
Integrated machine learning and
geospatial analysis enhanced
gully erosion susceptibility
modeling in the Erer watershed in
Eastern Ethiopia

Tadele Bedo Gelete  1*, Pernaidu Pasala2,
Nigus Gebremedhn Abay3, GezahegnWelduWoldemariam  1,4,
Kalid Hassen Yasin  1,4, Erana Kebede  5* and Ibsa Aliyi  5

1Geo-Information Science Program, School of Geography and Environmental Studies, Haramaya
University, Dire Dawa, Ethiopia, 2Department of Geodesy and Geoinformatics Engineering, Institute of
Technology, Dire Dawa University, Dire Dawa, Ethiopia, 3Department of Geography and Environmental
Studies, Dire Dawa University, Dire Dawa, Ethiopia, 4Department of Remote Sensing and Application
Research and Development, Space Science and Geospatial Institute, Entoto Observatory and Research
Center (EORC), Addis Ababa, Ethiopia, 5School of Plant Sciences, College of Agriculture and
Environmental Sciences, Haramaya University, Dire Dawa, Ethiopia

Land degradation from gully erosion poses a significant threat to the Erer
watershed in Eastern Ethiopia, particularly due to agricultural activities and
resource exploitation. Identifying erosion-prone areas and underlying factors
using advanced machine learning algorithms (MLAs) and geospatial analysis is
crucial for addressing this problem and prioritizing adaptive and mitigating
strategies. However, previous studies have not leveraged machine learning
(ML) and GIS-based approaches to generate susceptibility maps identifying
these areas and conditioning factors, hindering sustainable watershed
management solutions. This study aimed to predict gully erosion susceptibility
(GES) and identify underlying areas and factors in the Erer watershed. Four ML
models, namely, XGBoost, random forest (RF), support vectormachine (SVM), and
artificial neural network (ANN), were integrated with geospatial analysis using
22 geoenvironmental predictors and 1,200 inventory points (70% used for training
and 30% for testing). Model performance and robustness were validated through
the area under the curve (AUC), accuracy, precision, sensitivity, specificity, kappa
coefficient, F1 score, and logarithmic loss. The relative slope position is most
influential, with 100% importance in SVM and RF and 95% importance in XGBoost,
while annual rainfall (AR) dominated ANN (100% importance). Notably, XGBoost
demonstrated robustness and superior prediction/mapping, achieving an AUC of
0.97, 91% accuracy, 92% precision, and 81% kappawhilemaintaining a low logloss
(0.0394). However, SVM excelled in classifying gully resistant/susceptible areas
(97% sensitivity, 98% specificity, and 91% F1 score). The ANNmodel predicted the
most areas with very high gully susceptibility (13.74%), followed by the SVM
(11.69%), XGBoost (10.65%), and RF (7.85%) models, while XGBoost identified the
most areas with very low susceptibility (70.19%). The ensemble technique was
employed to further enhance GES modeling, and it outperformed the individual
models, achieving an AUC of 0.99, 93.5% accuracy, 92.5% precision, 97.5%
sensitivity, 95.4% specificity, 85.8% kappa, and 94.9% F1 score. This technique
also classified the GES of the watershed as 36.48% very low, 26.51% low, 16.24%
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moderate, 11.55% high, and 9.22% very high. Furthermore, district-level analyses
revealed the most susceptible areas, including the Babile, Fedis, Harar, and
Meyumuluke districts, with high GES areas of 32.4%, 21.3%, 14.3%, and 13.6%,
respectively. This study offers robust and flexible ML models with comprehensive
validation metrics to enhance GES modeling and identify gully prone areas and
factors, thereby supporting decision-making for sustainable watershed
conservation and land degradation prevention.

KEYWORDS

machine learning, ensemble model, geospatial analysis, gully erosion,
susceptibility modeling

1 Introduction

Land degradation is a pressing global issue affecting agricultural
production, the environment, and livelihoods by deteriorating soil
health and productivity, with Sub-Saharan Africa experiencing 67%
of land and two-thirds of productive land degradation (Gutema
et al., 2023). Gully erosion is one of the most significant geo-
hydrological land degradations characterized by the gradual
formation of deep channels through concentrated surface and
subsurface water flow within narrow paths, contributing to soil
loss and deterioration (Arabameri et al., 2020b; Lei et al., 2020;
Mohebzadeh et al., 2022). The interaction between natural
phenomena (soil erodibility and rainfall erosivity) and
anthropogenic factors (deforestation and unsustainable
agricultural practices) exacerbates gully networks and soil erosion
at various scales, posing socioeconomic and environmental
challenges globally (Arabameri et al., 2020a; Igwe et al., 2020;
Pourghasemi et al., 2020). Consequently, gully erosion is
responsible for multifaceted destruction, such as habitat loss,
ecosystem fragmentation, inundation and sedimentation,
desertification, reduced soil fertility, diminished water tables,
decreased crop production, and damaged infrastructure and
facilities (Busch et al., 2021; Yazie et al., 2021).

Ethiopia is one of the developing sub-Saharan countries
experiencing the most severe levels of land degradation, with
over 85% of its terrain degraded to varying degrees (Gutema
et al., 2023). In particular, the detrimental impacts of gully
erosion are widespread in Ethiopia, where agriculture-dependent
economies face substantial threats from the depletion of vital soil
nutrients on farmlands resulting from the removal of topsoil by
gullies (Belayneh et al., 2020; Amare et al., 2021; Setargie et al.,
2023a). For instance, a prior study showed that water erosion
severely impacts landscape features, ecological diversity, and
agricultural productivity and sustainability in Ethiopia, with an
estimated net soil erosion rate of 0.41 × 109 tons year−1,
accounting for 22% of the 1.9 × 109 tons year−1 gross soil loss
(Fenta et al., 2021). Furthermore, the increased frequency and
intensity of rainfall, rising temperatures, and extreme events
reinforced gully erosion and climate change, potentially
worsening soil erosion processes and, hence, soil health and
productivity deterioration, resulting in decreased agricultural
productivity, food insecurity, and poverty (Ayanlade et al., 2022;
Ebabu et al., 2023). To address these challenges, it is crucial to
prioritize the restoration of degraded lands and implement measures
to prevent further gully erosion by supporting and implementing

sustainable land management practices (Gutema et al., 2023).
Consequently, the study of soil erosion is gaining increasing
attention, examining historical and current rates, fluctuations,
and patterns to understand the extent, temporal changes, and
quantitative and geographical severity of land susceptibility to
erosion (Woldemariam et al., 2023).

The spatially explicit identification and prioritization of gully
susceptible regions can provide valuable insights into the magnitude
of hazards and risks in a given area of interest (Conoscenti, et al.,
2013a; Rahmati et al., 2017a; Were et al., 2023). In this context, gully
erosion susceptibility mapping (GESM) is a preliminary phase for
targeted investment in sustainable management practices in highly
affected landscapes. The GESM is based on advanced geospatial and
remote sensing technologies, as well as state-of-the-art statistical
modeling (Wang et al., 2016; Lei et al., 2020; Saha et al., 2021). Given
the complex nature of gully erosion and its interrelationship with
other hillslope processes, a systematic analysis of multiple
contributing factors (rainfall, topography, lithology, soil
characteristics, and land use) is essential for successful GESM
(Conoscenti, et al., 2013b; Rahmati et al., 2017b; Saha et al.,
2020; Were et al., 2023).

Recent scientific studies have revealed that integrated modeling
approaches using geographic information system (GIS) tools and
remotely sensed datasets combined with various MLAs could
effectively capture the complex relationships between the ranges
of predictive variables contributing to gully erosion (Wang et al.,
2016; Rahmati et al., 2017a; Lei et al., 2020; Saha et al., 2020; Setargie
et al., 2023b). These approaches have demonstrated superior
performance compared to empirical, process-based, and
conventional statistical methods, which often fail to account for
complex feedbacks, thresholds, and nonlinear relationships that
determine the formation of localized gullies (Al-Abadi and Al-
Ali, 2018; Mohebzadeh et al., 2022; Pourghasemi et al., 2020;
Woodward, 1999). However, few studies have been conducted on
gully erosion modeling using MLAs in the Ethiopian context, with
most studies focusing on the Blue Nile Basin (Belayneh et al., 2020;
Amare et al., 2021; Setargie et al., 2023a) and only a few case studies
being conducted in other vulnerable ecoregions of the country
(Bouaziz et al., 2011; Busch et al., 2021).

The Erer watershed in the Wabi Shebele River Basin in
Eastern Ethiopia is characterized mainly by agricultural
activities and unsustainable exploitation of natural resources,
leading to land degradation and gully erosion, which threaten
the long-term viability of the region (Woldemariam and Harka,
2020). Despite the terrain complexity, diverse land-use patterns,
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and mixed agricultural practices within the Erer Watershed,
which make it susceptible to gully erosion from concentrated
surface runoff during peak rainfall periods, no prior studies have
employed ML-based GESM approaches for this area. For
instance, earlier studies within and around watersheds have
investigated only rill and interrill erosion (Woldemariam and
Harka, 2020; Woldemariam et al., 2023), and the spatial
relationships between various natural and anthropogenic
factors influencing gully formation have not been
incorporated into gully erosion research. This study aims to
evaluate the potential of integrating MLAs with GIS-based
modeling techniques to develop the GESM and provide
spatially disaggregated information to support sustainable
land management practices, thereby mitigating the negative
impacts of gully erosion in the Erer watershed of the upper
Wabi Shebelle Basin in Ethiopia.

2 Materials and methods

2.1 Description of the study area

This study was conducted in the Erer Watershed in Eastern
Ethiopia’s upper Wabi Shebelle Basin. The watershed covers a total
land area of approximately 3,860 km2, with latitudes extending from
8°20′N to 9°20′N and longitudes extending from 41°40′E to 42°30′E
(Figures 1A–C).With an altitudinal range from 800m above sea level in
the southwesternmost region to 2,920 m in the upperlands in the
northern region (Woldemariam and Harka, 2020), the study area
encompasses three dominant agroecological zones (Ministry of
Agriculture, 2001): Kolla (500–1,500 m), Woinadega
(1,500–2,300 m), and Dega (2,300–3,200 m). Moreover, the
watershed is the source of the Erer River, which originates from the
highlands in the northern portion of the country and flows southward

FIGURE 1
Map showing the location of the study area: (A) the Erer watershed delineated by a red polygon within the map of Ethiopia; (B) the basin alongside
stream features, gully inventory points (GIPs), and elevations measured in meters above sea level; and (C,D) images illustrating gully erosion in the Erer
watershed with geographical coordinates.
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as a tributary of theWabi River, where it continues into Somalia to join
the Shebelle River. According to the FAO (1995) classification, there are
six dominant soil groups, namely, Eutric Nitosols, Calcaric Regosols,
Eutric Regosols, Dystric Cambisols, Haplic Xerosols, and Humic
Cambisols, with Haplic Xerosols being the most extensive,
accounting for approximately 49% of the total watershed area.

2.2 Datasets

Gully erosion inventory preparation is a preliminary step in
developing high-quality gully erosion susceptibility prediction
models. This study generated a robust gully erosion inventory
map (GEIM) to capture the spatial distribution of gullies across

FIGURE 2
Maps of the factors influencing gully erosion formation.
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the Erer watershed. Field surveys enabled direct gathering of gully
location coordinates via the Global Positioning System (GPS).
Notably, the gullies studied had an average depth of 4 m (Figures
1C, D), indicating significant erosion. Furthermore, site visits have
shown significant effects of gully erosion on the region’s local
infrastructure and agricultural sector. High-resolution satellite
imagery from Google Earth Pro was used to visually analyze and
digitize gully locations as a complement to the field data, enabling
the identification of additional gully locations. The digitized gully
locations were converted into a shapefile format to extract predictor
variable properties at the gully locations. Subsequently, an equal
number of nongully (control) sites were randomly selected and
merged with the identified gully locations, resulting in a balanced
dataset of 1,200 inventory points. Of the inventory points, 42.92%
were identified in bare land areas, 30.83% in shrubland, 24.33% in
agricultural land, 1.17% in built-up areas, and 0.75% in forested
areas. Furthermore, 79.25% were in low-slope areas, 16.33% were in
medium-slope areas, and 4.42% were in high-slope areas.

The inventory points were divided into training 70% and testing
30% of the datasets to model gully erosion. MLAs use a curated
training dataset to predict gully development areas based on
geographical features (Pourghasemi et al., 2020). The reserved
testing dataset was used to evaluate model performance by
contrasting predictions to documented gully occurrences. Overall,
the use of a multipronged data compilation strategy coupled with
rigorous cross-validation procedures guaranteed the fidelity of the
model outputs for directing gully erosion mitigation efforts in the
study area (Azedou et al., 2021).

2.3 Geospatial data processing for gully
erosion formation factors

In this study, 22 factors that contribute to the conditioning and
formation of gully erosion were identified based on a comprehensive
literature review and analysis of publicly available data used to
model GES (Roy and Saha, 2019; Yang et al., 2021; Aboutaib et al.,
2023; Baiddah et al., 2023). QGIS-OSGeo4W (version 3.34.2) was
used to generate maps of geoenvironmental factors and facilitate the
transformation of the layers into a spatial database, as shown in
Figure 2. Detailed descriptions of these geo-environmental factors
are provided below.

2.3.1 Topographic factors
In this study, twelve topographic factors were selected,

considering their substantial impacts on hydrological conditions
(Namous et al., 2021). These parameters included analytic hill shade
(AH), slope (SLP), slope length (LS), elevation (ELV), relative slope
position (RSP), aspect (ASP), plan curvature (PLC), profile
curvature (PRC), convergence index (CI), topographic position
index (TPI), topographic ruggedness index (TRI) and
topographic wetness index (TWI) (Figures 2A–H, J–L). The
maps for these topographic factors were created using a digital
elevation model (DEM) from the Copernicus DSM’s open
topographic database.

The ELV is a primary topographic factor (Figure 2I) in the GES
due to its impact on climatic and vegetation variability (Conoscenti,
et al., 2013a). The SLP considerably impacts runoff infiltration,

water flow speed, and soil particle dissociation (Lei et al., 2020). The
ASP represents the surface orientation of the slope, indirectly
influencing erosion by changing the vegetation cover, solar
incidence, and moisture (Figures 2F, H). The RSP (Figure 2J)
measures the different terrain indices using the DEM. The CI
and TPI (Figures 2B, K) describe the terrain’s form and its
effects on flows. The AH, which indicates terrain exposure to
sunlight, can influence soil moisture content and temperature,
and increasing GES and AH values may result in distinct erosion
patterns compared to low Hillshade values (Gayen and Saha, 2017),
which are more shadowed (Figure 2G). The TWI (Figure 2A) depicts
the regional distribution of soil moisture, erosion, and wetness
conditions (Rahmati et al., 2017a) and is calculated using Eq. 1
as follows:

TWI � ln
S

tan α( ) (1)

where S is the local upslope area draining through a certain point per
unit contour length and tan α is the local slope in radians.

The LS is a parameter in the universal Soil Loss Equation (USLE)
and Revised universal Soil Loss Equation (RUSLE) used to calculate
soil erosion rates (Gayen et al., 2019) and is calculated using Eq. 2
developed by Moore and Burch (1986):

LS � FAG *
Cell size

22.13
[ ]0.6

×
sin slope − grid( ) * 0.01745

0.0896
[ ]1.3

(2)

where LS is the slope length gradient factor, FAG (flow
accumulation grid) represents the accumulated upslope
contribution catchment region for a specific cell, cell size
represents the grid cell size (for this research, 30 m spatial
resolution), and the sin slope denotes the angle of the slope in
degrees (Moore and Burch, 1986).

The TRI, which represents the elevation difference between
adjacent cells in a DEM, determines the convexity and concavity
of a slope (Figure 2C) and was calculated using Eq. 3 from Moreno-
Ibarra et al. (2011):

TRI CX( ) �
��������������∑

kϵN8
Ck − Cx( )2

√
(3)

where Cx is the cell under analysis and N8 is the set of eight
neighbors of the cell.

2.3.2 Climatic factors
Climate significantly impacts gully erosion, which occurs when

rainwater penetrates ground fissures and expands gullies (Azareh
et al., 2019; Hembram et al., 2019; Lei et al., 2020). Therefore, annual
rainfall (AR) data from the Climate Hazards Group Infrared
Precipitation with Stations (CHIRPS) online database (https://
data.chc.ucsb.edu/products/CHIRPS-2.0/) were gathered in the
study area and resampled to a 30* resolution for compatibility.
The rainfall map shows that the annual average range was between
526.24 and 705.55 mm/year. The northern and western regions of
the basin had the highest average precipitation levels (Figure 2R).

2.3.3 Hydrological factors
The hydrological factors used in this study were drainage density

(DD) and distance from stream (DS). Higher drainage densities are
linked to lower infiltration and greater runoff in regions with lower
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infiltration and greater runoff (Conoscenti et al., 2013b;
Arabameri et al., 2019). This study used the density tool in
QGIS-OSGeo4W (version 3.34.2) to create a DD map based on
stream features, illustrating the distribution of streams in the study
area (Figure 2P). The DS was estimated using the Euclidean distance
toolset in QGIS (version 3.34.2) software to determine the distance
of the gully from the drainage system (Figure 2Q).

2.3.4 Geological factors
The geological criteria chosen for this study were lithology (LIT)

and distance from the fault line (DF). This study assessed the impact
of the LIT on gulling (Nhu et al., 2020; Baiddah et al., 2023) by
identifying five types of units using 1/500,000 geological maps
retrieved from the Geological Survey of Ethiopia (GSE) (GSE,
1972) (Figures 2S, T). The Euclidean distance is used to calculate
the DF, which indicates a weak, highly permeable zone with low
resistance, affecting slope stability and contributing to soil
degradation (Gayen et al., 2019).

2.3.5 Environmental factors
Three environmental parameters, which included land use/land

cover (LULC), the normalized difference vegetation index (NDVI),
and distance from road (DR), were developed to study runoff and
infiltration in gullies (Negese, 2021). The Landsat 8 OLI satellite
image for 2022 was obtained from the USGS Earth Explorer website
using the Google Earth Engine (GEE) API to minimize the impact of
transient landscape changes such as cloud cover, temporary land
cover changes, and other anomalies (Loukika et al., 2021). Hence,
the median value used offered a more accurate representation of the
typical conditions that exist throughout the year, resulting in more
robust and dependable land use/land cover classifications.
Subsequently, the basin LULC map was generated in the GEE
environment using a random tree-supervised classification
technique. On the LULC map, the classification resulted in five
classes: forest, shrubland, bare land, agricultural land, and built-up
land (Figure 2O) and Supplementary Table S1, with a total accuracy
of 90% (Supplementary Table S2). The DRs to gullies were selected
due to their contribution to gully erosion by concentrating and
intercepting runoff water, as shown in Figure 2M. (Igwe et al., 2020;
Rahmati et al., 2022). To estimate distance features via Euclidean
distance (ED) spatial analysis, road shapefiles were obtained from
the Ethiopian Space Science and Geospatial Institute (SSGI) Geo-
Portal (http://www.ethiosdi.gov.et/).

The NDVI was calculated using Eq. 4 and Landsat 8 OLI/TIRS
images in the GEE platform to determine vegetation biomass
(Okereke et al., 2012) and produce the NDVI map.

NDVI � NIR − RED
NIR + RED

(4)

where NIR is the spectral reflectance of the near-infrared band and
Red denotes the red spectral reflectance. The NDVI ranged
from −0.32 to 0.76 in this study.

2.3.6 Soil factors
Soil type (ST) and soil organic matter (SOM) were chosen as the

soil factors due to their significant impact on gully erosion (Aber
et al., 2010; Li et al., 2019). The ST data were acquired from the
Harmonized World Soil Database Version 2 (HWSDV2) (https://

www.fao.org/), which identified six common soil types, namely,
Calcaric Regosols, Eutric Nitosols, Eutric Regosols, Dystric
Cambisols, Haplic Xerosols, and Humic Cambisols, which
comprised 4%, 8%, 20%, 19%, 49%, and 16%, respectively
(Figure 2V). The SOM protects soil aggregates from disruption
caused by rainfall, with a higher SOM content lowering soil erosion
(Figure 2U). The SOM data were obtained from the Soilgrid
database (https://soilgrids.org/).

2.4 Gully erosion susceptibility modeling

This study employed an approach of integrating ML models and
geospatial analysis to understand gully erosion and develop susceptibility
predictionmaps using conditioning factors that are expected to influence
the occurrence of identified erosion areas (Guisan et al., 2017), as
depicted in Figure 3. Randomly selected pseudoabsence locations
were also used to extract the values of the related conditioning
factors. Both data forms were used to train algorithms, construct a
prediction function hidden for ML, and identify the importance of each
conditioning factor in the occurrence of gully erosion. The trained
models were used to predict the occurrence probability of gullies across
the entire study area, with gully absence and occurrence points randomly
selected using the “random points” R function of the “spsample”
package, followed by a 10-fold cross-validation for every ML
technique (Barbet-Massin et al., 2012). The final modeling maps and
performance measurements were generated by averaging ten
replications, using independent (present and absence) data for
training, and evaluating the performance of each replication separately.

2.5 Machine learning models

The ML techniques used for modeling GES include XGBoost,
random forest (RF), support vector machine (SVM), artificial neural
network (ANN), the stacking method, and geospatial data
processing. These models were generated in R 4.1.2 and in R
Studio programming, and the GESM data were reclassified into
five classes (very low, low, moderate, high, and very high) using the
natural breaks method in QGIS software. Data normalization, which
places the data within the 0–1 range (Eq. 5), was performed to enable
ML estimation as described by (Davidson et al., 2008).

Xn � X −Xmin

Xmax −Xmin
(5)

where Xmin is the lowest value of X, Xmax is the greatest value of X,
X is the original value, and Xn is the normalized value.

2.5.1 Random forest (RF)
By combining various decision tree models, RF is a

nonparametric ensemble learning technique (Breiman, 2001).
The input data were randomly divided into subgroups for
each internal decision tree (Quevedo et al., 2022). A
regression approach was employed in this study to provide
numerical results for evaluating gully erosion susceptibility.
The outcome is determined by averaging the three predictions.
RF calculates the variable importance using the mean decrease in
accuracy (Hitouri et al., 2022). For the primary node split,
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200 trees were chosen for this study. In this model, the predictive
variable is represented by the error, as stated in Eqs 6, 7 (Kim
et al., 2016):

log 2 M + 1( ) (6)
where M is the number of algorithm inputs computed for the
mean square.

ε � Vobserved − Vresponse( )2 (7)
where ε represents the mean-square error of the algorithm, V
observed is the observed data of the variable, and V response is
the result of the variable.

The RF algorithm was used for several trees and predictive
variables to regulate the split at each node (Naghibi et al., 2017). The
average prediction of the tree was computed using Eq. 8 as follows:

S � 1
K
∑Kthvresponse (8)

where S denotes any forest prediction and K represents the
individual trees in the model.

2.5.2 Extreme gradient boosting (XGBoost)
XGBoost is a boosting algorithm that generates a prediction

model (Chen and Guestrin, 2016) by optimizing the loss function via
gradient descent and increasing the ensemble of weak classification
trees (Sahin, 2020). This algorithm generates top-to-bottom subtrees
and then prunes them backward from bottom to top to eliminate
local optimal solutions, making it more effective for regression and
classification tasks. XGBoost contains three components: shrinkage
and column subsampling to avoid overfitting, gradient tree boosting
for additive training, and a regularized objective function for
improved generalization (Cui et al., 2017; Dev and Eden, 2019).
The best parameter combination was determined using a learning
curve or grid search algorithm, and feature importance ranking was
determined using the feature importance interface based on the Gini
index, a standard parameter for GESM significance assessment

FIGURE 3
Flow chart of the methodology of the research for gully erosion susceptibility modeling.
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(Arabameri et al., 2018). The rate at which variables contribute to
fitting accuracy is known as feature importance, with the high
importance of a specific feature indicating its significance. In this
study, the XGBoost model was tuned across a comprehensive grid of
hyperparameters, including the number of boosting rounds
(nrounds), maximum tree depth (max_depth), learning rate (eta),
minimum loss reduction (gamma), subsample ratio of columns
(colsample_bytree), minimum sum of instance weights needed in
a child (min_child_weight), and subsample ratio of the training
instances (subsample). The values tested were 100, 200, and 300 for
nrounds; 3, 6, and nine for max_depth; 0.01, 0.1, and 0.3 for eta; 0,
0.1, and 0.3 for gamma; 0.6, 0.8, and one for colsample_bytree; 1, 3,
and five for min_child_weight; and 0.6, 0.8, and one for subsample.

2.5.3 Support vector machine (SVM)
The SVM algorithm is a supervised learning method that

minimizes structural or empirical risk by dividing classes using
kernel functions to fit an optimal separating hyperplane that
maximizes the boundaries of two classes with minimal errors
and complexity (Broséus et al., 2011). The original input data are
transformed from a low-dimensional space where classes are
linearly inseparable into a feature space of much greater
dimensionality (Abdollahi et al., 2019). Classifying (or
predicting) new information using the fitted nonlinear
hyperplane is simple. We employed the Gaussian radial basis
function kernel to transform the initial input data into a higher
dimension (Eq. 9).

K xi, xj( ) � exp
xi,xj‖ ‖2
2σ2 (9)

where K is the kernel function, x is the input vector, and σ is the
bandwidth parameter (sigma), which controls the degree of
nonlinearity in the hyperplane (Garosi et al., 2019). Sigma
and the regularization (cost) parameter had to be specified.
The SVM model with a radial basis function (RBF) kernel
was optimized by tuning the cost parameter (C) and the RBF
kernel parameter (sigma). The values tested for C were 0.1, 1,
and 10, and for sigma, the values were 0.01, 0.05, and 0.1. The
latter governs the tradeoff between the complexity of the model
and empirical errors, which also controls overfitting. The
optimal values for these two parameters were chosen through
the grid search method with 10-fold cross-validation (Amiri
et al., 2019).

2.5.4 Artificial neural network (ANN)
The ANN algorithm can recognize patterns (Pourghasemi

and Rahmati, 2018). This algorithm comprises node levels,
including an input layer, one or more hidden layers, and an
output layer. A weight and a threshold link the nodes together.
When an individual node’s output surpasses a threshold value, it
is activated and sends data to the next network layer. Otherwise,
no data are sent to the following network layer (Alkhasawneh
et al., 2014; Gholami et al., 2020). The ANN model was
implemented in R 4.2.0 using this work’s “neuralnet” package,
and we tuned the number of neurons in the hidden layer (size)
and the weight decay parameter (decay). The values tested for
size were 5, 10, and 15, while the values for decay were 0.01,
0.1, and 0.5.

2.5.5 Ensemble machine learning approach
Ensemble ML is an approach that integrates multiple base ML

models to improve prediction accuracy and performance by
reducing noise or error between observed and predicted data, as
well as reducing model variance, bias, or both concurrently
(Bouguerra et al., 2022). Ensemble approaches are typically
classified as bootstrap aggregating (bagging), boosting, or
stacking, with bagging and boosting primarily used for
homogeneous models and stacking for combining heterogeneous
models (Nguyen et al., 2021). This study employed stacking, also
referred to as stacked generalization, an ensemble ML approach that
utilizes a meta-model to integrate multiple heterogeneous base
models. Here, 4 ML models, namely, the XGBoost, RF, SVM,
and ANN models, were integrated as base models with the
“caretEnsemble” package in R for implementation. The meta-
model for stacking was trained using base model predictions
from complete training data, allowing for the exploration of
potential solutions with multiple models in the same scenario.

2.6 Multicollinearity analysis of
effective factors

Multicollinearity analysis was used to identify information
redundancy between parameters affecting the performance of ML
models and the linearity among conditioning factors, thereby
improving the results of GES mapping (Du et al., 2017;
Arabameri et al., 2020a; Baiddah et al., 2023). In this study, the
tolerance (TOL) and variance inflation factor (VIF) were calculated
to test for multicollinearity among the factors influencing GES using
Eqs 10, 11, respectively.

VIFi � 1
1 − R2

j

(10)

TOLi � 1 − R2
j (11)

where R2
j is the regression value of explanatory j on all independent

variables and is obtained by regressing each variable in multivariate
regression for the remaining variables (Arabameri et al., 2018). A
tolerance of less than 0.10 and a VIF of 10 and above indicate a
multicollinearity problem (Du et al., 2017).

2.7 Analyses of predictor factor importance

The integration of ML models and GIS techniques in this study
assisted in leveraging spatial data and developing models that
accurately predicted gully erosion susceptibility. This technique
ensured a comprehensive analysis of the study area and provided
valuable insights into multiple factors influencing erosion
formation, suggesting the potential of their synergy in addressing
complex environmental issues and supporting informed decision-
making processes. In this study, we analyzed the importance of
predictor factors to determine the relative significance of each factor
in contributing to the GES models, aiming to prioritize and weigh
the importance of different factors in the final susceptibility maps,
ultimately improving the accuracy and effectiveness of the model
predictions (Bouguerra et al., 2022).
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2.8 Validation of the machine learning
model results

In this study, validation metrics such as the receiver operating
characteristic (ROC) curve and area under the curve (AUC),
accuracy, precision, sensitivity, specificity, kappa coefficient,
F1 score, and logarithmic loss were used to evaluate the
performance of the ML models. These metrics were obtained
from four possible methods, namely, true positive (TP), true
negative (TN), false positive (FP), and false negative (FN), using
a confusion matrix. The TP and FP represent the proportions of
gully cells that are correctly classified as gully and nongully cells,
respectively, while the TN and FN represent the numbers of gully
cells classified correctly and incorrectly as nongully cells,
respectively (Bui et al., 2019; Mohebzadeh et al., 2022).

2.8.1 Receiver operating characteristic (ROC) and
area under the curves (AUC)

The ROC curve was used to validate the goodness-of-fit and
prediction performance of eachmodel, with two-dimensional curves
generated using the X-axis for sensitivity based on FP rates and the
Y-axis for 1-specificity based on TP rates (Arabameri et al., 2020a;
Bouguerra et al., 2022). The most commonly used area under the
ROC curve (AUC), which ranges from 0.5 to 1, is a measure of the
accuracy and reliability of the models in predicting gully erosion
events, with a value closer to one indicating higher accuracy and a
value closer to 0.5 indicating inaccuracy (Bammou et al., 2024). The
AUC was calculated using Eq. 12 as follows:

AUC ROC( ) � ∑TP +∑TN

TP + TN + FP + FN
(12)

2.8.2 Accuracy
The accuracy is the proportion of gully and nongully cells that

are correctly classified and as high as possible (Baiddah et al., 2023).
It is calculated using Eq. 13 as follows:

Accuracy � TP + TN

TP + FP + TN + FN
(13)

2.8.3 Precision
Precision predicts future classification performance by dividing

the number of correct positive results by the number of predicted
positive results, with higher precision values indicating better model
performance (Nhu et al., 2020). It is calculated using Eq. 14
as follows:

Precision � TP

TP + FP
(14)

2.8.4 Sensitivity and specificity
Sensitivity is a metric that defines the number of correctly

classified gully cells per total number of predicted gully cells,
while specificity is the number of incorrectly classified gully cells
per total number of predicted nongully cells (Bui et al., 2019; Lei
et al., 2020). Higher sensitivity and specificity indicate greater
predictive capability of the model in predicting gully erosion

susceptibility cells and nongully susceptibility cells, respectively,
and these metrics were computed using Eqs 15, 16 as follows:

Sensitivity � TP

TP + FN
(15)

Specificity � TN

TN + FP
(16)

2.8.5 Kappa coefficient
The Kappa coefficient (κ) is a robust metric that measures the

agreement between the predicted and true labels, accounting for the
possibility of random agreement, and is useful in imbalanced
datasets or multiclass classification problems (Rahmati et al.,
2017b; Baiddah et al., 2023). The formula for calculating the
kappa coefficient is presented in Eq. 17:

κ � po − pe

1 − pe
(17)

where κ is the kappa coefficient, po is the observed agreement
between the predicted and true labels, and pe is the hypothetical
probability of chance agreement.

2.8.6 F1 score
The F1 score is a harmonic mean of precision and recall,

providing a balanced measure of a model’s performance, which is
particularly useful when dealing with imbalanced datasets, as it
considers both false positives and false negatives (Nhu et al., 2020).
The F1 score was computed using Eq. 18:

F1 � 2 ×
Precision × Recall
Precision + Recall

(18)

where precision is the ratio of true positives to the sum of true
positives and false positives, and recall is the ratio of true positives to
the sum of true positives and false negatives.

2.8.7 Logarithmic loss (log loss)
The log loss, also known as the cross-entropy loss, is a metric

that measures the performance of a classification model by
quantifying the uncertainty or confidence of the predictions,
which is especially useful for probabilistic classifiers because it
penalizes confident misclassifications more heavily.

The log loss was calculated as indicated in Eq. 19:

log Loss � − 1
N

∑N

i�1 yi log pi( ) + 1 − yi( )log 1 − pi( )( ) (19)

where N is the number of instances, yi is the actual class label (0 or 1)
of the ith instance, and pi is the predicted probability that the ith
instance belongs to the positive class.

3 Results and discussion

3.1 Multicollinearity of the
predictive variables

Multicollinearity analysis is required to evaluate the
intercorrelations between independent variables in a regression
model, undermining the reliability and interpretability of the
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models (Liu et al., 2023; Were et al., 2023). Table 1 provides
statistical comparisons of the multicollinearity analysis between
the GES predictive factors using the VIF and TOL values.
According to O’Brien (2007), multicollinearity occurs when the
tolerance is less than 0.10 and the VIF is greater than 10. In this
study, the multicollinearity test revealed that the TOL and VIF
values of the factors were greater than 0.1 and less than 10,
respectively. These findings suggest that there was no
multicollinearity among the gully predictor factors studied, and
all the factors could be used to model the spatial extent of GES in the
Erer watershed.

3.2 Analysis of predictor variable importance

Figures 4A–D demonstrate the importance of geoenvironmental
factors in the ANN, SVM, RF, and XGBoost models for GES
modeling, revealing similarities and differences in GES prediction
in the study area, with varying rank orders and percentages. The
XGBoost model also revealed that the RSP (94.97%) had the greatest
influence on gully formation, followed by the NDVI (57.6%), SOM
(28.03%), DS (17.03%), and AR (16.23%) (Figure 4A). The SVM
results identified RSP (100%), SOM (52.922%), NDVI (42.759%),
DD (42.03%), and DS (40.36%) as the most significant factors, while
ST (0.73%), TRI (1.73%), ASP (2.73%), LS (2.82%), and AH (6.01%)
were the least significant (Figure 4B). According to the RFmodel, the
primary factors responsible for gully formation were RSP (100%),
NDVI (85.45%), SOM (54.75%), DS (45.02%), and DR (39.43%),
while the least significant factors were ASP, PRC, SLP, AH, TWI,
TPI, TRI, CI, and ST, with importance scores ranging from 3% to
9.66% (Figure 4C). However, for ANN, rainfall (100%) had the
greatest influence on gully formation, followed by LS (76.71%), ELV
(56.88%), NDVI (50.36%), SOM (49.15%), RSP (47.39%), and CI
(43.46%) (Figure 4D). All 4 ML modeling methods highlighted that
several factor types collectively influence the formation and
development of gully erosion. Were et al. (2023) used RF, SVM,
and multivariate adaptive regression spline models to identify key

gully erosion factors in Kenyan drylands, revealing slope, vegetation,
rainfall, and drainage density as the most influential factors in
GES modeling.

The study revealed that RSP, NDVI, and SOM were highly
important in all 4 ML models, indicating their robust predictive
power and potential as driving factors. In particular, RSP was the
most influential factor, with 100% importance for SVM and RF and
94.97% importance for XGBoost (Figures 4B–D), highlighting the
importance of topographic characteristics in their framework. These
findings align with the conceptual model of topographic threshold
effects reported by Conforti et al. (2011), suggesting that certain
landform sites become more susceptible to gully erosion when the
slope length threshold is exceeded. Tebebu et al. (2010) reported that
elevation, slope gradient, and DD are crucial for predicting gully
formation in Ethiopian highlands, supporting the RSP, LS factor,
and DD in selected ML models for GES modeling in watersheds;
however, they did not consider the NDVI or SOM. Studies have
shown that topographical factors significantly influence gully
erosion, controlling surface runoff and other factors, highlighting
the intricate relationships between topographical factors and
rainfall, lithology, land use, soil, vegetation, and other variables
(Gómez-Gutiérrez et al., 2015; Garosi et al., 2019; Al-Bawi et al.,
2021). In addition, Mararakanye and Sumner (2017) highlighted
that gully initiation is significantly influenced by local interactions
between land use and environmental factors, requiring careful
consideration of successful GES modeling.

The gully head of the Erer watershed lacks high surface
vegetation cover, potentially affecting surface runoff and GES,
especially in arable land, which can be disturbed by tillage
practices (Jiang et al., 2021). Studies have also shown that
vegetation can effectively reduce gully erosion where only dense
vegetation provides protection from erosion, and for lower or
moderate vegetation, topography is the major contributor (Sun
et al., 2014; Jiang et al., 2021). Soil surface properties such as
SOM and texture significantly influence erosion resistance,
infiltration, and runoff rate in gully erosion susceptibility; hence,
they are used as predictor variables in the GESM to understand their

TABLE 1 Multicollinearity analysis for variables contributing to GES based on tolerance (TOL) and variance inflation factor (VIF) values.

Variable TOL VIF Variable TOL VIF

Hillshade 0.72 1.39 RSP 0.56 1.79

Aspect 0.81 1.23 SOM 0.72 1.39

CI 0.66 1.51 TRI 0.34 2.98

Elevation 0.27 3.76 TPI 0.6 1.68

Fault line 0.73 1.37 TWI 0.52 1.92

LS Factor 0.62 1.61 DR 0.57 1.74

LULC 0.68 1.48 DS 0.5 2.01

NDVI 0.55 1.81 DD 0.41 2.42

Plan Curvature 0.58 1.73 Lithology 0.51 1.98

Profile Curvature 0.71 1.4 Slope 0.39 2.57

Rainfall 0.28 3.58 Soil Type 0.37 2.72

CI, convergence index; LS, slope length and steepness; LULC, land use and land cover; NDVI, normalized difference vegetation index; RSP, relative slope position; SOC, soil organic carbon; TRI,

terrain roughness index; TPI, topographic position index; TWI, topographic wetness index; DR, distance from river; DS, distance from streams; DD, drainage density;DS, distance from stream.
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impact on erosion susceptibility (Garosi et al., 2019; Mohebzadeh
et al., 2022). Yang et al. (2021) combined the RF, gradient boosting
decision tree (GBDT), and XGBoost models with a statistical weight
of evidence to map complex Chinese landscapes, and the dominance
of rainfall, SOM, and slope factors closely aligns with our findings.

The ANN model, which prioritizes certain factors such as
rainfall, may indicate model-specific behaviors that require
validation before categorizing causally impactful behaviors, as it
disproportionately weights variables compared to other algorithms
(Saha et al., 2020). This finding is consistent with previous findings
indicating that ML models may overestimate the significance of
these predictors, such as rainfall, which is crucial for the
development of ravines, gullies, and soil loss (Aboutaib et al.,
2023). In contrast, rainfall was assigned much lower and

insignificant importance values of 18.97%, 25.14% and 16.23% in
the SVM, RF and XGBoost models, respectively. Studies have also
suggested that topographic features (e.g., elevation, slope and plan
curvature); hydrological factors, such as rainfall; and other factors,
such as the NDVI and LULC, are among the influential factors that
significantly impact the GES (Rahmati et al., 2017a; Arabameri et al.,
2019; Mohebzadeh et al., 2022).

The findings on variable importance scores are consistent with
the rationale offered by Hastie et al. (2009), who state that
importance measures are relative, and it is typical to assign the
highest score to 100 and then scale the others accordingly. As a
result, the fact that two variables (RSP and AR) have high
importance scores and others have significantly lower scores
demonstrates their relative relevance in the ML models (Figures

FIGURE 4
Predictor variables for gully erosion susceptibility modeling and their percentage importance ranked by machine learning models: (A) XGBoost, (B)
support vector machine (SVM), (C) random forest (RF), and (D) artificial neural network (ANN).
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4A–D). In this study, the ML models did not identify important
variables such as AH, PRC, SLP, ST, TWI, PLC, LIT, or ASP as
significant, suggesting a negligible role for these variables in the GES
in the watershed. This could be due to the inability of the variable to
explain the spatial distribution of GES, uncertainties in accurately
defining factors or the impact of explanatory variables changing in
different locations (Garosi et al., 2019; Saha et al., 2020). The
contributions of different variables vary due to differences in
underlying techniques and model sensitivities, highlighting the
complex interplay between variables affecting GES (Rahmati
et al., 2017a; Arabameri et al., 2018; Gayen et al., 2019). Studies
have indicated that GES mapping is influenced by area-specific
factors such as land use (Amiri et al., 2019), distance from rivers (Bui
et al., 2019), slope (Arabameri et al., 2020a), elevation (Baiddah et al.,
2023), rainfall (Nhu et al., 2020), and NDVI (Aboutaib et al., 2023),
which cannot be reliably extrapolated to other regions, necessitating
further research on different landscapes. These findings emphasize
the significance of multiperspective variable importance analysis for
understanding and interpreting broad explanatory relationships and
for balancing ensemble-level information with model-specific
details. Future research should also explore the use of influence
functions to measure model sensitivity to individual predictors,

allowing for a more comprehensive examination of unstable
features and validating consensus relationships, as also suggested
by Wei Koh and Liang (2017).

3.3 Validation of the machine
learning models

This study employed comprehensive validation metrics to
evaluate the predictive capabilities of ML models for GES
modeling, comparing their performance outcomes and
effectiveness in GES modeling and delineating gully prone areas.
The ROC-AUC analysis showed significant variation in the
performance of the ML models, with the tree-based XGBoost
model (AUC = 0.97) demonstrating exceptional performance and
robustness, outperforming the RF (AUC = 0.96), SVM (AUC =
0.93), and ANN (AUC = 0.90) models (Figure 5). These findings
suggested that the XGBoost model provided nearly perfect
discrimination in predicting GES within the watershed,
supporting findings by Arabameri et al. (2021) and Xu et al.
(2023) but contrasting the findings of Rahmati et al. (2017b) and
Amiri et al. (2019), who reported superior performance of RF and

FIGURE 5
Receiver operating characteristic (ROC) curves of the artificial neural network (ANN), support vector machine (SVM), random forest (RF), XGBoost,
and ensemble models in the study area.
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SVM for GES modeling. Previous studies have also shown XGBoost,
with an AUC of ~0.96, to be the most efficient model for GESM,
outperforming the RF (AUC = 0.94) and SVM (AUC = 0.89) models
in terms of performance, generalizability, and overfitting prevention
(Arabameri et al., 2019; Yang et al., 2021).

The XGBoost model also achieved the highest accuracy (0.91),
precision (0.92), and kappa value (0.81) (Table 2) with a low logloss
(0.0482) (Figure 6D), indicating robustness and a high level of
performance in GES predictions and mapping. These results are
comparable to those reported by Pourghasemi et al. (2020) and
Were et al. (2023), who reported that XGBoost had superior

predictive accuracy over RF, SVM, and other models. The
XGBoost model also had acceptable specificity (0.95) and
F1 score (0.88) but was less effective in identifying areas resistant
and susceptible to gully erosion than the SVMmodel, which had the
highest sensitivity (0.97), specificity (0.98), and F1 score (0.91)
(Table 2). Similarly, a study by Bammou et al. (2024) reported
that the XGBoost model achieved outstanding results for various
validation metrics, including the AUC-ROC (91.07%), accuracy
(0.91), precision (0.93), sensitivity (0.89), specificity (0.95),
sensitivity (0.89), and F1 score (0.91). As a result, the XGBoost
model has been extensively utilized in studies for modeling

TABLE 2 Performance validation metrics of machine learning models and the ensemble technique for gully erosion susceptibility modeling.

Validation metrics
Xgboost SVM RF ANN Ensemble

Accuracy 0.91 0.882 0.88 0.83 0.935

Precision 0.92 0.86 0.88 0.88 0.925

Sensitivity 0.84 0.97 0.94 0.88 0.975

Specificity 0.95 0.98 0.88 0.79 0.954

Kappa 0.81 0.73 0.74 0.66 0.858

F1 Score 0.88 0.91 0.90 0.87 0.949

FIGURE 6
Performance validation of machine learning models for gully erosion susceptibility modeling using log loss: (A) artificial neural network (ANN), (B)
support vector machine (SVM), (C) random forest (RF), and (D) XGBoost.
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landslides, flash floods, and groundwater susceptibility,
demonstrating superior predictive potential for environmental
risks (Arabameri et al., 2021; Xu et al., 2023; Zhuo et al., 2023;
Meng et al., 2023).

Nevertheless, the XGBoost model had the lowest sensitivity
(0.84), supporting the findings of Garosi et al. (2019) that the
model is more effective in predicting gullies but has lower
sensitivity to complex nonlinear relationships and influential
factors. In this study, the RF model showed better sensitivity
(0.94), F1 score (0.90), Kappa value (0.74) and logloss (0.233)
(Figure 6C), indicating its reasonable performance in predicting
areas susceptible to gully erosion. The ANN model had the lowest
performance in most metrics but still demonstrated a reasonable
level of precision (0.88), sensitivity (0.88), and F1 score (0.87)
(Table 2), with the highest level of confidence and a logloss value
of 0.2827 (Figure aa). Bammou et al. (2024) also suggested that ML
models, such as RF, SVM, and ANN, could perform well in
identifying gully prone areas, with reasonable sensitivity,
specificity, precision, accuracy, AUC, and F1 score values above
0.78. As Rouhani et al. (2021) stated, understanding the most
relevant predictive factors is key to model performance, which
may explain the superiority of the XGBoost model in this study.
Therefore, the potential applicability of the XGBoost model in GES
mapping makes it a promising tool for effective decision-making in
sustainable soil and water management practices in watersheds,
based on the current findings.

Currently, researchers are developing an ensemble model for
large-scale GES modeling, combining predictions from multiple
base models to enhance performance and arguing that it
outperforms common statistical methods (Nhu et al., 2020;
Arabamari et al., 2021). In this study, the ensemble approach,
which integrated 4 ML models (ANN, SVM, RF, and XGBoost),
achieved the highest AUC (0.99), accuracy (0.935), precision (0.925),
sensitivity (0.975), specificity (0.954), kappa (0.858), and F1 score
(0.949) values (Table 2). Similarly, earlier studies have shown that
the ensemble approach enhances the GES mapping accuracy to 99%
and the predictive capacity and reliability, especially when combined
with XGBoost (Arabameri et al., 2019; Bouguerra et al., 2022). This
study suggested that combining ML models, such as XGBoost, with
geospatial analysis and/or implementing an ensemble approach can
effectively predict gully erosion-prone areas, providing valuable
insights for soil conservation solutions. Studies have also
suggested that ensemble models are highly effective for local
authorities in implementing countermeasures, land-use planning,
and mapping global GES and natural hazards, producing accurate
GES maps and outperforming individual models (Pourghasemi
et al., 2017; Bui et al., 2019; Nhu et al., 2020).

3.4 Gully erosion susceptibility and spatial
distribution

3.4.1 Watershed-level spatial distribution of
gully erosion

Mapping the spatial distribution of GES and identifying high-
risk areas based on geo-environmental factors are crucial for
reducing soil erosion risks and promoting sustainable soil
conservation, particularly in areas with high susceptibility or

favorable conditions for gully development (Saha et al., 2021;
Bouguerra et al., 2022). The current study classified GES using
ML models at the broadest level, indicating significant variations in
both the total areas within each GES class and their proportional
distributions (Table 3; Supplementary Figure S1). The analysis of the
spatial extent of gully erosion in the watershed revealed erosion-
prone sites that were classified into five susceptibility groups using
the Jenks natural break classification system, ranging from very low
to very high GES (Amiri et al., 2019; Eloudi et al., 2023).

The ML models and ensemble technique consistently projected
that the Babile, Fedis, and Meyumuluke districts within the
watershed would contain the largest areas classified under all
GES classes, while the Gursum and Jarso districts were
anticipated to encompass the smallest areas of land designated
within the GES classes (Supplementary Tables S3–S7). In
particular, the XGBoost model predicted the largest area
(2,669.46 km2; 70.19%) to be in the ‘very low’ susceptibility class
at the watershed scale, while the SVM model predicted the smallest
area (676.9 km2; 17.80%) in this class (Table 3). In addition, the
XGBoost model exhibited lower high-susceptibility areas in upland
subwatersheds than did the other ML models while predicting lower
risks for large subcatchments in southern regions. However, its focus
on very low-GES risk areas might lead to an underestimation of
higher-risk GES classes. These findings are consistent with those of
Nhu et al. (2020), who hypothesized that gullies are mostly formed
by extreme runoff associated with slope-area relationships. As a
result, the GES map of the watershed developed by the XGBoost
model accurately predicts the detected gullies along the
subwatersheds and their tributaries.

The RF, ANN, and SVM models demonstrated greater spatial
consistency in predicting low-risk GES areas than did XGBoost,
resulting in greater area coverage (Figures 7A–D; Table 3). The ANN
model predicted the largest area (522.59 km2; 13.74%) in the ‘very
high’ GES class, while identifying an area of 1,490.13 km2 (39.18%)
in the low-GES class, indicating areas with fewer erosion hazards.
The RF model predicted the largest area in the “very low” GES class
(1,525.07 km2; 40.1%), with notable allocations of 23.68, 15.78, and
12.6% to the low, moderate, and high GES classes, respectively, but
more conservative estimations of the “very high” GES regions
(298.46 km2; 7.85%) (Table 3). The SVM model, which included
large areas (1,112.87 km2; 29.26%) as the low GES class, identified
areas of 890.17 km2 (23.41%) as moderate, 678.75 km2 (17.85%) as
high, and 444.51 km2 (11.69%) as very high GES classes, indicating
its capacity to identify areas at significant gully erosion risk. These
findings highlight the caution of SVM in identifying high-risk zones
and the sensitivity of ANN in detecting vulnerable areas and that the
predicted GES distribution (Figures 6A, B) is consistent with the
quantitative results (Table 3). These findings support Arabameri
et al. (2019), who found that gullies form in areas with high water
concentrations, drainage densities, and arid conditions, particularly
in plains and low-slope areas, where gypsum and salt minerals are
evaporated and vegetation is overgrazed.

The ensemble approach comprehensively assessed GES
distributions across watershed landscapes, providing a more
powerful framework for predicting GES. The mapping identified
watershed areas with very low, low, moderate, high, or very high
erosion risk levels, accounting for 36.48%, 26.51%, 16.24%, 11.55%,
and 9.22%, respectively, of the total area (Figure 7E; Table 3). As a

Frontiers in Environmental Science frontiersin.org14

Gelete et al. 10.3389/fenvs.2024.1410741

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2024.1410741


result, this approach could offer decision makers insight into guiding
land management strategies aimed at mitigating soil degradation in
areas classified as possessing high or very high GES (Pourghasemi
et al., 2017; Bui et al., 2019; Arabamari et al., 2021). Notably, the
decrease in susceptibility was very low (36.48%), and XGBoost was
predicted to constitute the largest area (70.19%) (Bui et al., 2019),
with a more even distribution across the remaining GES classes,
indicating a more accurate assessment of gully erosion risks across
the watershed. Therefore, the development of ensemble models and

advancements in GIS data collection, integration, and processing are
crucial for improving the precision, reliability, and utility of ML-
based erosion susceptibility assessments.

3.4.2 District-level spatial distribution of
gully erosion

The results for the ML models (Section 3.3) showed that the
XGBoost model achieved the highest prediction accuracy in
differentiating erosion and nonerosion areas while revealing the

TABLE 3 Area and proportion of five gully erosion susceptibility (GES) classes in the four machine learning models and the ensemble technique.

GES classes XGBoost RF SVM ANN Ensemble

Area % Area % Area % Area % Area %

Very low 2,669.46 70.19 1,525.07 40.1 676.9 17.8 689.24 18.12 1,387.40 36.48

Low 328.48 8.64 900.43 23.68 1,112.87 29.26 1,490.13 39.18 1,008.38 26.51

Moderate 206.37 5.43 600.15 15.78 890.17 23.41 620.91 16.33 617.80 16.24

High 193.83 5.1 479.16 12.6 678.75 17.85 480.35 12.63 439.19 11.55

Very high 405.07 10.65 298.46 7.85 444.51 11.69 522.59 13.74 350.48 9.22

Total 3,803.21 100 3,803.27 100 3,803.21 100 3,803.22 100 3,803.26 100

FIGURE 7
Spatial distribution of gully erosion susceptibility for four machine learning models: (A) XGBoost, (B) random forest (RF), (C) support vector machine
(SVM), (D) artificial neural network (ANN), and (E) ensemble technique.
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reliability of district-level GES predictions and concentrated GES
prediction clustering in critical areas (Table 3). Across all GES risk
classes and ML models, districts located in the northern and
southeastern positions within the watershed (along the Erer River)
contained the greatest proportions of zones classified as being highly
susceptible to gully erosion. At the district level, predictions indicated
that the Harar, Fedis, Midega Tola, and Kombolcha districts would
encompass the largest areas classified as having very high GES risk,
while the Gursum and Jarso districts were anticipated to contain the
smallest areas of land designated as having very high GES risk
(Supplementary Tables S3–S7). Implementing preventative
conservation efforts in these watershed hotspots could substantially
reduce erosion risk. The GIS data-driven ML approaches in this study
increased the accuracy of GES predictions by learning complex
relationships between predictor variables compared to empirical
prediction models used in similar catchments (Woldemariam and
Harka, 2020). This approach predominantly aligns with the
ensemble machine learning-GIS framework (Amiri et al., 2019),
which outperforms individual ML models, and the XGBoost model
(Lei et al., 2020), which showed exceptional performance and
robustness for GES modeling compared to other ML models. These
advanced ML approaches could also offer crucial information on
concentrated and highly predicted GES areas in limited data regions,
enabling the establishment of preventive measures to significantly
reduce gully expansion (Woldemariam et al., 2023).

According to Baiddah et al. (2023), ML-based soil erosion
susceptibility maps accurately identify vulnerable locations
despite challenges in distinguishing between map errors and
sensitive areas where erosion has not yet occurred. In this study,
all ML models showed that the Erer watershed is prone to gully
erosion; thus, the implementation of these ML models could help
predict and map soil erosion, supporting policymakers in preventing
soil erosion. Therefore, this study could benefit regional planners,
especially in the rapidly changing arid to semiarid environments of
Ethiopia, by offering accurate and reliable models, greater model
flexibility, and comprehensive validation metrics to improve
classification, method selection, and decision-making.

3.5 Limitations and perspectives of the study

The current study focused on developing a novel and cost-effective
methodology for GES modeling to identify areas susceptible to gully
erosion and conditioning factors by integrating four MLAs with
geospatial analysis within the Erer watershed in Ethiopia. The
mapping method for GES proposed in this work can be applied in
areas with comparable environmental and human activity, such as
variable rainfall, steep slopes, and weak geology units. However,
although the methods have shown excellent success in this context,
it is important to note that certain limitations may impact their
performance in other contexts. These limitations include reliance on
single time-period data, exclusion of human activities as a factor,
potential biases in individual MLAs, and utilization of coarse
resolution data for specific variables due to the use of openly
accessible datasets. The MLAs used in this study are sensitive to
changes in specific input data and their accessibility and quality;
thus, the findings may not be applicable in other regions with
distinct geological features or environmental conditions. This is

supported by recent studies by Baiddah et al. (2023) and Bammou
et al. (2024), which revealed that conditioning factors for gully erosion
are area-specific and cannot be reliably extrapolated to other regions,
necessitating further investigation. This study relied on 30 m resolution
data for the majority of geoenvironmental factors and 1 km resolution
ARF data due to the lack of ground meteorology sites in the basin.
Moreover, SOM data were obtained at a relatively low resolution.
Although these resolutions were employed due to the availability of
open-source data, future studies can leverage high-resolution imageries,
including 3D Lidar point cloud data and commercial datasets, to
enhance the precision of GES predictions. Furthermore, MLAs have
been optimized using the available data; however, as suggested by
Baiddah et al. (2023), applications in other regions require additional
optimization according to the available data.

Although the study considered a diverse range of geospatial GES
predictor variables, considering other variables, such as soil texture,
electrical conductivity, and run-off speed, could further improve the
identification of GES. In addition, the understanding of the factors
influencing GES differs among models, which implies that less
precise factors can lead to highly accurate models (Bouguerra
et al., 2022). For a better understanding of this phenomenon and
owing to the intrinsic relationships between gully erosion and its
controlling factors, other types of MLAs, especially deep learning
models (Baiddah et al., 2023), should be applied. A multitemporal
geodatabase is also recommended for dynamic GES modeling and
adaptive management strategies, incorporating socioeconomic data
and human activities such as land management and agricultural
activities as GES predictors.

Future climate change is expected to have an impact on gully
erosion, with direct and indirect effects promoting or suppressing
gullies; thus, climate change models should be combined with
climate scenarios, land use models, and hydrologic models for
accurate GES prediction and mapping. In particular, research on
the long-term evolution of gully erosion and its interaction with
climate change dynamics by combining MLAs and climate
projections could provide more insights into the impacts of
climate change on gully formation and guide adaptive prevention
and mitigation strategies (Bouguerra et al., 2022; Bammou et al.,
2024). Therefore, analyses of GES over longer time periods using
climatic projection models could be recommended to provide
valuable insights into the long-term impact of climate change
and enable proactive measures to ensure the sustainability of
soil resources.

Despite these limitations and gaps, the integration of MLAs and
geospatial techniques, along with the ensemble technique, offers a
promising approach to better delineate, visualize, and interpret
erosion-prone areas. The reliable GES maps generated in this study
serve as invaluable tools for decision-makers and government officials
involved in erosion risk management. As a result, implementing soil
and water conservation measures (e.g., check dams, contour bunds,
gully plugs) in highly susceptible areas could effectively mitigate erosion
processes. To mitigate soil erosion in watershed areas, which could be
worsened by climate change, it is recommended that protection
measures such as afforestation, conservation tillage, no-till, and
planting drought-resistant cultivars be implemented (Arabameri
et al., 2019; Bammou et al., 2024). In particular, recognizing the
factors predictive of GES in this study, vegetation planting on
borders and surrounding gullies can be one of the highest priority
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preventative strategies for controlling and reducing gully processes
within watershed areas.

There is an apparent interplay between gullies, vegetation, and
climate change, particularly extreme rainfall and heat events, which
can exacerbate gully erosion; in particular, vegetation plays a
protective role during extreme climate events (Bouguerra et al.,
2022). In addition to the relationships between vegetative features
(type, cover, and density) and soil factors (texture, compaction,
porosity, etc.), which affect infiltration rates, runoff formation, and
surface flow, vegetation also helps stabilize soils, gully walls, and
potential gully nickpoints. Arabameri et al. (2019) suggested that
planting around gullies in Iran can control erosion by increasing
topsoil shear strength, slowing extreme rainfall runoff, reducing soil
saturation, and adjusting overland flow and infiltration patterns.
Furthermore, stakeholder engagement and community
participation in implementing sustainable land management
practices and monitoring gully erosion are crucial for long-
term success.

4 Conclusion

The Erer watershed in Eastern Ethiopia faces significant
challenges from extensive gullying, posing threats to agriculture,
infrastructure, and communities. This study addresses the urgent
need for evidence-based mitigation and management efforts by
integrating machine learning (ML) models, including ANN,
SVM, RF, and XGBoost, with geospatial analysis. This novel
methodological framework effectively models and maps gully
erosion susceptibility (GES) within a watershed. A comprehensive
GIS database was developed to record gully erosion incidents, and
22 conditioning geoenvironmental factors were identified as
predictive variables for assessing erosion conditions. The ML
models demonstrated high accuracy and prediction performance
for GES modeling. Notably, the XGBoost model outperformed the
other models with an AUC of 0.97, achieving the highest accuracy
(0.91), precision (0.92), and kappa value (0.81), indicating its
robustness and superior performance. The SVM model excelled
in detecting areas resistant and susceptible to gully erosion,
exhibiting the highest sensitivity (0.97), specificity (0.98), and
F1 score (0.91). An ensemble ML technique combining
predictions from different base models further enhanced GES
modeling, achieving the highest performance in terms of the
AUC (0.99), accuracy (0.935), precision (0.925), sensitivity
(0.975), specificity (0.954), kappa (0.858), and F1 score (0.949).
This approach identified GES classes, highlighting areas with
varying susceptibility levels within the watershed. Key factors
such as RSP, NDVI, and SOM were identified as significant
drivers of gully erosion. This study emphasizes the importance of
optimal soil conservation measures and proposes planting around
gullies to control and minimize gully processes. Overall, the
integrated ML and geospatial analysis techniques provide
valuable insights for sustainable management of the Erer
watershed. Future research should focus on establishing a
multitemporal geodatabase to iteratively update conditioning
factors and enhance the GES map. Additionally, these findings
can provide spatial support for future planning of sustainable

land management practices and for mitigating losses and
associated land degradation.

5 Software used and availability

The following software packages were used in this study:

1. QGIS-OSGeo4W (version 3.34.2): QGIS is a free and open-
source cross-platform desktop geographic information system
(GIS) application that supports the viewing, editing, and
analysis of geospatial data. It is available for download from
the official QGIS website (https://qgis.org/en/site/forusers/
download.html).

2. R Software (version 4.2.2): R is a free software environment for
statistical computing and graphics. It is available for download
from the Comprehensive R Archive Network (CRAN) (https://
cran.r-project.org/).

3. Google Earth Engine (GEE): This is a cloud-based platform for
planetary-scale environmental data analysis. It is accessible
through the JavaScript or Python APIs, which are available
with a Google account (https://earthengine.google.com/).

4. Google Earth Pro (version 7.3.4.8642): This is a desktop
application for visualizing and exploring geographical data.
It is available for download from the Google Earth website
(https://www.google.com/earth/versions/).
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