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A precise forecast of atmospheric temperatures is essential for various
applications such as agriculture, energy, public health, and transportation.
Modern advancements in technology have led to the development of sensors
and other tools to collect high-frequency air temperature data. However,
accurate forecasts are challenging due to their specific features including high
dimensionality, non-linearity, seasonal dependency, etc. To address these
forecasting challenges, this study proposes a functional modeling framework
based on the components estimation technique by partitioning the air
temperature time series into deterministic and stochastic components. The
deterministic component that comprises daily and yearly seasonalities is
modeled and forecasted using generalized additive modeling techniques.
Similarly, the stochastic component that accounts for the short-term
dynamics of the process is modeled and forecasted by a functional
autoregressive model, autoregressive integrated moving average, and vector
autoregressive models. To evaluate the performance of models, hourly air
temperature data are collected from Islamabad, Pakistan, and one-day-ahead
out-of-sample forecasts are obtained for a complete year. The forecasting results
from all models are compared using the root mean squared error, mean absolute
error, andmean absolute percentage error. The results suggest that the proposed
FAR model performs relatively well compared to ARIMA and VAR models,
resulting in lower out-of-sample forecasting errors. The findings of this
research can facilitate informed decision-making across sectors, optimize
resource allocation, enhance public safety, and promote socio-economic
resilience.
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1 Introduction

Air temperature is a crucial meteorological parameter that measures the level of heat or
coldness in the air. It is essentially a measure of the kinetic energy, or energy of motion, of
the gases that make up the air. The acceleration of the molecular movement of gases
corresponds directly to an increase in air temperature (Spiridonov and Ćurić, 2021).
Various factors, including solar radiation, atmospheric pressure, and the presence of
greenhouse gases, influence this kinetic energy.Air temperature is a fundamental aspect
of weather that plays a major role in many areas of our lives including agriculture, energy
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consumption, public health, and transportation. Accurate air
temperature forecasting benefits different stakeholders by
providing critical information for decision-making, resource
allocation, public safety improvement, and social and economic
resilience. The availability of accurate and reliable air temperature
forecasts over a short period of time can facilitate farmers, energy,
transport, urban planners, and other decision-makers in other
sectors to make informed decisions on crop cultivation, energy
demand management, traffic management, infrastructure
maintenance and many more. Moreover, they help to optimize
resource allocation in areas such as energy and water management.
For example, utilities can adjust the production and distribution of
electricity based on the expected temperature changes. At the same
time, water resources managers can plan more effectively for
irrigation and water supply management. On the other hand,
reliable forecasts of atmospheric temperatures play an important
role in public safety, especially in anticipating and preparing for
extreme weather events such as heat waves and cold periods. Having
accurate forecasts, emergency response agencies, health facilities,
and local authorities can take proactive measures to protect
vulnerable populations, prevent heat-related diseases, and reduce
the impact of extreme temperatures on public health and
infrastructure. In addition, forecasting air temperature can
contribute to improving social and economic resilience, enabling
communities and companies to better anticipate and mitigate the
impact of temperature fluctuations. For example, tourism and
hospitality companies can adapt their activities according to
weather forecasts, while urban planners can design heat-resistant
infrastructures to mitigate the impact of urban heat islands (Ostro
et al., 2010). Moreover, accurate temperature forecasting plays a
significant role in the context of sustainable development goals
(SDGs). For example, SDG 13 refers to climate action, which
focuses on urgent measures to combat climate change and its
impact. A better air temperature forecast is essential to
understand climate patterns, predict extreme weather events, and
implement strategies to mitigate climate change. In addition, SDG
11, i.e., sustainable cities and communities, aims to promote
inclusive, secure, resilient, and sustainable cities. Improvements
in air temperature forecasting help urban planners and
policymakers design climate-resistance infrastructure, develop
heat mitigation strategies, and improve overall city quality of life
(United Nations, 2015).

Forecasting hourly air temperature is tricky due to the ever-
changing atmospheric factors like sunlight, clouds, wind, and the
land’s shape that can significantly affect temperatures. The
interaction of these elements can lead to swift temperature
changes, making predictions challenging. Moreover, temperature
can follow various patterns depending on the location and the time
of the year. Air temperature typically follows a daily cycle, with the
warmest temperatures occurring in the afternoon and the coolest in
the early morning. This phenomenon arises from the earth’s
rotation, resulting in varying levels of solar radiation received by
different regions of the planet throughout the day. Air temperature
also exhibits a seasonal cycle, peaking during summer and reaching
its lowest points during winter. This variation is attributed to the
earth’s axial tilt, leading to variations in solar radiation received by
different regions throughout the year (Yan et al., 2014; Zhu
et al., 2022).

Air temperature forecasting is an essential task in many fields of
study, and, in the past, many researchers have proposed several
methods and techniques to model and forecast air temperature
(Asha et al., 2021; Astsatryan et al., 2021; Liu et al., 2021; Ozbek et al.,
2021). For instance, Chen et al. (2018) used the seasonal ARIMA
(SARIMA) model for predicting monthly mean temperature. The
temperature data were collected hourly from a weather station in
Nanjing, China, from January 1951 to December 2017. The study
evaluated the forecasting accuracy of the proposed model by
computing the mean squared error (MSE) of the forecasted
values for the period 2015 to 2017. The result concluded that the
proposed model demonstrated better forecasting accuracy. Curceac
et al. (2019) conducted a study on short-term air temperature
prediction using a nonparametric functional (NPF) model and a
SARMAmodel using the air temperature data from the United Arab
Emirates (UAE). The data span a period of 29 years, ranging from
1982 to 2010. Forecasts for 1–24 h are obtained from both models,
and results are summarized using the MSE, root MSE (RMSE),
relative root mean squared error (RMSEr), mean bias (BIAS), and
relative mean bias (BIASr). The study’s findings indicated that the
SARMA model outperformed during the initial 6 h of a day, while
the NPF was more accurate for forecasting durations ranging from
7 to 24 h. Zahroh et al. (2019) presented a study on predicting the
daily maximum and minimum air temperatures using the long
short-term memory (LSTM) network model and examines the
impact of key parameters such as hidden layers, neurons, epochs,
and the stochastic gradient algorithm on the accuracy of
temperature forecasts. Roy (2020) studied three different models,
namely, multilayer perceptron (MLP), LSTM, and a combination of
convolutional neural network (CNN) and LSTM to forecast one-
day-ahead mean temperature for the next 10 days.

As machine learning techniques are robust and flexible and can
account for different features in the data, they are widely used for air
temperature forecasting (Agrawal et al., 2012; Kumari et al., 2012;
Hossain et al., 2015; Nadtoka and Balasim, 2015; Salcedo-Sanz et al.,
2016). For example, Ustaoglu et al. (2008) forecasted the average
daily, maximum, and minimum temperature from two
meteorological stations, Sakarya and Geyve, in Turkey, ranging
from 1989 to 2003, with a total of 5,468 days. For this purpose,
three different artificial neural networks (ANN) models, feed-
forward back-propagation (FFBP), generalized regression neural
network (GRNN), and radial basis function (RBF), were studied.
The performance of the ANN models was also compared to the
multiple linear regression (MLR) model. The study results suggested
that FFBP and RBF models performed superior to GRNN and MLR
in predicting daily minimum andmaximum temperature. Assuming
nonlinearities in the temperature data, Abhishek et al. (2012) used
different ANN models with different hidden layers and neurons to
forecast the daily maximum temperature for Toronto, Canada, for
1 year. The study found that the ANNmodel with five hidden layers,
10 or 16 neurons per layer, and ten sigmoid transforms was more
effective in predicting weather patterns than only one hidden layer.

The crucial affect of air temperature cannot be ignored in fields
like, agriculture, energy, consumption, public health, and
transportation. For example, Ali et al. (2013) investigated the
relationship between extreme temperatures and electricity
demand in Pakistan, finding a positive correlation between the
two variables. This implies that as temperatures rise, electricity
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demand also increases. The study further revealed that this
relationship is stronger in urban areas than in rural regions.
McFarland et al. (2015) focused on the intricate relationship
between rising air temperatures and the performance of the
electric grid in the United States (US). As temperatures increase,
the grid’s ability to transmit electricity decreases while the demand
for electricity increases. From a health perspective, as climate change
worsens, its impact on human health becomes more apparent,
especially through the combined effects of rising temperatures
and worsening air pollution. This results into more heat-related
illnesses, respiratory and heart diseases, and the spread of infectious
diseases. In addition, it emphasizes that these health problems affect
vulnerable populations, such as the elderly, children, and those
living in poverty, to a greater extent (Lou et al., 2019). Research
in air temperature forecasting is ongoing, driven by the need for
more precise and dependable predictions. As statistical models such
as time series models get more advanced and data collection
technology improves, we can expect more accurate temperature
forecasts (Haris et al., 2022; Nandi et al., 2022; Ozbek et al., 2022).

Hourly air temperature forecasting is a challenging task due to
the dynamic nature of the atmosphere and the need for precision.
Local temperature variations can be significant, and forecasting
methods must be able to account for these variations. The
traditional forecasting models, including multivariate and
univariate, contain many limitations when applied to such
datasets. For example, they can only be used to obtain forecasts
for a precise time period. In addition, they are less efficient when the
data is high-dimensional. The inherent smoothness as well as other
properties of the data cannot be used with the classical forecasting
models. To overcome these issues, this research proposed a
functional time series approach for hourly air temperature
forecasts. Within the functional approach, the daily air
temperature profile is considered a single functional datum, and
unlike the traditional methods, the forecast can be obtained for
ultra-short periods. Functional data may or may not be independent
of each other and are useful because the derivatives are available for
further analysis. Since it is a curve and not like a scalar quantity,
being a single datum, the problem of multicollinearity is
automatically resolved. It also solves the problem of high
dimensionality and removes the noise from the data.
Furthermore, it utilizes the inherent smoothness of the data.
Functional data analysis (FDA) techniques have been used in
various fields, such as bio-statistics, econometrics, engineering,
energy, and other sciences (Campbell et al., 2006; Leng and
Müller, 2006; Bonner et al., 2014; Jan et al., 2022; Shah et al.,
2022). However, the FDA has been less explored in the context
of environmental variables forecasting. In addition, neither the
proposed model nor the component estimation technique has
been used for the air temperature data from the considered site.
Furthermore, the proposed model is compared to classical time
series models to assess their performance.

The remaining sections of this manuscript are arranged as
follows. A brief introduction to the FDA, along with the
proposed functional autoregressive model, is provided in Section
2. The general modeling framework and the two competitor models
are discussed in Section 3. An empirical investigation of the
proposed model and competitors is conducted in Section 4.
Finally, the concluding remarks are given in Section 5.

2 Functional Data Analysis

The term “Functional Data Analysis” (FDA) was first introduced
by Ramsay in 1982 (Ramsay, 1982) and several traditional statistical
tools have been adapted and extended to suit the framework of the
FDA (Ferraty, 2006). The FDA is a way of looking at data that are
curves, shapes, or patterns rather than just discrete values. Instead of
thinking about data as discrete points, like dots on a graph, FDA
treats data as curves or functions. This is a convenient way of dealing
with information that changes smoothly over time or space (Ramsay
and Silverman, 2005).

In general, functional data is gathered on discrete points;
however, the frequency of collected data is often very high, and
thus, they are easily converted to functional objects. Typically
represented by curves, the functional data is constructed using a
suitable basis functions system. A system of basis functions
denoted as y(j), is defined as a collection of functions that can
be expressed as a linear combination of coefficients Ck and basis
functions ϕk, i.e.,

y j( ) � ∑K
k�1

Ckϕk j( ), j ∈ J (1)

where Ck represents the coefficients matrix, and ϕk represents the
known basis functions. The number of basis functions used to
construct the functions is an important issue in the FDA. A
penalized residual sum of squares criterion is generally employed
to determine the optimal number of basis functions. This criterion
balances the smoothness of the curve and avoids an inadequate fit to
the data. The argument values j are the discretized points where the
function is evaluated in the J domain (Ramsay and Silverman, 2005).
For simplicity, the notation (j) will be dropped from the function
where the notion is clear.

One of the commonly used basis functions is called the Fourier
basis functions which are generally employed when dealing with
periodic data. The functions are constructed by linearly combining
sine and cosine functions of increasing order and can be expressed
mathematically as

y j( ) � c0 + c1 sinωj + c2 cosωj + c3 sin 2ωj + c4 cos 2ωj +/

(2)
where c0 is a constant term and c1, c2, . . ., ck represent the coefficients
associated with K basis functions. Here, the number of basis
functions is always odd due to including one constant term. The
parameter ω specifies the period as 2π/a where a represents the
periodicity of the series. An example of a Fourier basis function with
k = 10 is plotted in Figure 1.

2.1 Functional autoregressive model

The functional autoregressive model (FAR) is a statistical
technique that helps us to understand how curves change over
time when studying functional time series (FTS). It is the extension
of the traditional autoregressive (AR) model but in a functional
framework. The FAR model assumes that the current state of the
function depends on its own past state. This research work used the
FAR model of order one within the framework of a Hilbert spaceH.
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This approach provides the inherent structure of our data, where
observations are not discrete values but dynamic functions evolving
over time.

The model is defined within a separable Hilbert space H with
the inner product 〈·, ·〉 and the generating norm ‖·‖. For specificity,
we focus on the Hilbert space L2 [0, 1], although our considerations
readily extend to other L2-spaces. A sequence Yt, t ∈ N, of Hilbert-

random variables, is termed an Autoregressive Hilbertian Process
of order 1 (ARH (1)) or FAR(1) if it is strictly stationary
and satisfies

Yt − μ � ψ Yt−1 − μ( ) + εn for n ∈ N (3)
where Yt represents functions in L2 [0, 1], εn is a strong H-white
noise with zero mean and finite second moment (E‖εn‖2 <∞), ψ
denotes a bounded linear operator, and μ is the functional mean of
the process (Bosq, 2000). For simplicity, μ is assumed to be zero,
though this may not be the case in practical applications. The
primary advantage of this model is its capability to forecast Yt+1

using ψ(Yt). The autoregressive operator ψ: L
2 [0, 1]→ L2 [0, one] is

supposed to be a bounded linear operator. The following section
describes the estimation of the operator ψ within the Hilbert
space H.

2.1.1 Estimation of the operator ψ
In estimating the autoregressive operator, ψ within the FAR

model, specific assumptions must be addressed to ensure a
stationary solution. In particular, two key assumptions are
crucial for establishing the existence of such a solution. The
first assumption is the presence of an integer, s0 ≥ 1 such that
‖ψs0‖L < 1. The second assumption requires the existence of a > 0
and 0 < b < 1 such that ‖ψs‖L ≤ abs for all j ≥ 0. Under certain
conditions, these assumptions guarantee the existence of a
unique strictly stationary solution, as demonstrated in
(Bosq, 2000).

It is crucial to emphasize that the estimation of ψ cannot rely on
likelihood due to the non-existence of the Lebesgue measure in non-
locally compact spaces, and the concept of density is unavailable for

FIGURE 1
Fourier basis functions with k = 10 and a constant basis function.

FIGURE 2
Hourly air temperature time series. The red line distinguishes
between model estimation and out-of-sample forecasting periods.

TABLE 1 Descriptive statistics for hourly air temperature in Islamabad.

Statistics Value

Minimum −0.45

Maximum 45.51

1st Quartile 14.54

Median 22.50

3rd Quartile 28.61

Mean 21.78

Variance 80.30404

Standard deviation 8.961,252

TABLE 2 One-day-ahead out-of-sample forecasting errors for FAR, VAR,
and ARIMA models.

Models MAE MAPE RMSE

FAR 1.0852 6.1151 1.5178

VAR 1.1075 6.1320 1.5660

ARIMA 1.1022 6.1198 1.5535
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functional data. Instead, the classical method of moments is
employed. The estimation of ψ is performed as ψ = CΓ−1, where
Γ = E (Yt ⊗ Yt) and C = E (Yt ⊗ Yt+1) represents the covariance and

cross-covariance operators of the process, and ⊗ is the Kronecker
product. The estimates of these operators are denoted as Γ̂ and Ĉ,
respectively.

TABLE 3 Hour specific forecasting errors using FAR, VAR, and ARIMA models.

Models Hours RMSE MAE MAPE Models Hours RMSE MAE MAPE

FAR 1 0.3611 0.2556 1.9209 FAR 13 1.8195 1.3353 5.2836

VAR 0.2744 0.2022 1.5639 VAR 1.9017 1.3886 5.4423

ARIMA 1.5757 1.2136 9.4861 ARIMA 1.8109 1.2985 5.1552

FAR 2 0.5548 0.3959 2.9423 FAR 14 1.8412 1.3568 5.3785

VAR 0.4917 0.3555 2.7002 VAR 1.9196 1.3939 5.4709

ARIMA 1.5400 1.1621 9.3080 ARIMA 1.8513 1.3266 5.2546

FAR 3 0.7529 0.5459 4.1802 FAR 15 1.8300 1.3452 5.4000

VAR 0.7016 0.5140 4.0090 VAR 1.9058 1.3885 5.5146

ARIMA 1.5563 1.1786 9.6383 ARIMA 1.8425 1.3150 5.2630

FAR 4 0.9268 0.6699 5.2413 FAR 16 1.8034 1.3234 5.4134

VAR 0.8800 0.6447 5.1147 VAR 1.8748 1.3730 5.5667

ARIMA 1.6267 1.2311 10.3701 ARIMA 1.8128 1.3146 5.3406

FAR 5 1.0442 0.7548 6.2185 FAR 17 1.7633 1.2878 5.3891

VAR 1.0017 0.7332 5.9623 VAR 1.8104 3,217.0000 5.5519

ARIMA 1.6722 1.2636 11.1687 ARIMA 1.7845 1.2869 5.3944

FAR 6 1.0522 0.7900 7.0886 FAR 18 1.8246 1.3614 6.4623

VAR 1.0303 0.7859 6.7459 VAR 1.8697 1.3986 6.7462

ARIMA 1.6303 1.2463 11.6900 ARIMA 1.9220 1.4234 6.9454

FAR 7 1.1077 0.8452 7.9309 FAR 19 1.7773 1.3694 7.2200

VAR 1.1280 0.8538 7.5478 VAR 1.8527 1.4281 7.5488

ARIMA 1.6358 1.2618 12.2310 ARIMA 1.9470 1.4821 7.9138

FAR 8 1.3253 1.0314 7.3740 FAR 20 1.7637 1.3540 7.6355

VAR 1.3438 1.0354 7.2815 VAR 1.8480 1.4165 7.9221

ARIMA 1.6830 1.2954 9.7956 ARIMA 1.9341 1.4684 8.2996

FAR 9 1.5058 1.1291 5.7837 FAR 21 1.7314 1.3149 7.8946

VAR 1.5643 1.1730 6.0354 VAR 1.8134 1.3631 8.0364

ARIMA 1.7162 1.2907 6.6820 ARIMA 1.8752 1.4296 8.6328

FAR 10 1.6937 1.2661 5.7547 FAR 22 1.6673 1.2739 8.2379

VAR 1.7543 1.3248 6.0289 VAR 1.7410 1.3004 8.2249

ARIMA 1.8345 1.3675 6.2357 ARIMA 1.7980 1.3764 9.0064

FAR 11 1.7850 1.3212 5.5287 FAR 23 1.5905 1.2266 8.5315

VAR 1.8497 1.3711 5.6970 VAR 1.6550 1.2384 8.3842

ARIMA 1.8568 1.3684 5.7907 ARIMA 1.7109 1.3282 9.3198

FAR 12 1.8028 1.3116 5.2483 FAR 24 1.5360 1.1800 8.7051

VAR 1.8754 1.3730 5.4529 VAR 1.5944 1.2032 8.6206

ARIMA 1.8274 1.3028 5.2538 ARIMA 1.6361 1.2641 9.3893
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Without loss of generality, it is assumed that the mean of the
process E (Yt) = 0 is known. The sample versions of the covariance
and cross-covariance operators, denoted as Γ̂ and Ĉ, are given by:

Γ̂ � 1
t
∑t
t�0

Yt ⊗ Yt

and

Ĉ � 1
t
∑t−1
t�0

Yt ⊗ Yt+1

The covariance operator Γ possesses key properties, such as being
symmetric, positive definite, and compact. It is decomposable into
eigenvalues λl and ]l, respectively. However, Γ−1 is not a bounded
operator. To overcome this limitation, a practical solution is

FIGURE 3
Hour-specific MAPE values for FAR, VAR, and ARIMA models.

TABLE 4 Monthly Forecast Errors for Air Temperature using FAR(1), VAR, and ARIMA models.

Models Months RMSE MAE MAPE Models Months RMSE MAE MAPE

FAR 1.4875 1.1297 14.1545 FAR 1.5337 1.1204 3.8204

VAR January 1.3845 1.0592 13.1341 VAR July 1.5261 1.1047 3.7490

ARIMA 1.9621 1.5763 22.0336 ARIMA 1.6211 1.2431 4.3033

FAR 1.4505 1.1332 11.2842 FAR 1.3175 0.8862 3.2089

VAR February 1.4835 1.1256 10.8233 VAR August 1.3030 0.9172 3.3007

ARIMA 1.7996 1.4198 15.4326 ARIMA 1.3403 0.9816 3.6036

FAR 1.9325 1.4675 7.7930 FAR 0.8671 0.6106 2.3199

VAR March 2.0893 1.5807 8.2362 VAR September 0.8837 0.6157 2.3472

ARIMA 2.2097 1.7269 9.6828 ARIMA 0.9654 0.7080 2.7523

FAR 1.6706 1.3416 4.9611 FAR 0.8520 0.6469 3.0450

VAR April 1.6706 1.3416 4.9611 VAR October 0.9097 0.6916 3.2604

ARIMA 1.7529 1.4078 5.4194 ARIMA 1.0150 0.7738 3.8398

FAR 1.9681 1.3627 4.4473 FAR 1.3263 0.9771 6.4918

VAR May 2.0347 1.4064 4.6050 VAR November 1.4301 1.0341 6.8010

ARIMA 2.2284 1.7128 5.8061 ARIMA 1.6137 1.2275 8.3972

FAR 1.8871 1.2825 4.3106 FAR 1.4193 1.0650 7.8396

VAR June 2.0984 1.3567 4.6231 VAR December 1.3717 1.0756 8.0188

ARIMA 2.3415 1.6830 5.8437 ARIMA 1.6093 1.2902 10.0635
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introduced, involving the use of the m most significant empirical
functional principal components (EFPCs) as surrogates for unknown
population principal components. This leads to the expression:

Γ̂−1 y( ) � ∑m
z�1

λ̂
−1
z 〈y, ]̂z〉]̂z � Γ̂† y( ).

Transitioning to the context of the scalar autoregressive process with one
lag, FAR(1), a relation emerges when multiplying the equation by Yt as

Yt ⊗ Yt+1 � Yt ⊗ ψYt( ) + Yt ⊗ ϵt+1 � ψYt ⊗ Yt + Yt ⊗ ϵt+1.

Taking into account the definitions of covariance and cross-
covariance operators within the framework of FAR(1) and
accounting for the vanishing of the ϵ term when expectations are
considered, we can express the relationships as follows:

C � ψΓ and ψ � CΓ−1.

The estimation of ψ is then defined as:

ψ̂t y( ) � 1
t − 1

∑t−1
k�1

∑m
z�1

∑m
i�1

λ̂
−1
z 〈y, ]̂z〉〈Yk, ]̂z〉〈Yk+1, ]̂i〉]̂i.

This expression is obtained by incorporating an additional smoothing
step on Yt+1 and ]̂z. Notably, the empirical eigenfunctions are
recognized for their asymptotic convergence to the population
eigenfunctions.Once the estimator ψ̂ of the population parameter
ψ is obtained, it becomes crucial to assess its optimality in accurately
estimating the true parameter regarding the FAR parameter ψ.
Didericksen et al. (2012) demonstrated that the proposed predictor
is best in terms of the MSE and Mean Absolute Error (MAE). This is
evident as the prediction error of this estimator is similar to that of the
unfeasible predictor ψ(y), given by a suitably chosen m.

3 Modeling framework

This section describes the general modeling framework used for
the prediction and understanding of the temporal dynamics of

hourly air temperature. In addition, it also provides the details
about the competing models, i.e., ARIMA and VAR, that are used in
this study.

3.1 The model

This research focuses on the crucial task of one-day-ahead
hourly air temperature forecasting which is a significant
challenge due to the inherent complexities of atmospheric
dynamics. These complexities encompass daily and yearly
seasonality, non-stationarity, non-linearity, and diverse
influencing factors. To accurately capture them in the model, the
air temperature series is partitioned into deterministic and
stochastic components and are modeled separately. To be more
precise, let St,j represents an air temperature for day t (t ∈ N) and
hour j (j = 1, . . ., 24). Then, the dynamics of this series can be
modeled as

St,j � Dt,j + Yt,j (4)

where Dt,j comprises of deterministic components and Yt,j

represents the stochastic component of the series.
The deterministic component captures predictable patterns like

daily and annual seasonalities. One way to deal with daily seasonality
is to treat each hour series separately which is adopted in this study
(Lisi and Shah, 2020). On the other hand, the annual seasonality At,j

is modeled and forecasted by using a smooth function of time.
Mathematically, it can be written as

Dt,j � f At,j( ) (5)

where the function f represents a smooth function of time estimated
through cubic smoothing splines. Generally, cross-validation
techniques are used to select the number of knots when fitting
the cubic smoothing splines (Eilers and Marx, 2010). The stochastic
component accounts for unpredictable fluctuations and residual
behavior. Once the deterministic component is modeled and
forecasted, the stochastic component is obtained as

FIGURE 4
Month-specific MAPE values for FAR, VAR, and ARIMA models.
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Yt,j � St,j − D̂t,j

Yt,j � St,j − Ât,j.

The stochastic component is modeled and forecasted through the
proposed FAR(1) and two competing models given in Section 3.2. In
the case of FAR(1), the component Yt,j is first converted to daily
functional trajectories using Eq 1 and the model is applied to
functional profiles. In the case of the VAR model, the stochastic
component Yt,j is used as a vector of 24 variables, whereas each
hourly series is treated independently in the case of ARIMA. Once
both components are estimated, the final forecast is obtained by
combining the individual forecasts as

Ŝt+1,j � D̂t+1,j + Ŷt+1,j (6)

3.2 Competing models

This section describes two competing classical time series
models whose results are compared with the proposed FAR model.

3.2.1 Vector autoregressive model (VAR)
The VAR model is an effective tool for examining the dynamic

changes of multiple time series variables over time. It was first
proposed by Christopher Sims and Thomas Sargent in the 1980s and
has become widely used as it can capture complex relationships
between different variables Sargent (1984). The VARmodel assumes
that the present value of each variable is impacted by its past values
as well as the past values of all other variables within the system. The
VAR model of order “p” is represented as follows.

Yt � α +∑p
r�1

ψrYt−r + ϵt (7)

where Yt represents a vector of time series variables at time t, α is a
vector of constants (intercepts), ψ represents the coefficient matrices
for lag p, and ϵt is the vector of error terms at time t.For the
estimation of parameters, techniques such as the ordinary least
squares (OLS) or the maximum likelihood (ML) are generally
employed. Note that for fitting a VAR model, all variables
included in the time series model must be stationary. The order
“p” of a VAR model is selected using different information criteria
and cross validation approaches. In a VAR model, the total number
of estimated coefficients are K + K2pp, where K represents the
number of coefficients for the intercepts, and K2pp represents the
number of coefficients for the lagged values of each variable up to the
order “p”.

3.2.2 Autoregressive integrated moving average
(ARIMA) models

The ARIMA models, also known as the Box-Jenkins models, are
statistical forecastingmethods that have beenwidely used for time series
forecasting. In the context of time series analysis, the ARIMA models
stand as a foundation, providing a flexible framework for predicting and
understanding data that changes over time. Developed by George Box
and Gwilym Jenkins in the 1970s, ARIMA models have gained
widespread recognition for their ability to capture underlying
patterns and trends in a wide range of time series data (Box et al., 2015).

An ARIMA model contains three components: autoregression,
differencing, and moving average. The AR component of the
ARIMA model captures the notion that the current value of the
time series is affected by its past values and is achieved through a
linear combination of past values, with the parameter “p”
representing the order of the AR term, indicating the number of
lagged values incorporated into the prediction equation. Stationarity
is a fundamental requirement for ARIMA models to produce
reliable forecasts. However, many times series data exhibit non-
stationary behavior, meaning their statistical properties, such as
mean and variance, vary over time. Differencing transforms non-
stationary data into a stationary series by eliminating trends and
seasonalities. The order of differencing “d” indicates how many
times the data needs to be differenced to achieve stationarity. Finally,
the MA component accounts for the influence of past errors on the
current value of the time series. It suggests that the accuracy of
current predictions can be enhanced by considering the
discrepancies between past predictions and the actual observed
values. The order of the MA term “q” determines the number of
past errors considered when constructing the prediction equation
(Shumway et al., 2000).The ARIMA (p,d,q) model can be expressed
mathematically as follows.

Yd
t � ∑p

r�1
ψrY

d
t−r +∑q

i�1
ϕiεt−i + εt (8)

where Yd
t represents the d-th difference of the time series Y at time t,

Yd
t−r is the lagged and differenced value of the time series Y at time t-

1, ψr (r = 1,2,. . .,p) and ϕi (i = 1,1,2,. . .,q) are the parameter of AR
and MA, respectively, and εt ~ N (0, σ2ε ). The orders “p” and “q” are
determined using information criteria or by analyzing the
autocorrelation function (ACF) and partial autocorrelation
function (PACF) of a stationary time series. The model
parameters are generally estimated through the MLE approach.

4 Modeling and forecasting air
temperature

This section provides an empirical application of the proposed
modeling framework using a real dataset. Before going into details, a
brief description of the dataset is given as under.

4.1 Data description

The research work used an hourly air temperature dataset
collected from Islamabad, Pakistan. The dataset is collected
through sensors installed at different location in Islamabad and
an average value has been reported for each hour (Power, 2022).
Hourly measurements capture the dynamic nature of air
temperature changes, offering a more comprehensive picture
than daily or monthly averages. No missing observations are
present within the dataset, ensuring the integrity and reliability
of the data for models training and evaluation. The dataset spans
over 5-year period, ranging from 1 January 2018, to 31 December
2022, encompasses 43,824 individual observations. The dataset is
plotted in Figure 2, where one can see the patterns and variations in
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the air temperature throughout the years. The red line distinguishes
between the model estimation and the out-of-sample
forecasting periods.

The summary statistics listed in Table 1 provide a
comprehensive overview of the hourly temperature data. The
table shows that the minimum temperature recorded is −0.45 c°,
indicating the presence of lower extreme values. The first quartile
(Q1) is 14.54 c° and the median at 22.50 c° provides insights into the
central tendency, showcasing that at least 25% of the data falls below
14.54 c° and 50% falls below 22.50 c°. The mean temperature is
21.78 c°, indicating the average value. The third quartile (Q3) at
28.61 c° signifies that at least 75% of the data falls below this point.
The maximum temperature recorded is 45.51 c°, indicating the
presence of higher extreme values. The variability in the dataset
is reflected in the variance, calculated at 80.30404, and the standard
deviation, which is 8.961,252 c°, indicates a moderate level of
variability.

4.2 Out-of-sample forecasting

To achieve accurate hourly air temperature forecasting, the
dataset was divided into training and testing sets utilizing 80/
20 splits. More precisely, from 1 January 2018, to 31 December
2021 (35,064 observations covering 1,461 days) the data points were
used for training various forecasting models. The remaining 20%,
i.e., from 1 January 2021, to 31 December 2022 (8,760 observations,
covering 365 days) served as a hold-out set for evaluating one-day-
ahead out-of-sample forecasting performance for each model.

To compare the forecasting accuracy of the models, three
different types of error metrics are used in the research work
including MAE, RMSE, and mean absolute percentage error
(MAPE) (Bibi et al., 2021). The MAE, also known as the mean
absolute deviation (MAD), is determined by averaging the absolute
differences between the forecasts and the actual values at
corresponding time points. In mathematical terms, it is
represented as follows.

MAE � mean St,j − Ŝt,j
∣∣∣∣ ∣∣∣∣( )

where St,j is the observed and Ŝt,j is the one-day-ahead forecast, for j =
1, . . ., 24 and t = 1, 2, . . ., 365. The MAPE is calculated by averaging
the absolute deviation divided by the corresponding observed value,
multiplied by 100. It is a relative error metric, indicating the extent of
error observed in the forecast relative to the actual value. The
mathematical expression for the MAPE is written as

MAPE � mean
St,j − Ŝt,j

St,j

∣∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣∣( ) × 100 .

On the other hand, the RMSE is a commonly used metric for
measuring the average magnitude of the errors between predicted
and actual values. It is an extension of MSE and provides a more
interpretable result by taking the square root of the average squared
differences. Mathematically, the RMSE is defined as

RMSE �















mean(St,j − Ŝt,j)2

√
.

The one-day-ahead out-of-sample air temperature forecasting results
are listed in Table 2. These results indicate that the proposedmodeling
framework efficiently forecasts air temperature as it produces

relatively low errors for each model. Comparing the three models,
it is evident that the proposed FAR model outperforms the other two
models across all metrics. The proposed FAR model achieved an
MAE, MAPE, and RMSE of 1.0852, 6.115, and 1.5178, respectively,
which are lower than the MAE, MAPE, and RMSE of 1.1075, 6.1320,
and 1.5660, respectively of the VAR model, as well as 1.1022, 6.1198,
and 1.5535, respectively of the ARIMA model.

To investigate the performance of each model more deeply, one-
day-ahead out-of-sample forecasting errors for each hour are
calculated for each model and the results are listed in Table 3.
The table indicates that the forecasting errors generally vary
throughout the day. The forecasting errors, in general, are low in
the initial hours of the day and are high during the final hours. In the
initial hours, the performance of the VAR model is slightly better
than that of the proposed FAR model. For example, the VAR model
achieved the lowest MAE, MAPE, and RMSE values of 0.2744,
0.2022, and 1.5639 respectively in the first hour of the day, which is
slightly better than the MAE, MAPE, and RMSE values (0.3611,
0.2556, and 1.9209, respectively) of the proposed model. However,
as the day progresses, the proposed model produced better results
compared to the VAR and ARIMA models, by providing lower
values of MAE, MAPE, and RMSE. Note that both multivariate
(FAR and VAR) models perform relatively better than the univariate
(ARIMA) model. These findings can be easily noticed in Figure 3
where the hour-specific MAPE values are depicted for each model.

The one-day-ahead forecasting errors are summarized month-
wise and listed in Table 4. These results indicate that the proposed
model performs better, outperforming the ARIMA and VARmodels
in most months. The errors are relatively higher in the winter and
are lower in the summer. In September, the proposed model
achieved the lowest MAE, MAPE, and RMSE values of 0.8671,
0.6106, and 2.3199, respectively, outperforming both the VAR and
ARIMA models. However, in January, the VAR model outperforms
the proposed model, achieving lower MAE, MAPE, and RMSE
values of 1.3845, 1.0592, and 13.1341, respectively. Moreover, it
is noteworthy that the ARIMA model consistently performs the
worst across all months. For a visual illustration of these results, the
month-specific MAPE is plotted in Figure 4. Finally, it is worth
mentioning that all computations were performed using the R
programming environment (R Core Team, 2023) run on an
Intel(R)-Core(TM) i7-4770 CPU running at 3.40 GHz.

5 Conclusion

Air temperature is a fundamental aspect of weather that plays a
significant role in diverse areas of our lives, and thus, its accurate
forecast is crucial. However, an air temperature time series is
comprised of different deterministic and stochastic variations that
make forecasting challenging. This research work proposes a
functional data approach to forecast one-day-ahead air
temperature. Moreover, the component estimation technique,
which divides the data into deterministic and stochastic
components, is used to accurately predict the temperature series
dynamics. The deterministic part of the series is modeled and
forecasted using smoothing splines, whereas FAR, ARIMA, and
VAR models are used for the stochastic component. For empirical
assessment, air temperature data for Islamabad (Pakistan) are
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collected and one-day-ahead out-of-sample forecasting results for a
complete year are summarized using MAE, MAPE, and RMSE.The
results indicated that the proposed component estimation procedure
is efficient in forecasting air temperature. In addition, the functional
model, i.e., the FAR model, further improves the forecasting
accuracy compared to ARIMA and VAR models, resulting in
lower out-of-sample forecasting errors. Finally, the multivariate
models, VAR and FAR, outperform ARIMA, demonstrating their
effectiveness in predicting air temperature.

Despite the valuable insights obtained from this study, recognizing
its limitations is important. The current research work considers only
parametric (linear) models. In addition, the dataset is used only from
one location. As the current study does not account for the effects of
exogenous variables in the model, it would be interesting to see their
impact on forecasting air temperature using the current approach in the
future. Moreover, the proposed model can be compared with machine
learning approaches, generally known as nonlinear models, in a future
study. Furthermore, the performance of the proposed approach can be
assessed by conducting a study on other site datasets.
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