi,t (2)

In this model, Smarti,t represents the smart city pilot variable,
which is set to 1 from the current year onward if the city is approved
as a smart city pilot, and 0 otherwise. Other variables retain the same
definitions as in Equation 1. Table 6 reports the baseline regression
results of the impact of smart city pilots on UCE. Column (1)
displays the policy effects without including control variables, while
column (2) incorporates city-level control variables. The estimation
results reveal that the coefficients of the national smart city pilot
policy are significantly negative, both with and without the addition
of control variables. This finding suggests that NDIs have a
significant effect on reducing carbon emissions, even after

addressing endogeneity through the use of exogenous policy
shocks. These results provide further evidence supporting the
conclusions drawn earlier in the paper.

5 Further analysis

5.1 Mechanism analysis

The benchmark regression and a series of robustness tests
conducted in this study affirm that NDIs can effectively reduce
UCE. The critical question arises: through what mechanisms does
this policy achieve its effect? As theorized earlier, the construction of
NDIs is believed to suppress UCE by promoting the development of
the digital economy and green technology innovation. To
empirically test these two mechanisms, this paper employs the
mediation effect model, aiming to validate Hypothesis 2 and
Hypothesis 3. The specific model is structured as follows:

Medi,t � γ0 + γ1NDIi,t + θXi,t + μi + δt + εi,t (3)

TABLE 5 Estimation of instrumental variables.

IV1 (LTRD) IV2 (Lagged)

Stage1 Stage2 Stage1 Stage2

IV1 0.0003*** (19.71)

IV2 0.5776*** (40.83)

NIC −0.4826*** (−8.55) −0.1170*** (−3.91)

cons 3.7275*** (14.65) 6.0296*** (18.65) 1.5036*** (6.98) 4.5325*** (16.42)

Control variables Yes Yes Yes Yes

Year Fixed Yes Yes Yes Yes

City Fixed Yes Yes Yes Yes

N 3,396 3,396 3,113 3,113

Anderson canon. corr. LM statistic 378.67
<0.0000>

1158.79
<0.0000>

Cragg-Donald Wald F statistic 388.29 [16.38] 1667.42 [16.38]

TABLE 6 Impact of smart cities on UCE.

(1) (2)

UCE UCE

Smart −0.0465*** (−5.03) −0.0372*** (−4.63)

cons 0.7059*** (94.95) 4.5179*** (20.93)

Controls No Yes

City Fixed Yes Yes

Year Fixed Yes Yes

N 3,396 3,396

R2 0.0412 0.1888

Note: *p < 0.10, **p < 0.05, ***p < 0.01; values in parentheses are t values.
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UCEi,t � μ0 + β1NDIi,t + β2Medi,t + μi + δt + εi,t (4)

In this model, Medi,t represents the mediating variables, which
include the digital economy and green technology innovation. The
descriptions of the other variables remain consistent with those
outlined in the previous section. The causal stepwise regression
method is applied, where model (3) and model (4) are estimated
based on the significantly negative fitting coefficient of NDIs in the
baseline model (1). This approach involves examining if the
parameters of NDIs in model (3) and the mediating variables in
model (4) are significant. The results of this mediating effect test are
presented in Table 7.

Columns (2) and (3) of Table 7 report the path mechanisms by
which NDIs influences UCE from the perspective of the digital
economy. The results indicate that NDIs significantly fosters the
development of the digital economy, characterized by high
innovation, strong penetration, and extensive coverage. The
digital economy effectively reduces search, matching, and
transaction costs, achieving the objective of UCE reduction by
innovating consumption modes and altering consumption habits.
Columns (4) and (5) of Table 7 present the path mechanisms that
examine the role of green technology innovation. The findings reveal
that NDI promotes green technology innovation, which in turn
achieves UCE reduction goals by enhancing energy use efficiency
and improving production processes.

These results confirm Hypotheses 2 and 3. They demonstrate
that NDIs not only catalyzes the growth of the digital economy and
green technological innovation but also significantly contributes to
the reduction of UCE through these channels. This underscores the
multifaceted impact of NDIs in driving sustainable urban
development.

5.2 Heterogeneity analysis

5.2.1 Municipal administrative level
In China, the productivity level and resource allocation

efficiency across cities are highly correlated with their
administrative levels. Cities of higher administrative status, such
as municipalities, provincial capitals, and sub-provincial cities,
typically enjoy more benefits in terms of factor appropriation,

local tax burden, and technological innovation capacity. These
advantages facilitate the promotion of NDIs development.
Referring to previous research (Yan et al., 2023), this paper
classifies 49 larger cities, including municipalities and provincial
capitals, as high-level cities, while the rest are considered low-
level cities.

The results, as shown in columns (1) and (2) of Table 8, indicate
that in low-level cities, the impact of NDIs on UCE is significantly
negative. In contrast, in high-level cities, the impact of NDIs on UCE
appears to be positive. This divergence can be attributed to the scale
of NDIs construction in high-level cities, which is often larger,
leading to substantial carbon emissions from infrastructure such as
5G base stations and data centers. Additionally, the initial stage of
NDIs construction tends to be energy-intensive, resulting in
significant carbon emissions. The carbon emission reduction
effects through pathways like the digital economy and green
technological innovation have not yet been fully realized in these
cities. Consequently, the overall effect in high-level cities is an
increase in UCE, as the inhibitory impact on carbon emissions is
weaker at this stage.

5.2.2 Industrial development base
The industrial bases among Chinese cities vary greatly,

influenced by initial resource endowments and historical national
strategies. In 2013, to facilitate coordinated adjustment and
transformation of industries in old industrial bases, the National
Development and Reform Commission (NDRC) issued the
“National Plan for Adjustment and Transformation of Old
Industrial Bases (2013–2022)." This plan identified 95 prefectural-
level cities as old industrial bases. Characteristically, these cities
often exhibit low industrial levels, haphazard development, high
energy intensity, and significant environmental pollution (Shi and
Li, 2020).

Accordingly, this paper divides the sample cities into old
industrial cities and non-old industrial cities to conduct separate
regression analyses. The results, as presented in columns (3) and (4)
of Table 8, indicate that the impact of NDIs on UCE in non-old
industrial cities is significantly negative. Conversely, in old industrial
cities, the impact of NDIs on UCE is positive, leading to an increase
in UCE levels. This outcome is likely due to the industrial structure
in old industrial cities being predominantly characterized by high-

TABLE 7 Results of mechanism tests.

UCE (1) Mechanism I Mechanism II

Digit (2) UCE (3) Innov (4) UCE (5)

NIC −0.0689*** (−3.77) 0.2102*** (2.60) −0.0658*** (−3.60) 0.1846*** (2.74) −0.0667*** (−3.64)

Med −0.0151*** (−3.72) −0.0122** (−2.50)

control variables Yes Yes Yes Yes Yes

City fixed Yes Yes Yes Yes Yes

fixed time Yes Yes Yes Yes Yes

N 3,396 3,396 3,396 3,396 3,396

R2 0.1938 0.3124 0.2093 0.7170 0.2198

Note: *p < 0.10, **p < 0.05, ***p < 0.01; values in parentheses are t values.
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energy-consuming and high-carbon-intensity industries. These
cities exhibit strong path dependency in their economic growth,
offering limited scope for emission reduction in the short term.
Additionally, old industrial cities are often situated in regions like
the northeast and northwest, which experience net population
outflows and lack economic vitality. The financial dependence of
these cities on central government transfer payments, coupled with
insufficient local fiscal resources, further constrains the energy-
saving and emission-reduction effects of NDIs.

6 Discussion

This study investigates the impact and mechanisms of NDIs on
UCE within the context of China. As the world’s largest carbon
emitter, reducing China’s carbon emissions is crucial for achieving
global carbon reduction goals. In the context of the global push for
green and sustainable development, the findings of this study
provide valuable insights into the relationship between NDIs and
UCE. They also offer a theoretical foundation and policy
recommendations for reducing UCE in the digital era. Thus,
these findings merit further in-depth discussion.

Firstly, the primary regression model of this paper reveals a
significant negative correlation between NDIs and UCE. This
indicates that NDIs can substantially reduce UCE, a conclusion
that aligns with most existing research results (Liu, 2023; Wang
and Shao, 2024). This consistency underscores the validity and
persuasiveness of the chosen variables and research methodology.
In recent years, China has escalated its construction and
investment in NDIs. This development has fostered the in-
depth application of technologies such as artificial intelligence,
the industrial internet, and blockchain, leading to innovative
application scenarios and new industrial forms. It has tapped
into new drivers of economic growth and facilitated the
optimization and upgrading of traditional industries known for
high energy consumption, pollution, and low efficiency.
Consequently, NDIs play a critical role in pollution and carbon
reduction, providing empirical evidence and a model for green
development for other countries worldwide.

Secondly, the construction and development of NDIs often depend
on various factors, which may also influence UCE simultaneously.
Therefore, this paper uses the smart city pilot policy as an exogenous
policy shock to examine the impact of NDIs on UCE, effectively
addressing endogeneity issues. The results of this study are consistent
with previous research (Qian et al., 2023; Zhang and Wu, 2023),
indicating that the smart city pilot policy can effectively reduce UCE
and has a positive effect on reducing urban smog pollution. Robustness
tests, including replacing dependent and independent variables and
handling endogeneity with instrumental variables, further
demonstrate the robustness and credibility of the research conclusions.

Thirdly, the mediating effect analysis conducted in this paper
reveals that NDIs influences the level of UCE through the digital
economy and green technology innovation. As previously theorized,
these two pathways are potent drivers for reducing UCE. This finding
aligns with the conclusions of numerous existing studies (Li et al., 2023;
Ma and Lin, 2023). In the modern era of big data, many countries are
focusing on digital government and smart city initiatives as key
directions for future development. These initiatives necessitate the
increased construction of new types of infrastructure. However, it is
important to acknowledge that building NDIs requires substantial
capital investment. In the short term, its effect on reducing UCE
may not be immediately apparent. Indeed, in the initial stages of
construction, carbon emissions may temporarily increase due to
high energy consumption. Nonetheless, the mechanism paths
identified in this paper provide compelling evidence that UCE can
be effectively reduced through the digital economy and green
technology innovation, ultimately leading to a decrease in UCE.

Fourthly, the heterogeneity analysis of this paper shows that the
development of NDIs has a significant negative impact on UCE in cities
with lower administrative levels. In contrast, in cities with higher
administrative levels, the development of NDIs has not yet
demonstrated the ability to reduce UCE and may even contribute
positively to it. This unique finding may be due to the larger scale of
NDIs construction in higher-level cities, which is often energy-intensive
in the initial stages, leading to increased carbon emissions. During the
early stages of NDIs construction, the carbon reduction effects of the
digital economy and green technology innovation have not yet been
fully realized, resulting in a positive impact on UCE. This finding

TABLE 8 Heterogeneity analysis.

Administrative level Industrial base

(1) (2) (3) (4)

High-level Low-level Old industrial Non-old industrial

NIC 0.0326** (2.35) −0.0753*** (−3.40) 0.0135 (0.37) −0.0598*** (−3.52)

Constants 1.4439*** (9.46) 5.5579*** (19.49) 1.8032*** (3.96) 4.4647*** (21.63)

control variable Yes Yes Yes Yes

City Fixed Yes Yes Yes Yes

Year Fixed Yes Yes Yes Yes

N 588 2,808 1140 2,256

R2 0.2823 0.1933 0.1268 0.1899

Note: *p < 0.10, **p < 0.05, ***p < 0.01; values in parentheses are t values.
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provides valuable theoretical support for government and policymakers
to formulate targeted policy recommendations. Green development and
emission reduction policies should not be one-size-fits-all but should be
adjusted according to the heterogeneity of cities, providing targeted
approaches to address these environmental challenges.

7 Conclusions and recommendations

Utilizing urban-level panel data fromChina from 2009 to 2020, this
paper investigates the impact of NDIs on UCE, their transmission
mechanisms, and the heterogeneity among cities of varying
administrative levels and industrial bases. The study uncovers several
key findings: (1)NDIs can significantly reduce the level of UCE, and this
conclusion holds after a series of robustness tests. (2) NDIsmainly affect
the level of UCE through two pathways: the digital economy and green
technology innovation. (3) The heterogeneity analysis shows that NDIs
reduce the carbon emission level in cities with low administrative levels
and non-old industrial cities, while their inhibitory effect on UCE has
not yet appeared in high administrative level cities and old industrial
cities. Based on the above discussion and conclusions, this paper puts
forward the following policy recommendations:

Firstly, promoting the construction and development of NDIs.
Governments should vigorously promote and enhance the
construction of NDIs, focusing on increasing their coverage and
penetration. Specific measures include investing in developing
infrastructures related to big data, 5G, artificial intelligence, and
the industrial internet. Establish platforms for information
disclosure and sharing to guide more information resources into
the production sector. These actions will amplify the impact of NDIs
in urban governance, green manufacturing, intelligent management,
and the formation of new industries and modes, ultimately
contributing to the reduction of UCE.

Secondly, promoting the digital economy and green technology
innovation. Leverage NDIs to foster the growth of the digital economy
and green technological innovation, which are critical pathways for
reducing UCE. Governments should focus on nurturing talent,
particularly in the fields of the digital economy and artificial
intelligence. This can be achieved through educational programs,
incentives for R&D, and policies that encourage innovation. Utilize
big data, the Internet, and other information technologies to promote
the integration of talent, capital, and technology. Strengthening these
areas will contribute to lower carbon emissions.

Thirdly, tailoring policies to urban heterogeneity. Develop
differentiated policies that consider the unique characteristics of
cities with varying administrative levels and industrial bases. For
high administrative level cities, focus on further technological
innovation and lifestyle changes to reduce carbon emissions. For old
industrial cities, prioritize upgrading traditional industries and altering
energy structures. Implement targeted measures such as tax incentives,
subsidies for green projects, and support for clean energy initiatives.

8 Limitations and future
recommendations

This paper primarily investigates the impact of NDIs on UCE,
exploring the mechanisms of the digital economy and green

technology innovation. However, carbon emissions in one region
may affect emissions in another, underscoring the need for further
analysis of the spatial spillover effects of NDIs on UCE. This will be a
major focus of future research. Additionally, the study has certain
limitations and shortcomings, which also provide directions and
goals for future research:

Firstly, regarding the selection of core explanatory variable
indicators, although the current indicators have a degree of
rationality, relying on a single indicator could lead to issues such
as weak representativeness. In future studies, we plan to strengthen
our theoretical analysis and methodological exploration to identify
more comprehensive and representative evaluation indicators.
Secondly, the sample research period of this paper, spanning
from 2009 to 2020, is constrained by the availability of data. In
recent years, the Chinese government has significantly increased
policy support and investment in NDIs construction. Updating the
data to include more recent years could provide a deeper and more
nuanced understanding of the relationship between NDIs
construction and UCE. Thirdly, this study predominantly focuses
on the macro-urban level. However, county areas, as more
fundamental economic units, play a crucial role in both
economic development and carbon emission reduction.
Therefore, future research extending to the county level and
more micro perspectives will be an important direction to
explore. Such research could yield valuable insights into the
localized impacts of NDI and environmental policies.
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