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In the context of global climate change and rising anthropogenic loads, outbreaks
of both endemic and invasive pests, pathogens, and diseases pose an increasing
threat to the health, resilience, and productivity of natural forests and forest
plantations worldwide. The effective management of such threats depends on
the opportunity for early-stage action helping to limit the damage expand, which
is difficult to implement for large territories. Recognition technologies based on
the analysis of Earth observation data are the basis for effective tools for
monitoring the spread of degradation processes, supporting pest population
control, forest management, and conservation strategies in general. In this study,
we present a machine learning-based approach for recognizing damaged forests
using open source remote sensing images of Sentinel-2 supported with Google
Earth data on the example of bark beetle, Polygraphus proximus Blandford,
polygraph. For the algorithm development, we first investigated and annotated
images in channels corresponding to natural color perception—red, green, and
blue—available at Google Earth. Deep neural networks were applied in two
problem formulations: semantic segmentation and detection. As a result of
conducted experiments, we developed a model that is effective for a
quantitative assessment of the changes in target objects with high accuracy,
achieving 84.56% of F1-score, determining the number of damaged trees and
estimating the areas occupied by withered stands. The obtained damage masks
were further integrated with medium-resolution Sentinel-2 images and achieved
81.26% of accuracy, which opened the opportunity for operational monitoring
systems to recognize damaged forests in the region, making the solution both
rapid and cost-effective. Additionally, a unique annotated dataset has been
collected to recognize forest areas damaged by the polygraph in the region
of study.
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1 Introduction

Forest ecosystems play a crucial role in biosphere processes,
performing a range of key ecosystem functions and services,
including supporting biodiversity, regulating the climate,
regulating water and air quality, and providing timber, fiber, fuel,
and food (Saarikoski et al., 2015; De Frenne et al., 2021). Although
deforestation within recent years has slowed down, it still continues,
while anthropogenically induced damages significantly intensifying
degradation processes in adjacent ecosystems and leading to overall
biodiversity loss, posing a threat to the stability of economic
processes (FAO and UNEP, 2020).

Having 10%–15% of terrestrial land area, boreal forests
contribute significantly to global carbon sequestration, being one
of the largest carbon pools (Noce et al., 2019; Schepaschenko et al.,
2021; Peichl et al., 2023). Besides forest resources utilization for
economic purposes, several primary causes of forest degradation and
deforestation are identified, including fires and other extreme
weather events, infestations of pests, diseases, the spread of
invasive species, and the impact of anthropogenic pollution
(Leskinen et al., 2020; Högberg et al., 2021). In the context of
global climate change, precisely due to increases in average global
temperatures and corresponding shifts in temperature optimums
and, consequently, in niches, the outbreaks of endemic and invasive
insect pests and other pathogens pose an increasing threat to the
health, resilience, and productivity of natural forests and forest
plantations worldwide. It is estimated that insect outbreaks
damage around 35 million hectares of forests annually (FAO,
2010), while together with diseases and severe weather events, it
caused tree loss in the areas of about 40 million ha of forests in 2015
(FAO and UNEP, 2020). Climate change’s impact on forest
ecosystems is expected to be most significant in northern
latitudes (Boulanger et al., 2016; Reich et al., 2022), where
significant forest losses are already documented due to
destructive wildfires (Whitman et al., 2019) and pest infestations
(Sánchez-Pinillos et al., 2019). Without optimized management
based on monitoring and precautionary actions, this problem is
likely to worsen.

Insect pest damage to forests results in a range of negative
consequences. First of all, it worsens the ecological condition at both
the local and landscape levels by reducing forest productivity in
affected areas, altering the composition and structure of the tree
canopy, and decreasing overall biodiversity through the destruction
of natural habitats. Areas with affected trees become loci for further
pest spread and pose increased fire risks (Canelles et al., 2021).
Additionally, there are losses in raw materials, primarily timber,
which can be especially critical for regions where timber harvesting
constitutes a significant portion of the budget (Hlásny et al., 2021;
Panzavolta et al., 2021). Depending on the characteristics of the
insect pests, both weakened trees and productive stands, as well as
saplings, can be subject to damage (Ferrenberg, 2016).

It is noted that operational monitoring and predictive
assessments are effective tools for forming management strategies
aimed at maintaining forest ecosystem productivity and reducing
timber losses, with a specific focus on forest pathology issues (fao,
2020). Solutions based on remote sensing (RS) data are required to
monitor large forested areas, reduce the costs of ground surveys, and
overcome limitations related to accessibility and processing vast

amounts of information. Machine learning methods, particularly
computer vision, have already proven effective for assessing forest
stand conditions (Duarte et al., 2022; Illarionova et al., 2022; She
et al., 2022). By leveraging spectral characteristic distribution data
and machine learning and deep learning algorithms, information
about the state of target objects can be obtained, with accuracy and
quality often surpassing visual inspection results (Gao et al., 2023).
Solution for detection of bark beetle infestation using medium
resolution satellite images has been provided by Bárta et al.
(202). They used Random forest algorithm to delineate damaged
areas. Another classical machine learning approach was discussed by
Zhan et al. (2020). Zhan et al. (2020) proposed an approach based on
UNet++ architecture to detect pest-infested forest damage in
medium-resolution multispectral images (Zhang et al., 2022).
Usage of machine learning algorithms in combination with
various vegetation indices for forest health monitoring were also
discussed in a number of studies (Bhattarai et al., 2020). High-
resolution satellite data provide more detailed maps of damaged
forests, although they are often more expensive (Yu et al., 2020; Liu
et al., 2021).

A key limitation of modern RS-based approaches in the context
of forest ecosystem degradation capturing and assessment is the
constrained ability to differentiate the causes of disturbances and the
requirement of proper introduction of additional resources of local
assessments, including high-resolution data (Gao et al., 2020).
Moreover, early infestation signals could likely be observed only
from the ground investigations, e.g., stem disturbances and other
manifestations such as streaks. Other consequences making the
outbreak detectable from remote sensing, therefore relevant for
spatial assessments, accompany next stages of the damage on the
likely irreversible way to the death of tree, such as leaves
discoloration, defoliation, or dieback (Luo et al., 2023). However,
there is still a difference when the separated trees are affected this
heavily or larger stands, if the scale and duration of the outbreak
become too large leading to the ecosystem sustainability threshold
break (Marini et al., 2022). Thus, local assessment can be crucial for
early-stage damage detection helping to localise the spread of pests
and pathogens. With that, the scale of analysis challenge occurs. An
open-source medium-resolution data helps with large-area
processing, however, constrained by the aggregation of both
diseased trees with occurrences of healthy trees due to pixel size
larger than separate trees. To address it, fusion of high and medium
resolution data in a single pipeline is required. Additionally, spread
of pathogens is commonly species dependent, resulted in diversified
spectral signals confusing for imagery processing without ground-
truth supported annotation. Open and available datasets for various
regions and agents are currently limited. Thus, collection and
annotation of ground-truth data, preserving information about
specific agents contributing to forest deterioration in each case
are of high importance for development of automatised
monitoring tools. Solving all these tasks is essential for
transitioning to sustainable forest management, ensuring
multifunctional forest use, conservation, protection, and forest
regeneration.

Thus, the aim of this study was to develop a machine learning
(ML) model for recognizing damaged forests resulting from pest
infestations, using the example of the bark beetle, Polygraphus
proximus, polygraph. To achieve this, data collection and
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annotation were conducted in the region of pest infestation. The
annotated data is publicly available for the research community to
facilitate further studies on forest health assessment. YOLOv8 and
HRNet algorithms were trained for the detection and semantic
segmentation tasks of recognizing withered trees on high-
resolution satellite images. We explored the applicability of
Sentinel-2 data for detecting disease in forest areas where only
several trees within the stand are affected.

Developed model approaches enable the automatic
identification of forest areas damaged by the polygraph, followed
by the mapping of affected territories using open-source high- and
medium-resolution RS data. Both the approach and results make
significant contributions to the development of semi-automated
pipelines for ecological assessment of the territories affected by
pest outbreaks and pathogens and can be further utilized to monitor
and analyze the pest’s spread dynamics, to construct predictive
models of their distribution, and to plan the optimized management
actions limiting the influence of the forest damage actors.

2 Materials and methods

2.1 Research area

2.1.1 Territory description
The development and testing of the algorithmwere conducted in

the Perm Region territory (Russia). The total research area covered
7,810 ha (Figure 1).

The Perm region is situated on the eastern edge of the Russian
Plain and in the western part of the Ural Mountains. The total area
of forest-covered managed territories is no less than 9 million
hectares, with forest ecosystems consisting of fir-spruce,

deciduous, and pine species. The area under study represents a
gently rolling plain with elevations ranging from 200 to 400 m above
sea level and falls within the zone of coniferous and broad-leaved
forests, with Finnish spruce (Picea fennica (Regel) Kom.) being the
predominant tree species (Zhulanov et al., 2023). Siberian fir (Abies
sibirica Ledeb.) is widely distributed in the forests of the Pre-Kama
basin and is a constant companion of spruce. This species is almost
always present in the composition of mixed dark coniferous
plantations found in the research area. The average proportion of
Siberian fir in such plantations ranges from 10% to 30% of the total
stock. Moreover, the predominance of Siberian fir in the species
composition is mainly characteristic of mature plantations, where,
due to natural dynamics and the absence of anthropogenic impact,
its share naturally increases.

2.1.2 Polygraphus proximus spread
The forests of the territory of study, Perm region, are currently

experiencing the spread of the invasive P. proximus, polygraph. The
natural habitat of this bark beetle spans across the Russian Far East,
Japan, Korea, and Northeast China, while it has become invasive in
West Siberia, with ongoing westward expansion (Bykov et al., 2020;
Dedyukhin and Titova, 2021). As invasion, currently infestations of
polygraph are observed in both commercial forests and also in
forests that serve protective functions and forests of specially
protected natural areas, such as green zones around settlements,
spawning protection zones, and water protection forests. The
polygraph inhabits not only pure fir stands but also dark
coniferous forests with a small admixture of fir, affecting flat and
mountainous territories.

Significantly, in case of outbreaks, the polygraph affects not only
stands that have lost resistance to stem pests, such as older trees and
trees weakened by diseases and adverse climate conditions but also

FIGURE 1
Research area description. Red polygons correspond to areas processed for algorithms training and testing. On the enlarged image on the right, an
example of forest damage caused by a pest is presented—the damaged trees are clearly distinguishable against the green background. The images are
provided based on a Google satellite base map layer, imagery credit: Google maps, ⓒ2024 CNES/Airbus, Maxar Technologies, Map data ⓒ2024.
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outwardly healthy trees. It is noted that the pest can also infest
medium and large fir saplings with diameters as small as 6 cm. Signs
of tree infestation by the polygraph starts from the resin streaks and
develops to the change in the color of needles to red from the bottom
of the crown to the whole crown to the turning to the dead wood.
Period of tree resistance to the polygraph mass attacks on the stage
of resin streaks can reach 2–3 years. After reaching a critical
population level in a specific stand, mass tree withering begins
approximately 3–5 years later, ultimately leading to the complete
breakdown of the forest stand (Krivets et al., 2015; Dedyukhin and
Titova, 2021).

2.2 Data

2.2.1 Reference data
A research area near Perm city with a total area of 7,810 ha was

selected for the study, where the spread of the polygraph was
observed. The infestation by polygraph began approximately in
the years 2019–2020, according to the visual ground forest
pathology investigations. In 2021, corresponding stands withering

was detected in the area of study. Figure 2A shows a forested area
with individual damaged trees, which can be identified on high-
resolution satellite images of recent years on the stage of crown
color change.

To provide the research, available high-resolution imagery based
on Google Earth and medium-resolution imagery from Sentinel-
2 were used.

First, the annotation data were collected based on orange and
red-color crown search in the area of the outbreak during July. To do
this, Google Earth service was used, allowing users to inspect large
territories with help of the high-resolution imagery. Spatial
resolution up to 0.5 m per pixel is suitable for the visual
identification of individual damaged trees reducing the expenses
on ground surveys which are still impossible with the same level of
detailing for extensive areas. At the same time, Google Earth mosaics
are updated at least every two to 3 years, with some areas having
access to current-year images, and area under the user observation
contains information about the date the image was taken (Google,
2024). Thus, an assessment of the vegetation cover’s condition was
made based on the identification of damaged trees distinguishable by
the color (Figures 1, 2A) for the 23 July 2022. Then, for the same

FIGURE 2
Examples of Dataset: (A) satellite RGB image, (B) HSV image and (C) a binary segmentation mask. RGB images are provided based on a Google
satellite base map layer, imagery credit: Google maps, ⓒ2024 CNES/Airbus, Maxar Technologies, Map data ⓒ2024.
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imagery date sites, images were retrieved at the resolution of 0.5 m
through the open-source geospatial platform QGIS (QGIS
Development Team, 2024) following the approach presented
earlier (Li et al., 2022). A total of eight GeoTIFF tiles were
acquired, effectively covering the targeted region of interest.

The Computer Vision Annotation tool, CVAT (Intel, 2024), was
used for manual annotation preparation. For the convenience of
data annotation and subsequent neural network algorithm training,
the satellite images were divided into patches of 512 by 512 pixels.
The annotation included two classes: damaged forest (label 1) and
undamaged forest areas (label 0). Examples of RGB composites and
reference annotations are shown in Figure 2A, C.

The total annotated area covered 2,837 ha. Dataset statistics are
presented in Table 1. A total of 433 annotated patches were
prepared, which were then split into training and testing datasets.

2.2.2 Medium-resolution data
As additional satellite data, we considered images from the

Sentinel-2 mission. The openly distributed images are available
from the SentinelHub service (Sentinelhub, 2024). One of the main
advantages of this data source in the context of the considered forest
degradation task is the availability of historical data. This will further
allow one to analyze disease spread over several years. Sentinel-2 data
contains 13 spectral bands with spatial resolutions ranging from 10m,
20 m, and 60 m per pixel. The central wavelength varies from 443 nm
(Ultra Blue) to 2,190 nm (Short Wave Infrared). The level of image
preprocessing is a Level-2A product that includes atmospheric
correction of Surface Reflectance images. For further investigation,
we excluded the spectral band associated with Coastal and Aerosol
measurements (B1 band) with a 60m spatial resolution, as well as two
Short Wave Infrared bands with 60 m spatial resolution (B9 and
B10 bands). All other bands are resampled to a 10m spatial resolution.
We collected cloud-free Sentinel-2 images for the summer period of
2022 years to match the observation year of the imagery from Google
Maps. The dates of observations are 4, 14, 29 June, 7 July, 23,
28 August. For each observation date, a single image is acquired.
Each image has 10 spectral bands and additionally 3 vegetation indices
were computed.

2.2.3 Remote sensing data processing
2.2.3.1 High-resolution data processing

In addition to the RGB color data, the HSV (Hue, Saturation,
Value) color model was also considered (Figure 2B). Transitioning
to the HSV color model allows for the assessment of the color value
of an individual pixel on a specified scale. Damaged forest areas
exhibit a distinct orange color and can be visually separated from the
healthy forest cover based on this color feature. In the RGB image
representation, the color orange corresponds to specific values
across three channels. In the HSV representation, the color
component is represented by a single channel named Value, and
changes in lighting (the use of satellite images from different dates)

do not have a significant impact on the Value component as it does
in the case of the RGB color representation. Therefore, the transition
to this color model holds potential interest for the task of
recognizing damaged forest areas.

Before feeding the image into the neural network model, the
image for both color representation models was normalized and
scaled to a range of values from 0 to 1, which ensures better
algorithm convergence.

2.2.3.2 Medium-resolution data processing
Although RGB high-resolution satellite data provide precise

information on surface structure, multispectral medium-
resolution data provide valuable spectral features. These satellite
bands can be used independently as input features for ML
algorithms or can be combined to create new advanced features.
Vegetation Indices (VIs) are commonly used in remote sensing data
related tasks because they combine various spectral bands into a
single value in order to better capture particular vegetation
highlights and properties depending on the use case (Xue and Su,
2017). There are many existing VIs, and in this research only three of
them that are popular in academia (Zhao et al., 2020; Poblete et al.,
2023) are examined. The Normalized Difference Vegetation Index
(NDVI) is the highly accurate measurement of health and density of
vegetation surface using NIR and red bands of the spectrometric
data. It ranges from −1 to 1. In general, NDVI values vary among
different land cover types and can differ significantly based on
vegetation types and environmental conditions. Healthy
vegetation typically exhibits a positive NDVI value higher than
non-vegetated areas and water surfaces (Han and Niu, 2020; Xue
et al., 2021). Green Normalized Difference Vegetation Index
(GNDVI) is similar to NDVI, but instead of a red band, it uses
green band, which focuses on the green part of the spectrum, making
it more sensitive to the presence of green vegetation. GNDVI ranges
from −1 to 1 (Taddeo et al., 2019). Enhanced Vegetation Index (EVI)
is another vegetation index used to assess vegetation health and
monitor environmental changes. It was designed to improve upon
some limitations of the NDVI, such as its sensitivity to atmospheric
conditions, soil backgrounds, and saturation effect in regions with
dense vegetation. EVI values range from −1 to 1 (Taddeo et al.,
2019). Higher EVI values generally indicate healthier and more
densely vegetated areas, while lower EVI values can be associated
with less vegetation or stressed vegetation due to factors like drought
or disease, as well as other land cover types. The calculation for VIs is
given in Formulas 1, 2, 3.

NDVI � NIR − Red

NIR + Red
(1)

GNDVI � NIR − Green

NIR + Green
(2)

EVI � 2.5
NIR − Red

NIR + 6Red − 7.5Blue( ) + 1
(3)

2.3 Recognition methods

2.3.1 Approach
Two problem formulations for recognizing damaged trees were

considered: the detection and the semantic segmentation. To solve

TABLE 1 Annotation dataset statistics.

Statistics info Train sites Test sites Validation sites

Total area 19.79 km2 4.32 km2 4.26 km2

Amount of patches 302 66 65
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the detection task, an enclosing bounding box was constructed
around each individual damaged tree or forest area, with only
one class of objects being identified. Metrics were then calculated
based on the localized objects. This problem formulation primarily
focuses on determining the object’s position in the image and can
also be used for counting and quantitatively assessing
damaged areas.

On the other hand, masks of damaged forest areas were used to
solve the semantic segmentation task. The model was trained to
identify withered trees pixel-wise, which allows for a more accurate
assessment of the damaged forest area’s size. Subsequently, a
comparison and analysis of the obtained detection and
segmentation results were conducted to choose the most suitable
strategy for recognizing damaged trees.

The overall pipeline for recognizing damaged forest areas in
high-resolution satellite images is shown in Figure 3.

To create an up-to-date forest mask, we used the output results
of earlier developed algorithms (Mirpulatov et al., 2023). Briefly, it
provides a land cover mask based on Sentinel-2 satellite imagery
with a spatial resolution of 10m per pixel. The F1-score for the forest
mask is 0.88. The forest mask was created for the same dates of the
observations. The “forest” class was extracted from the mask, and
then, through the image resize operation, the binary mask was
brought to the same image size as a high-resolution satellite image
covering the same territory. Our objective was not to enhance the
resolution of the 10 m forest cover map, but rather to upscale the
binary map to align with high-resolution satellite imagery.
Predictions of the models for damaged tree recognition were
overlapped with the forest mask to avoid false positives outside
forested areas. This step also significantly reduced the training
dataset and, at the same time, avoided a strong imbalance
between the target class (diseased trees) and other types of
surfaces in satellite images. While the usage of Snetinel-2 based
forest map can be not suitable for identifying small clearings within
the forest, it is effective for excluding large areas occupied by
settlements or agricultural fields from further analysis.
Additionally, more detailed forest cover maps can be generated
using basemaps such as Google or Mapbox (Illarionova et al., 2022).
However, given our further focus on utilizing freely available

Sentinel-2 data, we opted to create the forest map specifically
based on this particular data source. Therefore, this step supports
the transition to the analysis of large forested areas.

However, while high-resolution images provide valuable
information on individual trees infected by polygraph, it is also
crucial to develop a solution for analyzing medium-resolution
satellite data for ecological state assessment. This is because
medium-resolution images, such as those from the Sentinel-2
mission, are freely accessible and offer frequent revisit times, and
have a long operation period, making them suitable for monitoring
the spread of damage across stands. However, one limitation is the
collection of datasets for medium-resolution data for this task. The
average size of an individual tree is typically smaller than the pixel
size of Sentinel-2 images (10 m per pixel), making it difficult to
visually distinguish small diseased areas even if they are close to the
size of a Sentinel-2 pixel. Additionally, diseased trees are often not
distributed homogeneously across large forest areas, with visually
healthy trees also present in the same plots. Therefore, the
fundamental question is how to associate individual diseased
trees or small groups of trees in high-resolution images with
medium-resolution images. To address this issue, we propose a
two-step approach. Firstly, we mark up damaged forest areas based
on high-resolution images. This was achieved using HRNet model,
which was trained with RGB data and showed best segmentation
metrics, to get the damaged area mask from high-resolution image.
To create more relevant samples, we selected pixels that showed
confidence rate larger than 0.8. The resulting mask resolution was
much higher than that of Sentinel-2 image, so simple resizing was
not feasible since at 10 m resolution, the value of individual tree
would almost disappear. Therefore, the following process has been
carried out: we set a fixed window size based on the Sentinel-2 image
pixel size relative to predicted damaged forest mask. We then
iterated window across the mask, calculating the ratio of the
“damaged” forest pixels to “healthy” forest pixels within each
window. This allowed us to assign each 10 × 10 m pixel with a
corresponding damaged area content ranging from 0 to 1. Figure 4
depicts distribution of ratios of “damaged” pixels in Sentinel-2
images. Smaller ratios occur more frequently; thus ratios of
“damaged” pixels greater than 0.3 were assigned as

FIGURE 3
The scheme of proposed approach for capturing damaged forest areas using multisource remote sensing images.
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representatives of “damaged” class, while the pixels with 0 damaged
forest were used as representatives of the “healthy” forest for
classification task. In total, 37,414 pixels with damaged forest
were identified. This markup is then used to develop an ML
model that can classify diseased forest based on Sentinel-2
spectral features. The goal is to assess the capability of ML
models to distinguish key spectral patterns of damaged forest,
even at the scale of an individual pixel or a small group of pixels
in Sentinel-2 data.

2.3.2 Segmentation and detection algorithms for
high-resolution data

For the segmentation task, we examined HRNet (High-
Resolution Network) (Wang et al., 2020) and DeepLabv3+
(Chen et al., 2018). HRNet is a neural network architecture
designed for processing high-quality images in the task of
image segmentation. The HRNet architecture is based on the
idea of maintaining high image resolution at all levels of the
network, which allows the network to maximize information
about the details and structure of objects in the image. HRNet
consists of several parallel branches or modules that work with
different levels of image resolution. These modules exchange
information and combine it at all levels, allowing HRNet to
effectively work with objects of different sizes. HRNet is
widely used in areas such as medical image processing,
development of computer vision systems for unmanned
vehicles (Chen et al., 2023), analysis of satellite images, and
other areas where high detail and accuracy are required.

DeepLabv3+ is a state-of-the-art semantic segmentation model
in the field of computer vision. It represents an evolution of the
DeepLab family of models, designed to accurately and efficiently
label and segment objects within images. What sets DeepLabv3+
apart is its remarkable ability to capture fine-grained details and
intricate object boundaries, making it especially suitable for tasks
like object recognition and scene understanding. This model
incorporates powerful features like atrous (dilated) convolutions,

atrous spatial pyramid pooling, and a decoder module with skip
connections, enabling it to achieve high-quality segmentation
results. DeepLabv3+ has found applications in a wide range of
areas, including analyzing remote sensing data (Illarionova
et al., 2023).

For the detection task, we used the YOLOv8 architecture (Jocher
et al., 2023). YOLOv8 is a state-of-the-art model of one-stage object
detection that is becoming widely popular because it can process
images and videos in real time (Yang et al., 2023). It represents the
architecture of the YOLO family. YOLOv8 consists of three main
components: the backbone network, detection head, and loss
function. YOLOv8 uses a new detection system called YOLO-
Anchor-Free, which does not depend on predefined anchor boxes
or grids to make predictions. Instead, it predicts four corner points
for each bounding box and uses a centrality score to filter out false
positives. This allows YOLOv8 to more efficiently and reliably
handle objects of different shapes and sizes. YOLOv8 offers
several model sizes, each defined by the number of parameters.
In our experiments, we used only the Small (3.2 million parameters),
Medium (11.2 million parameters), and Large (25.9 million
parameters) models.

Patches of size 512 × 512 pixels were used as input.
Subsequently, image preprocessing was performed, including
normalization or conversion to a different color model other
than the RGB format. In the case of the semantic segmentation
task, the result of the neural network algorithm was a binary
mask, where 1 corresponded to damaged areas. In the case of
using the detection algorithm, the model generated bounding
boxes for each detected damaged forest area. Further processing
of the obtained maps was carried out. The model’s predictions
were overlapped with the forest mask to avoid false positives
outside forested areas.

2.3.3 Classification algorithms for medium-
resolution data

To address the task of processing medium-resolution satellite
imagery for identifying damaged areas, a classical ML approach was
adopted, utilizing the pixel values extracted from Sentinel-2 images
as input. The objective was to produce binary outputs (0 or 1)
indicating the presence or absence of forest disease. For this purpose,
the XGBoost Classifier, an integral part of the ensemble learning
family, was employed (Chen and Guestrin, 2016). Known as
Extreme Gradient Boosting, XGBoost has earned acclaim for its
outstanding performance in diverse data science and machine
learning competitions.

XGBoost distinguishes itself by fusing the strengths of gradient
boosting algorithms with sophisticated regularization techniques
and a distinctive objective function. This combination ensures
resilience against overfitting, even when dealing with intricate
datasets. The XGBoost algorithm functions by iteratively
enhancing the predictive capabilities of an ensemble of decision
trees, where each new tree corrects errors made by its predecessors.
This approach effectively balances bias and variance, ultimately
yielding highly accurate models. Consequently, XGBoost proves
to be an invaluable tool for the specific task of satellite image
analysis, offering the potential to make precise determinations in
the presence of challenging data and diverse features (Chen and
Guestrin, 2016). XGBoost was trained with hyperparameters tuning

FIGURE 4
Distribution of the area of diseased trees within each Sentinel-2
pixel (10*10 m). The target variable is presented as a proportion of the
area size. The initial markup is created based on high-
resolution images.
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resulting 200 estimators, maximum depth of 20 and a learning
rate of 0.1.

All available cloud-free images for the summer period of
2022 years were used to create the dataset for the ML task. To
produce a representative amount of the “damaged forest” samples
and “healthy forest” samples, we proposed the following approach.
We used all pixels labeled as “damaged forest” and then we
randomly sampled the same amount of pixels with “healthy
forest”. It allows us to mitigate the gross imbalance in the
original dataset. To take into account the initial variability of the
“healthy forest” samples during parameters fine-tuning, we trained
ML models on 5 generated datasets (only “healthy forest” samples
vary). Then the results were averaged.

The splitting into train, validation, and test subsets were
conducted based on the territories that do not overlapped (all
observations dates were presented in each subset). We compared
two settings: training only with spectral bands and with spectral
bands in combination with VIs.

2.3.4 Evaluation metrics
Evaluation metrics were calculated according to the Eqs 4–7. To

assess the quality of segmentation of damaged trees from satellite
images, F1-score and IoU (Intersection over Union) metrics were
selected, as they are among the most commonly used metrics in
similar CV tasks with RS data. The F1-score metric is defined by the
following formulas:

Precision � TP

TP + FP

Recall � TP

TP + FN

F1 � TP

TP + 1
2

FP + FN( )
� 2*Precision*Recall

Precision + Recall

(4)

where TP is True Positive (number of correctly classified pixels of
the given class), FP is False Positive (number of pixels classified as
the given class while, in fact, being of another class), and FN is False
Negative (number of pixels of the given class, missed by
the method).

The IoU (Intersection over Union) metric is defined by
the formula:

IoU � TP

TP + FP + FN
(5)

where TP, FP and FN are the same as described above.
For the detection algorithm, we used mAP50 metric with IoU

threshold 0.5. The formula is the following:

mAP � #TPdetection

#TPdetection + #FPdetection
(6)

where #TPdetection denotes to the number of correct detection of the
target class, #FPdetection denotes to the number of wrong detection of
the target class. All detections are counted if IoU larger than 0.5.

For the ML experiments, only the Accuracy metric was
considered due the balance between two classes:

Accuracy � TP + TN

TP + FP + TN + FN
(7)

3 Results

3.1 Segmentation and detection algorithms
for high-resolution data

To address the task of recognizing areas of the forest affected by
polygraph, two problem formulations were considered from the
perspective of CV algorithms: object detection and semantic
segmentation. Since the problem formulations themselves
significantly differ, a direct comparison of the obtained metrics
was not conducted, and the evaluations were done independently.
Both problem formulations achieved a high degree of
correspondence between the predicted and actual damaged forest
areas. The visual assessment of the results is also supported by high
metrics (Tables 2 and 3).

Experiments with different encoders for YOLOv8 models
showed high metrics across both datasets (Table 2). For the
dataset containing RGB images, we achieved the mAP50 metric
of 68% with YOLOv8 Medium size model, followed by
YOLOv8 Small model with 65% and Large model with 64%. On
the other hand, for HSV dataset, the Large model showed the best
results overall achieving 70%, while the Small and Medium models
achieved 69% and 65%, respectively. In fact, the model with the
largest parameter count showed the lowest result in one dataset and
achieved the best metric in the other; this may be due to the relative
complexity of the models to correctly obtain certain features to
detect objects in RGB and HSV color spectrogram. The results for
the best models both for RGB and HSV are depicted in Figure 5.

When addressing the task of semantic segmentation, the RGB
image dataset yielded superior results when using the HRNet model,
achieving a mean F1-score of 84%. The DeepLab model performed
with slight variations but did not quite match the HRNet’s
performance. Interestingly, when working with the HSV dataset,
the DeepLab model outperformed the HRNet model, achieving 83%
F1-score, while the HRNet showed only marginal differences in
results. The results for the best models are presented in Figure 6.

For the object detection algorithm utilizing RGB images, a
mAP50 metric of 64% was achieved for damaged forest areas.
Transitioning to the HSV color representation increased this
metric to 70% (Table 2). When addressing the task of semantic
segmentation, the use of the RGB color model showed good results,
with F1-score equal to 84%, while the F1-score for the HSV model
was 2% lower (Table 3).

The difference in metrics showing better performance of the
segmentation algorithm on the RGB color model can be explained
by the procedure on the manual data annotation that was performed
on RGB images, which may have missed areas of damaged forest
with less expressed color or of smaller size. However, such areas are
muchmore visually distinguishable in the HSV color representation.
Thus, the training dataset can be potentially expanded with
annotations based on the HSV representation, allowing for the
identification of damaged trees at various stages of drying.

It is worth noticing that only forested areas have been considered
during training and inference stages. It allowed us to avoid false
positives and focus on the most important areas. Examples of the
target forested territories delineation and further predictions of the
damaged trees is depicted in Figure 7.
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TABLE 2 Results of detection experiments (RGB and HSV). The mAP@50 metrics are estimated for the test area.

Dataset YOLOv8 small (%) YOLOv8 medium (%) YOLOv8 large (%)

RGB data 65.19 68.14 64.57

HSV data 68.85 65.20 70.22

TABLE 3 Results of segmentation experiments for RGB and HSV datasets. Metrics estimated for the test area. F1-score and IoU are averaged metrics for the
classes “damaged forest” and “healthy forest”; F1-score damaged and IoU damaged are metrics for the “damaged forest” class only.

Dataset F1-score (%) F1-score damaged (%) IoU (%) IoU damaged (%)

HRNet

RGB data 84.56 69.35 77.06 54.58

HSV data 82.84 65.92 75.18 50.86

DeepLabv3

RGB data 84.38 68.98 76.87 54.17

HSV data 83.76 67.74 76.29 53.02

FIGURE 5
Prediction results for object detection (test set): (A)—ground truth, (B)—object detection for RGB images, (C)—object detection for HSV images. RGB
images are provided from a Google satellite base map layer, imagery credit: Google maps,ⓒ2024 CNES/Airbus, Maxar Technologies, Map dataⓒ2024.
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3.2 Applying segmentation algorithm results
for damaged trees recognition frommiddle-
resolution data

We also conducted experiments using Sentinel-2 data to
assess the capability of multispectral medium-resolution data
in recognizing forest damage. While directly labeling medium-
resolution data for this task is challenging, we utilized high-
resolution markup that was downscaled to a resolution of 10 m
per pixel. Additionally, in the medium-resolution dataset we
created, we included information about the size of the
damaged area. Each pixel was assigned a proportion
representing the extent of diseased tree masks within a
10*10 m area (pixel size).

Unlike the case with high-resolution data, for medium-
resolution data, we applied a classical ML approach. The main
reason for this is that we focused on the spectral characteristics
rather than texture features, which can be extracted from high-
resolution images. We trained the XGBoost model in two settings:
one using only spectral bands as input features, and the other using
both bands and VIs. Including VIs as features allowed us to improve
the accuracy from 80.36% to 81.26%. Based on the feature
importance chart in Figure 8, we can conclude that VIs do not
significantly influence to the model’s decisions, but they do serve as
supplementary features to enhance confidence. An example of the
resulting map of damaged forest based on Sentinel-2 data is shown
in Figure 9.

4 Discussion

Detecting forest damage plays a pivotal role in achieving
various environmental objectives, encompassing efficient natural
resource management, biodiversity conservation, and climate
change action (Vinceti et al., 2020; De Frenne et al., 2021;
Oettel and Lapin, 2021). The urgency of addressing forest
damage arising from pest outbreaks is especially difficult as
the extensive geographical areas require monitoring and
assessment. At the same time, it is highlighted, that if the
outbreak occurs the only countermeasure to restrict its further
spread is the salvage logging, which also can induce a
controversial effect on the biodiversity (Cours et al., 2021).
Thus, the early detection of outbreaks, in terms of both early
stages of infestation and localized areas of spread is of high
importance, while the utilization of the up-to-date RS data is the
only information recourse to make it possible to provide
assessments considering resources and time constraints.
However, the direct utilization of open-source RS data is
limited by its spatial resolution of up to 10 m per pixel, which
is insufficient for effective tree damage recognition and manual
image annotation. Consequently, fusion of the data from diverse
sources could be an effective solution, as high-resolution datasets
are useful to provide initial information that can be subsequently
processed for monitoring large areas, including retrospective
assessments, if the archive imagery data is available for
the region.

FIGURE 6
Predictions results for semantic segmentation (test set): (A)—RGB image, (B) —ground truth mask, (C) —segmentation for RGB images, (D)
—segmentation for HSV images. RGB images are provided from Google satellite base map layer, imagery credit: Google maps, ⓒ2024 CNES/Airbus,
Maxar Technologies, Map data ⓒ2024.
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Comparing the proposed approach with existing studies, it is
worth noticing that in case of medium resolution images,
datasets often contain large damaged territories. For instance,
labels can be determined based on fieldwork on the forestry scale
instead of individual tree or group of trees scale (Jolly et al., 2022;
Zhang et al., 2022). Such data is valuable for a range of
environmental tasks. However, more detailed maps with

individual trees or groups of trees might be preferable for
particular investigations and forest management. On a large
scale healthy trees and damaged can locate close to each
other. Therefore, in our approach, we can estimate damaged
areas more precise excluding from consideration healthy areas
on a large scale.

As for the limitations of the presented approach, they are related
to the time precision of openly available high-resolution data of the
base map sourced from Google Maps and the challenges associated
with transitioning from high-resolution masks to medium-
resolution image data. Google’s base map, being an aggregated
product, lacks the same date or even year information for
spectral data acquisition (Google, 2024). High-resolution satellite
data from other sources can be further integrated into the proposed
pipeline to extend and enlarge datasets for new observation periods
and new territories, however, it lacks in support of specialized
observation environments helping to manually inspect areas,
which is possible in the Google Earth. On the other hand, even
with limited amount of high-resolution data, we can automatically
create the markup for medium-resolution satellite images such as
Sentinel-2. The second-stage label data can be then utilized to train a
machine learning model and transfer a solution to new territories
and dates. One of the main advantage of the proposed approach is
that transfer from high resolution markup to medium resolution
allows one to distinguish automatically areas that are challenging to
delineate manually due to large pixel size of Sentinel-2. Such
approach minimize requirements for field observations for data
collection.

In addition to the visual inspection of the results for the
fusion of data with Sentinel-2 imagery, we explored one
configuration of the application of ML model certainty with
probabilities exceeding 0.8 that was used as a criterion for
obtaining secondary label data (class “damaged forest”).
However, other applications could be suggested, such as
interpreting model certainty as a measure of the extent of
damage. Combined with the ground-based inventory, this
could be a promising direction for future research.

There are two sources of potential mismatches between Google
Earth images and Sentinel-2 images that should be considered
during the analysis: temporal and spatial. In terms of temporal
analysis, it is important to note that all remote sensing observations
were captured during the same summer period, ensuring
consistency between Sentinel-2 and Google maps images. The
Google Earth image was taken in the middle of the summer on
23 July 2022, while Sentinel-2 images were acquired throughout all
three summer months. It is assumed that during this period, there
were no significant changes at the visual level, given the spatial and
temporal detail with which we are working. Regarding potential
spatial mismatches, it is worth noting that Google Earth images offer
more detailed views, allowing for the delineation of individual trees,
whereas Sentinel-2 data provide more generalized observations for
the same areas. Due to the high quality of georeferencing in both
Sentinel-2 and Google maps images, we achieve a high level of
alignment between the images from these two sources covering the
same area. Additionally, it is observed that the transition from
Google Earth to Sentinel-2 is more straightforward than the
reverse transfer, making it a feasible option. Furthermore, to
maximize the feasibility of the developed approach, we estimated

FIGURE 7
The results of the segmentation algorithm’s work within the area
of forest mask. On the upper image (A) example of the Sentinel-2
image and corresponding forest mask visualized as a red boundary
line. On the bottom image (B) the results of segmentation
algorithm shown in blue. High-resolution RGB image is provided from
Google satellite base map layer, imagery credit: Google maps,
ⓒ2024 CNES/Airbus, Maxar Technologies, Map data ⓒ2024.

FIGURE 8
Feature importances of the XGBoost model.
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the area of damages using Google Earth and then took it into
account when transitioning to Sentinel-2. This approach eliminates
the use of small plots on Google maps that cannot be accurately
detected using Sentinel-2.

To support healthy forest growth and development, the
proposed approach can be integrated into ecological
monitoring systems. Detected diseased areas and nearby
territories can be further treated with chemicals to prevent
spreading of insects (Holmes and MacQuarrie, 2016). Forest
resistance to insects highly depends on particular regions,
forest species, and other environmental properties (Jactel
et al., 2021). As additional forest characteristics for changes
assessment, one can observe forest species or forest age that
can be also obtained automatically through satellite data and
machine learning algorithms (Smolina et al., 2023). The
developed solution can be used to create maps of insect pests
spreading through several years. It will allow researchers to
analyze key patterns of forest degradation in particular regions
and take preventive measures. Moreover, based on information
about insect pests spreading during a few previous years, it is
possible to forecast its spreading in future (Wang et al., 2021).

Additionally, future perspectives in this domain could be
focused on harnessing additional data sources and addressing
new challenges associated with spatial monitoring and planning.
For instance, integrating forest-specific data, such as coniferous tree
masks, has the potential to localize more precisely the area of interest
and enhance model performance (Illarionova et al., 2020).
Incorporating high-resolution hyperspectral data could be used
for the development of spatial tools for early-stage damage
detection (Yu et al., 2021). Furthermore, generating historical
predictions for the region of interest could be coupled with
bioclimatic, landscape, forest, and socio-economic data to
develop predictive models of pests’ distribution, thereby
facilitating prioritized and costs-optimized spatial planning
(Srivastava et al., 2021).

5 Conclusion

Within the scope of the conducted work, the set tasks have been
successfully addressed, including 1) the collection of the unique
annotated dataset for recognizing forest areas damaged by P.
proximus using high-resolution RS data; 2) exploring the
approaches to recognizing forest damage in high-resolution RGB
images using deep neural networks in two types of ML tasks:
semantic segmentation and detection; 3) assessing capability of
medium-resolution Sentinel-2 data in the same task. Developed
model approaches enable the automatic identification of forest areas
damaged by the polygraph followed by the mapping of affected
territories using available high- and open-source medium-
resolution RS data. Both the approach and results make
significant contributions to the development of semi-automated
pipelines for ecological assessment of the territories affected by
pest outbreaks and pathogens and can be further utilized to monitor
and analyze the pest’s spread dynamics, to construct predictive
models of their distribution, and to plan the optimized management
actions limiting the influence of the forest damage actors.
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