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Semiarid regions play a pivotal role in global ecosystem and environmental
governance. Changing environment (climate and land use variation) has led to
the disruption of hydrology in semi-arid regions and ecological degradation in
some area. Understanding their hydrological response to changing environments
is crucial for ecological rehabilitation and optimal water resource allocation. This
research, conducted in a Chinese semiarid watershed, integrates multi-field
models about hydrology, meteorology and geography to investigate
hydrological processes in typical hydrological years. The results indicate that
the climate in this region is drying, and the likelihood of extremeweather events is
increasing with global warming. Projecting changes from 2010 to 2060, 9.21% of
grassland converting to 5.63% of forest and 3.58% of gully built-up land. As a
result, the flood peak increases by 22.99% in typical drought years, while it
decreases by 36.77% in normal years. Based on our analysis of the rainfall-
runoff process in typical drought and normal years, we identify two distinct
effects: the “local rainfall-runoff effect” and the “global rainfall-runoff effect”,
respectively. However, in typical wet years, the streamflow state is primarily
controlled by intense and concentrated precipitation. This research provides
insights into the effect of ecological restoration and typical climate variations on
hydrological cycle in semiarid regions, thus contributing to more informed
decision-making in environmental management and water resource planning.
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1 Introduction

The semiarid regions, as transition zones between wet and dry, are vital regions for
ecological management (Zeng et al., 1999; Rotenberg and Yakir, 2010), covering 15% of the
world’s territory (Li et al., 2015). These regions are particularly sensitive to climate shift and
land-use variation due to the infertile soils and fragile ecosystems (Li et al., 2016; Zhou et al.,
2016; Huang et al., 2017). Field observations and model simulations alike indicate that
semiarid regions respond more significantly to global warming (Huang et al., 2016). For
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instance, during the boreal cold season from 1901 to 2009, the
warming observed in global semiarid regions exceeded the global
average 1.13°C, reaching 1.53°C (Huang et al., 2012). With the
projected increase in precipitation and potential
evapotranspiration in drylands, these regions face significant
challenges (Bates et al., 2008; Scheff and Frierson, 2014; Zhao
et al., 2014; Zhao and Dai, 2017). Additionally, their vulnerability
to human activities is compounded by water scarcity and sparse
vegetation. The rapid population growth and intensifying human
activities further strain the ecosystems of semiarid regions, making
them a critical focus for ecological management and restoration
efforts (Nyamadzawo et al., 2012; Hoover et al., 2015).

The Loess Plateau (LP), renowned for severe soil erosion,
occupies a significant portion of China’s north-central region.
The arid, semiarid, and semi-humid zones constitute 15%, 53%,
and 32% of the LP, respectively, based on the aridity index.
Historically, the LP was a lush plain, boasting abundant water
resources, lush grasslands, dense forests, and fertile soil (Zhao
et al., 2013). However, by the late 20th century, soil erosion and
intense human activities had transformed over 70% of the region
into hilly-gully landscapes, with natural vegetation coverage
dwindling to just 31.6% (Shi and Shao, 2000; Tsunekawa et al.,
2014). Alarmingly, the erodible loess soil contributes ~90% of the
sediment in the Yellow River (Yu et al., 2020), posing a great threat
to the lives and property of downstream communities. To address
these challenges, the Chinese government has embarked on a series
of environmental rehabilitation initiatives since 1999. These include
the “Grain for Green Program” (GFGP) (DELANG and Yuan,
2015), the “Gully Land Consolidation Project” (Kang et al.,
2021), and land evaluation and replanning efforts (Chen et al.,
2003). These measures have obviously altered the land use patterns
in the LP. Specifically, agricultural land has shrunk by 28.3%, while
grassland and forestland have expanded by 12.4% and 5.0%,
respectively. Additionally, urban development areas have grown
by 10.8% (Yu et al., 2020). These rehabilitation efforts have
effectively mitigated soil erosion and restored some ecological
functions in the LP. However, the increased vegetation cover has
also altered the hydrological cycle of the region. The expanded
vegetation has resulted in increasing rainfall interception and
infiltration, reducing surface runoff (McVicar et al., 2007; Zhao
et al., 2017). Coupled with global warming, changes in rainfall
patterns and temperature have further influenced
evapotranspiration, water yield, and soil moisture in the LP.
These interconnected processes pose complex challenges for
sustainable water resource management and ecological
rehabilitation in the semiarid regions of the LP (Zhao et al.,
2018; Ge et al., 2020).

Extreme weather and climatic events were relatively rare, but they
have become increasingly frequent and devastating in the context of
climate variation and population growth (IPCC, 2023). Numerous
studies analyzing extreme indices have revealed a global trend
towards a rise in the occurrence of extremely wet days, along with
notable increases in rainfall intensity, particularly in semiarid regions
(Barry et al., 2018; Di Capua and Rahmstorf, 2023; Otto, 2023).
Intermittent flooding or prolonged drought events have profound
impacts on sustainable socio-economic development and efforts
towards regional vegetation restoration (Mokrech et al., 2008;
Adhikari et al., 2010; Zhao et al., 2011; Hao et al., 2012). On the LP,

even in areas with seemingly successful ecological restoration, extreme
precipitation has triggered severe soil erosion. For instance, the
prolonged and intense rainfall during July 2013 in the Yanhe
watershed (study area in this research) caused flooding hazards,
resulting in 6,645 injuries and property damage worth 27 million.
Additionally, water scarcity poses a significant obstacle to
environmental restoration efforts in the LP. The formation of a soil
dried layer is a negative consequence of the GFGP (Jia et al., 2019). In
some man-made mature forest, trees growing to only 20% of their
regular height due to water scarcity (Chen et al., 2015). The imbalance
between water surplus and deficit also significantly impacts streamflow
patterns, influenced by climate shifts and land-use variations.

To investigate the hydrological effect of climate variation and land-
use modification in semiarid regions, this study focused on the Yanhe
watershed, a representative semiarid areawithin the LP, as the study area.
Firstly, we analyzed the temperature, precipitation and streamflow in the
last 50 years by Mann-Kendall trend test. Besides, the standard
precipitation evapotranspiration index (SPEI) was utilized to
categorize the hydrologic years. And then, the Cellular Automata
Markov chain (CA-Markov) was employed to forecast the spatial
distribution of landscapes in 2060 (China’s carbon-neutral target
year). By leveraging the classified representative hydrological years
and the predicted land-use layout for 2060, the Soil and Water
Assessment Tool (SWAT) was engaged to evaluate the influence of
vegetation restoration and urban sprawl on streamflow patterns across a
range of hydrological conditions. This comprehensive approach provides
a profound insight into the hydrological characteristics under varying
climatic and land-use conditions, serving as a crucial reference for
environmentally sustainable and economically viable development
strategies in semi-arid regions.

2 Materials and methods

2.1 Study area in a semiarid region

The Yanhe watershed, situated in the western reaches of China’s LP,
serves as a representative semiarid region (Figure 1). Spanning an area of
7,634 km2, it exhibits a remarkable altitudinal range, varying from 495 to
1,793 m. Within this vast territory, approximately 45% of the landmass
comprises gentle slopes ranging from 0 to 25°, while the remaining 55%
features steeper slopes exceeding 25°. Over the period of 1970–2019, the
Yanhe watershed received an average annual precipitation of 477mm,
with a significant concentration of 60% of this rainfall occurring during
the flood season, which spans from July to September. The region’s land-
use pattern is diverse, encompassing farmland, grassland, forest, urban
areas, and waterbodies. Notably, the Ganguyi gauging station, positioned
downstream, oversees a significant portion of the watershed,
encompassing approximately 77% of its total area. Drawing from
extensive long-term observation data, it is recorded that the mean
annual streamflow at the Ganguyi station has been 1.83 × 108 m3

over the past 50 years.

2.2 Data sources and processing

The daily meteorological data during 1970–2019 were
collected from five weather stations situated within the Yanhe
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watershed. This data contained precipitation, temperature, solar
radiation, humidity, and wind speed. The climate data can reflect
the characteristics of climate change during the study period and
drive the hydrological model. Additionally, the observed
monthly streamflow data from the Ganguyi gauging station,
crucial for trend analysis and SWAT model calibration and
validation, were accessed from the National Earth System
Science Data Center (http://www.geodata.cn) and the
Geographic Data Platform of Peking University (https://
geodata.pku.edu.cn). Furthermore, to predict land-use
patterns and power the SWAT model in the Yanhe
watershed, a digital elevation model (DEM) with a high

resolution of 30 m × 30 m was procured from the Geospatial
Data Cloud (http://www.gscloud.cn). Land-use raster data, also
at a resolution of 30 m × 30 m, for the years 1990, 2000, and
2010, were provided by the National Cryosphere Desert Data
Center (http://www.ncdc.ac.cn). Additionally, soil properties
data with a resolution of 1,000 m × 1,000 m were sourced
from the Harmonized World Soil Database (HWSD). This
database offers an extensive investigation of global soil
attributes at a depth of 1.0 m, including soil texture, organic
carbon content, bulk density and others, and the soil properties
data can provide a foundation for the localized SWAT model.
Utilizing these comprehensive datasets, the hydrological

FIGURE 1
Site of the Yanhe watershed and its hydrometeorological stations.

FIGURE 2
Data analysis and model building processes in the Yanhe watershed.
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processes in representative hydrologic years within the Yanhe
watershed were researched, leveraging territorial data and multi-
field coupling models (Figure 2).

2.3 Research methods

2.3.1 Mann-Kendall test
The Mann-Kendall test is a widely utilized and globally

recommended non-parametric approach by the World
Meteorological Organization for trend analysis in hydrology
and meteorology. Its popularity stems from the fact that it
does not assume any specific distribution of samples and is
insensitive to seasonality (Van Belle and Hughes, 1984; Nalley
et al., 2013). In conducting this test, the null hypothesis (H0)
assumes that the test variables exhibit no trend during the
specified period. Conversely, the alternative hypothesis (H1)
rejects H0 in the presence of a monotonic trend within the
test period. The statistical procedures involved in the Mann-
Kendall test are outlined as follows (Mann, 1945; Da Silva
et al., 2015):

S � ∑
n−1

i�1
∑
n

j�i+1
sgn Xj − Xi( )

where the target statistics S is to assess trends in a time series, n
denotes the total number of data points in the series, ranging from
1 to n; Xj and Xi represent the respective values at positions j and i
within the time series (i < j); sgn (Xj−Xi) indicates the difference
between Xi and Xj:

sgn Xj − Xi( ) �
+1 Xj − Xi( )> 0
0 Xj − Xi( ) � 0
−1 Xj − Xi( )< 0

⎧⎪⎨
⎪⎩

The solution to the series data variance is:

Var S( ) �
n n − 1( ) 2n + 5( ) − ∑p

i�1
ti ti − 1( ) 2ti + 5( )

18

where Var(S) represents the normalized measure of the variance of
S; pmeans the total group of nodes; ti is the time range at the i node.
When the number of samples are over 30 (n > 30), the standard
normal statistical variable ZS is:

ZS �

S − 1







Var S( )√ , S > 0

0 S � 0
S + 1







Var S( )√ , S < 0

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

In the bilateral trend test, if |ZS| is greater than Z1−α/2 within a
given confidence level of α, it indicates the sample data have a
significant trend in the testing period, which rejects the null
hypothesis. If ZS > 0, it means that the sample data have a
significant growth trend in testing period, while if ZS < 0, the
sample data exhibit a significant downward trend during the
testing time. When the |ZS| is greater than 1.64 and 2.32, which
means the variable is significant monotonicity at the 95% and 99%
levels, respectively.

2.3.2 Standard precipitation
evapotranspiration index

The SPEI, as a widely employed method for assessing drought
conditions, relies on the trade-off between precipitation and
potential evapotranspiration (Vicente-Serrano et al., 2010).
Consequently, it effectively mirrors the consequences of global
warming on drought patterns (Vicente-Serrano et al., 2010).
Furthermore, the SPEI exhibits flexibility in adapting to the
diverse time scales characteristic of drought events. (Bohn and
Piccolo, 2018).

The SPEI possesses a mean value of 0 and a standard
deviation of 1, serving as a reliable metric for analyzing
drought characteristics. Based on factors such as intensity,
magnitude, duration, and frequency, water surplus and deficit
are categorized into seven distinct groups (Tan et al., 2015; Bohn
and Piccolo, 2018). For the purpose of studying hydrological
processes across various hydrologic years, these seven categories
are further consolidated into three representative
types (Table 1).

2.3.3 Cellular Automata Markov chain
The CA-Markov model integrates the Cellular Automata (CA)

and Markov Chain (MC) models, both being discrete dynamic
models that operate in terms of time and state. The Markov
Chain, as a stochastic model, characterizes the transition
probabilities of a sequence of random variables across discrete
time intervals (Sang et al., 2011; Du et al., 2012). On the other
hand, CA performs spatial operations where each cell’s state at time
t + 1 is influenced by its neighboring cells at time t (Ye and Bai, 1969;
Mohamed and Worku, 2020). In landscapes encompassing multiple
land-use categories, land-use changes exhibit the Markov property.
Therefore, a land-use transition matrix is constructed to capture the
probabilities of each land-use type transforming into any other type.
This matrix serves as a valuable tool in predicting future land-
use changes.

However, the Markov chain model ignores the significant
influence of geomorphology on land use and lacks the ability to
effectively capture the dynamics of land-use alternation. In contrast,
the CA-Markov model leverages the spatial operation capabilities of
CA and the transition probability analysis of the Markov chain,
enabling it to forecast spatially explicit land-use variation over a
specified period. This combined approach provides a more
comprehensive and accurate understanding of land-use dynamics,

TABLE 1 Standard precipitation evapotranspiration index (SPEI)
classification.

Range Categories Reclassify

SPEI ≤ −2 Extremely dry Typical drought

−2 < SPEI ≤ −1.5 Very dry

−1.5 < SPEI ≤ −1 Moderately dry Normal

−1 < SPEI <1 Normal

1 ≤ SPEI <1.5 Moderately wet

1.5 ≤ SPEI <2 Very wet Typical wet

SPEI ≥2 Extremely wet
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considering both the spatial context and the probabilistic nature of
land-use transitions (Mondal and Southworth, 2010).

The hybrid CA-Markov model was implemented using the
IDRISI software platform (Eastman, 1999). Prior to predicting
the land use in the Yanhe watershed for the year 2060, the
model’s accuracy was rigorously tested by comparing real and
simulated land-use layouts for the year 2010. Initially, a Markov
transition matrix was constructed using land-use maps from 1990 to
2000. This matrix captured the probability of each land-use type
transitioning to any other type. Additionally, ancillary images
depicting highways, motorways, railways, waterbodies, slopes, and
altitudes were employed as part of a multi-criteria decision-making
process to generate a transition suitability image collection. This
collection provided a spatial representation of the suitability of each
land-use type. Subsequently, leveraging the real land-use layout of
2000, the CA-Markov model was utilized to generate a simulated
land-use map.

2.3.4 Soil and water assessment tool
SWAT is a semi-distributed, basin-scale hydrological model that

incorporates various data sources to simulate the hydrological
processes within a research watershed (Gassman et al., 2007;
Kang et al., 2021). It relies on daily meteorological data, along
with land-use maps and soil attribute data. The model divides the
entire watershed into multiple subbasins and further subdivides
them into hydrological response units, which share similar land-use
categories, management practices, and soil properties (Neitsch et al.,
2011). This localized SWAT model is capable of simulating
hydrological conditions over extended periods, providing valuable
insights into the watershed’s water balance and dynamics.

SWt � SW0 +∑
l

i�1
Rday − Qsurf − Ea −W seep − Qgw( )

where SWt represents the ultimate soil moisture content, indicating
the final state of soil water after considering various inputs and
outputs over a defined period; SW0 denotes the initial soil moisture
content, serving as the starting point for the model’s calculations; t
signifies the time phase, specifically measured in days, and
encompasses the duration of the simulation; Rday, Qsurf and Ea
are key components that represent daily rainfall, surface runoff,
and evapotranspiration, respectively; Wseep represents the
cumulative amount of water that percolates from the topsoil into
the aeration zone on a specific day, marking the downward
movement of water within the soil profile; Qgw stands for return
flow, referring to the water that recirculates from deeper soil layers
or groundwater back to the soil surface.

3 Results and discussion

3.1 Climate and streamflow alterations in
recent 50 years

3.1.1 Temperature change
Temperature serves as the most prominent indicator of climate

change. Utilizing the mean annual temperature data from five
weather stations, we conducted a Mann-Kendall test to analyze

the temperature trend (Figure 3). The results revealed that the
temperature Zs statistic stood at 5.24 for the period 1970–2019,
exceeding the Z statistic threshold of 2.32 for a 99% confidence
interval. Consequently, it is evident that the Yanhe watershed
experienced a significant increase in temperature over the past
50 years (p < 0.01). Furthermore, the rate of increase was 0.37°C
per decade, and a notable abrupt change occurring in 1996.
Specifically, the average annual temperature was 10.56°C during
1970–1996, whereas it rose to 11.80°C from 1997 to 2019. Notably,
the peak temperature was recorded in 1998.

Over the past century (1905–2005), China experienced two
distinct warm periods: the 1940s–1950s and the 1980s–1990s.
Notably, 1998 marked the warmest year recorded in China since
the inception of meteorological records (Tang and Ren, 2005).
Consequently, the Yanhe watershed, influenced by global
warming, exhibited similar warming trends and temperature
fluctuations.

3.1.2 Precipitation and streamflow variation
The Mann-Kendall test was utilized to ascertain the trends in

precipitation and streamflow within the semiarid Yanhe watershed
during 1970–2019 (Figure 4). The Zs statistic for average precipitation
in five stations stood at 0.73, falling within the range of zero to 1.64
(the threshold for a 95% confidence interval). Consequently, we
observed a slight increased rate of 1.16 mm/yr inter-annual
precipitation. Conversely, the Zs statistic for streamflow was −3.09,
indicating a negative trend. Its absolute value exceeded the Z statistic
threshold of 2.32 for a 99% confidence interval. Therefore, it is evident
that the streamflow has decreased significantly with a rate of
1.60 million m3/yr over the past 50 years.

Besides, the average streamflow in the period of 2005–2012 was
only half of that with the similar precipitation during 1989–1994. It can
be ascribed to ecological restoration, because runoff is the synthesis of
precipitation and land surface condition. The restored vegetation from
GFGP reduced the rainfall-runoff conversion and increases the
infiltration of surface runoff during confluence processes. Moreover,
the runoff reduction increased with the age of trees planted (Huang
et al., 2003). Our findings reveal that ecological restoration lasting
between 4 and 7 years can lead to a reduction of half the streamflow in
the Yanhe watershed, except for extreme rainfall conditions.

3.2 Hydrologic year classification

SPEI index was utilized at five stations to identify the typical
hydrologic years within the Yanhe watershed during 1970–2019.
The findings revealed that drought, normal, and wet years
comprised 6%, 88%, and 6% of the total, respectively (Figure 5).
Notably, a significant climatic shift occurred in the Yanhe watershed
in 1996 (Kang et al., 2020). Consequently, we divided the study
period into two distinct phases of 1970–1996 and 1997–2019.
During the first phase (1970–1996), typical drought, normal, and
wet years accounted for 1%, 93%, and 6%, respectively. However, in
the second phase (1997–2019), the frequency of typical drought
years increased significantly, accounting for 11% of the period, while
normal and wet years constituted 83% and 6%, respectively. This
increase in drought frequency during the later period underscores
the changing climatic patterns in the Yanhe watershed.
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The preceding analysis clearly indicates that the frequency of
drought years has escalated in recent decades. According to the
former studies, the arid area will be drier and the humid area will be
wetter influenced by global warming (Durack et al., 2012; Scott et al.,
2016). Therefore, the climate in the Yanhe watershed, situated in a
semiarid region, tends to dry, and the extreme weather is most likely
to increase.

3.3 Model calibration and validation

3.3.1 CA-Markov
To evaluate the precision of the hybrid CA-Markov, the Kappa

spatial correlation—a highly regarded metric for accuracy
assessment in IDRISI—was employed to contrast the actual and
predicted land-use maps for 2010 (Figure 6). The analysis revealed a

FIGURE 3
Inter-annual temperature variation in the Yanhe watershed from 1970 to 2019.

FIGURE 4
Inter-annual precipitation and streamflow variations in the Yanhe watershed during 1970–2019.
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FIGURE 5
Hydrologic years classification by standard precipitation evapotranspiration index; The negative dotted line is the demarcation from normal years to
typical drought years and the positive dotted line is the boundary from normal years to typical wet years.

FIGURE 6
Comparison of actual and simulated land use in 2010. (A) Represents the actual land-use state in 2010; (B) depicts the simulated land-use state
in 2010.
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Kappa spatial correlation of 0.91 between the real and simulated
maps, indicating a strong agreement. Drawing from the research
conducted by Yang et al. (2021), a Kappa value exceeding
0.75 signifies a high degree of consistency and minimal
discernible differences between the two land-use maps.
Furthermore, Li and Zhou (2015) used the same method to
simulate and predict the land use distribution patterns in the
Yanhe watershed for 2010 and 2020, reaching similar conclusions
as in this study. Consequently, the hybrid CA-Markov model, with
its optimized parameters, exhibits excellent performance in
predicting land-use patterns.

3.3.2 SWAT
There are 27 parameters that influence runoff in the SWAT

model (Ahn andMerwade, 2016). To localize the general SWAT, we
utilized the SWAT-CUP calibration uncertainty program to identify
six runoff-sensitive parameters in the Yanhe watershed.
Subsequently, the optimal values for these sensitive parameters
were determined through Latin hypercube sampling, ensuring a
precise and customized model for the watershed (Table 2). Besides,
statistical metrics including R2, Nash-Sutcliffe coefficient (NSE), and

percent bias (PBIAS) were employed to assess the accuracy of the
SWAT (Gassman et al., 2007; Arnold et al., 2012). The results
revealed that during the calibration period (1973–1997), the R2,
NSE, and PBIAS values were 0.73, 0.60, and 18%, respectively
(Figure 7). Similarly, in the validation period (2000–2019), these
metrics were 0.71, 0.51, and 24%, respectively (Figure 8). According
to SWAT accuracy evaluation research, a model is considered
acceptable when NES exceeds 0.50 and PBIAS is less than 25%
for streamflow predictions (Moriasi et al., 2007). Even though the
localized SWAT could satisfy the model accuracy, there exists a
discrepancy between the simulated and the observed streamflow.
The one possible reason of this discrepancy is that the SWAT
model’s simulation of snow and ice melt is simple based
temperature (Devia et al., 2015), overlooking the impacts of the
land use, slope aspect and gradient. The other possible is that the
precipitation in the Yanhe River Basin, located in a semi-arid region,
exhibits significant interannual variability, and the study period
spans a relatively long duration, which leads to the basis between the
simulated and observed streamflow. This research focuses on the
impacts of land-use change on hydrological processes during the
flooding seasons, and selects consecutive typical hydrological years

TABLE 2 Sensitive parameters on runoff in the Yanhe watershed.

Parameters Fitted value Calibrated range Physical meaning

Min Max

CN2 −15% −20% +20% Initial SCS CN II value

ALPHA_BF 0.47 0.01 0.80 Baseflow alpha factor (day)

GWQMN −14 −20% +20% Threshold depth of water in the shallow aquifer required for return flow to occur (mm)

GW_DELAY 388 30 450 Groundwater delays (day)

ESCO 0.59 0 1 Soil evaporation compensation factor

SOL_K −17% −20% +20% Saturated hydraulic conductivity (mm/h)

The “+” or “−” symbol indicates a relative change. The “%” signifies multiplying the initial value by (1+fitted value), while numerical values without any sign represent substitute values.

FIGURE 7
SWAT calibration in the Yanhe watershed during 1973–1999.
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to drive the localized SWAT model. Therefore, the calibrated model
is able to reflect the characteristics of the impact of land-use
variation on hydrology during typical hydrological years.

3.4 Land-use variation and prediction

3.4.1 Land-use variation
According to the SWAT land-use classification system, the

Yanhe watershed’s land use was reclassified into grassland,
farmland, forest, urban/built-up land, and water body. An
analysis of land-use changes from 1990 to 2010 revealed several
notable trends (Table 3). Specifically, the areas of grassland, forest,
and built-up land increased by 9.38%, 1.54%, and 0.40%,
respectively, while farmland and water areas decreased by 11.17%
and 0.16%, respectively. When comparing the land-use changes
between 1990 and 2010 in greater detail, it was observed that from
1990 to 2000, the areas of grassland, forest, built-up land, and water
body increased by 0.70%, 0.13%, 0.18%, and 0.01%, respectively,
while farmland decreased by 1.03%. However, from 2000 to 2010,
the changes were more significant, with grassland, forest, and built-
up land continuing to expand, while farmland continued to decline.
Overall, the most prominent land-use changes in the Yanhe
watershed from 1990 to 2010 were the increasing trend in

grassland, forest, and built-up land areas and the decreasing
trend in farmland.

3.4.2 Land-use prediction
Using the calibrated IDRISI model with a land-use transition

matrix derived from data between 2000 and 2010, predictions were
made regarding the land-use layout anticipated for 2060 (Figure 9).
When comparing the predicted land-use state of 2060 with the
actual state of 2010, it is evident that the most significant change
would involve the transformation of 9.21% of grassland. This
grassland would primarily be converted into 5.63% of forest and
3.58% of built-up land. Notably, the expansion of forestland is
expected to occur primarily in the midstream and downstream
regions of the basin. Conversely, the growth of built-up areas is
predicted to be concentrated in gullies with flatter terrain and more
favorable urban habitat environments.

3.5 Hydrological fluctuations in different
hydrological years

3.5.1 Streamflow variation in typical drought years
SWAT models were constructed utilizing five consecutive,

representative drought years (comprising two warm-up years and

FIGURE 8
SWAT validation in the Yanhe watershed during 2000–2019.

TABLE 3 Changes in land use within the Yanhe watershed from 1990 to 2010.

Year Type Grass Farmland Forest Build Water

1990 Area (km2) 3,998.84 2,221.53 1,364.40 24.72 24.81

Percent (%) 52.38 29.10 17.87 0.32 0.32

2000 Area (km2) 4,715.20 1,369.08 1,481.74 55.50 12.78

Percent (%) 61.76 17.93 19.41 0.73 0.17

2010 Area (km2) 4,768.72 1,290.40 1,491.74 69.62 13.81

Percent (%) 62.46 16.90 19.54 0.91 0.18
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five simulation years) alongside land-use maps from 2010 to
2060 within the Yanhe watershed. The findings revealed that the
impact of arid climatic conditions on streamflow was primarily
concentrated during flooding periods. Specifically, the mean
discharge rates during these periods were 5.05 m3/s and 6.69 m3/s
for the 2010 and 2060 scenarios, respectively. Furthermore, the
average flood peak in the 2060 landscape scenario exhibited a
notable increase of 32.49% compared to that of 2010
(Figure 10A). Overall, during these typical drought years, the
Yanhe watershed exhibited low discharge levels and rapid
fluctuations in flood peaks.

The significant land-use alteration from 2010 to 2060 is the
grassland converted to the forest and built-up land. The transformed
forest is primarily located on hilly slopes, situated far from the Yanhe
River. Conversely, the converted built-up land is situated in
proximity to the river, occupying a broad and flat area.
Consequently, the surface runoff generated by limited
precipitation on the built-up land drains into the river, leading to
a rapid response of low streamflow to rainfall during typical drought
years. We refer to this phenomenon, where low streamflow
promptly reacts to limited precipitation in close proximity to the
land surface, as the “local rainfall-runoff effect".

Utilizing the 2060 landscape as a basis, we conducted a
thorough analysis of the intra-annual characteristics of
precipitation, runoff, and baseflow to further elucidate the
“local rainfall-runoff effect” during typical drought years
(Figure 10B). Our findings revealed that rainfall was the
primary determinant of surface runoff in these drought-prone
years, especially during flooding periods. Specifically, total
precipitation amounted to 319.75 mm, with 56.74% of this
precipitation occurring exclusively during flooding periods.
Notably, 64.66% of this precipitation was converted into surface
runoff, serving as the principal mechanism for the rapid increase in
streamflow during flooding periods. On the other hand, baseflow
contributed 50.72% to streamflow, becoming the primary source of
recharge for the river during non-flooding periods.

The aforementioned analysis clearly illustrates the “local
rainfall-runoff effect”. This effect refers to the phenomenon
where a significant portion of limited precipitation generates
surface runoff on impermeable or weakly permeable surfaces.
This runoff subsequently recharges nearby streams and rivers,
resulting in a rapid increase in discharge. Therefore, the local
landscape characteristics play a pivotal role in influencing the
streamflow patterns during typical drought years.

FIGURE 9
Land-use prediction and comparison in the Yanhe watershed. (A) Shows the actual land-use state in 2010, and (B) depicts the predicted land-use
state in 2060.

FIGURE 10
Hydrological fluctuations with land-use variation in drought years. (A) Is the interannual variation of streamflow, and (B) is the innerannual
distribution of precipitation, runoff and baseflow.
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3.5.2 Streamflow variation in normal years
According to the classification of SPEI, we selected five

consecutive normal years (consisting of two warm-up years and
five simulation years) to forecast hydrological variations within the
Yanhe watershed. Our findings revealed that the influence of a
normal climate on surface runoff was primarily concentrated from
June to October. When comparing the average discharge based on
the landscapes of 2010 and 2060, we observed a decrease from
19.42 m3/s and 12.40 m3/s. Notably, during these normal years, the
flood peak with the 2060 land use scenario decreased by 36.15%
compared to that with the 2010 land use (Figure 11A). Nevertheless,
it is worth mentioning that the flooding discharge in normal years is
approximately twice as high as that observed during typical
drought years.

When comparing the land-use state in 2010 with that of 2060,
we observe that the prolonged restoration of forests and grasslands
in 2060 effectively limits upstream and local surface runoff
generated by relatively abundant precipitation during normal
years. This, in turn, reduces the runoff flows into the river.
Although the expansion of built-up land (accounting for 4.49%
of the entire watershed) converts a significant amount of rainfall into

surface runoff, the peak flow in 2060 remains lower than that in
2010. This is attributed to the fact that the surface runoff restricted
by restored vegetation outweighs the runoff generated by the built-
up land. Furthermore, given the high discharge rates during normal
years, the limited surface runoff generated on the relatively small
percentage of built-up land has minimal impact on streamflow.
Consequently, when compared to the landscape of 2010, the peak
flow in 2060 is lower. We refer to this phenomenon as the “global
rainfall-runoff effect".

Utilizing the land-use map of 2060, we conducted a thorough
analysis of the intra-annual distribution of precipitation, runoff, and
baseflow during normal years to elucidate the “global rainfall-runoff
effect” (Figure 11B). Our findings revealed that precipitation,
streamflow, and baseflow exhibited smooth transitions
throughout the normal years, with the timing of peak flow
lagging behind the period of maximum precipitation. Notably,
the peak volume of precipitation occurred in July, whereas the
peak discharge was delayed until early August. On average, the
total precipitation amounted to 479.66 mm, with only 3.99% of this
precipitation converting into surface runoff and subsequently
entering the stream during these normal years.

FIGURE 11
Hydrological fluctuations with land-use variation in normal years. (A) Is the interannual variation of streamflow, and (B) is the innerannual distribution
of precipitation, runoff and baseflow.

FIGURE 12
Hydrological fluctuations with land-use variation in wet years. (A) Is the interannual variation of streamflow, and (B) is the innerannual distribution of
precipitation, runoff and baseflow.
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There are two primary reasons for the observed lag between the
flood peak and the maximum precipitation time. Firstly, the smooth
fluctuations in rainfall distribution throughout the year maintain the
discharge within a consistently high range, rendering it less susceptible to
the “local rainfall-runoff effect”. Secondly, the well restored vegetation on
the slope effectively intercepts surface runoff, and the homogeneous loess
soil has high infiltration capacity in the normal hydrological years (Jin
et al., 2020). Consequently, when rainfall is relatively abundant and the
river maintains a stable discharge, the rainfall-runoff process is primarily
influenced by the spatial distribution of major land-use types across the
entire basin, giving rise to the “global rainfall-runoff effect”.

3.5.3 Streamflow variation in typical wet years
For a comparative analysis with typical drought years and

normal years, the SWAT models were driven using data from
five consecutive typical wet years. These models were based on
the land-use layouts of 2010 and 2060 in the Yanhe watershed. The
results indicated that climate was the primary determinant of
streamflow in flooding periods of wet years. Specifically, the flood
peaks were virtually identical for both the 2010 and 2060 land-use
scenarios. During the typical wet years, the discharge was high, and
the peak flow was predominantly concentrated in July (Figure 12A).

Previous studies indicated that vegetation (forest and grass) has a
good function of soil and water conservation (Jin et al., 2020; Lyu et al.,
2023). The area of vegetation in the Yanhe watershed accounts for
82.00% and 78.43% of the entire watershed in 2010 and 2060,
respectively. However, it has limited capacity to restrict surface runoff
during intense rainstorms or prolonged rainfall. The aggressive surface
runoff resulting from extreme rainfall is scarcely intercepted and
infiltrated by the forest and grassland. This was evident during the
“7.26” rainstorm event in theWudinghe River basin of the LP on 26 July
2017. Despite decades of ecological restoration efforts, where the area of
grassland and forest has exceeded 50% of the watershed, the rainstorm
still generated significant flood peaks and caused severe soil erosion
(Tang et al., 2020; Wang et al., 2020). Consequently, in typical wet years,
the aggressive surface runoff rapidly flows into the river, significantly
increasing the peak discharge.

To gain a deeper understanding of the hydrological processes
during typical wet years, we analyzed the intra-annual distribution
of rainfall, runoff, and baseflow (Figure 12B). The results indicated
that the average precipitation in these wet years was 624.01 mm,
with significant variations within the year. Notably, approximately
55.38% of the total precipitation occurred primarily in July and
August. Concurrently, the surface runoff showed a marked increase
during the concentrated rainstorms in July, accounting for a
substantial 79.11% of the total surface runoff. During this period,
the flood discharge was particularly high and declined rapidly
following the intense rainfall. As approximately 90% of the
Yanhe watershed comprises hilly-gully regions (Wang et al.,
2016), the occurrence of rainstorms frequently triggers
infiltration-excess overland flow (Jin et al., 2020), and the
resulting stormflow responds promptly to precipitation.

4 Conclusion

Ecological restoration (afforestation and grass planting) can
effectively reduce streamflow during the drought and normal

years in the semiarid regions. The hydrological processes exhibit
distinct response patterns in different hydrologic years. In
typical drought years, the streamflow regime primarily follows
the “local rainfall-runoff effect”, where the landscape in
proximity to streams and rivers plays a pivotal role in
determining streamflow patterns. Conversely, in normal years,
the streamflow is influenced by the “global rainfall-runoff
effect”, meaning that the major land-use types across the
entire basin contribute significantly to the overall flow.
However, in typical wet years, the streamflow is primarily
controlled by climatic factors. Even under conditions of
significant vegetation restoration, land use has a limited
impact on surface runoff. This underscores the need for a
balanced approach in managing land use and ecological
restoration efforts to mitigate the effects of climate change on
streamflow patterns in semiarid regions.
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