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The global climate crisis is escalating, and urban living Space (ULS) is a significant
contributor to carbon emissions. How to improve the carbon suitability of ULS
while promoting social and economic development is a global issue. This study
aims to develop an evaluation system for comparing and analyzing carbon
suitability inequality and spatial differences in different areas. To achieve this
goal, an urban living space carbon suitability index (ULS-CSI) based on spatial
organizational index (SOI) has been proposed. The ULS-CSI was calculated at the
area scale in Tianjin using information from the Tianjin LandUseDatabase in 2021.
The carbon emissions coefficient method was used to calculate the urban living
space carbon emissions (ULSCE). Moran’I and LISA analysis were used to quantify
the spatial differences of ULS-CSI. The results showed that the residential living
area (RLA) carbon emissions was the highest at the area scale, with carbon
emissions of 1.14 × 1011 kg, accounting for 33.74%. The green space leisure area
(GLA) carbon absorptionwas the highest at the area scale, with carbon absorption
of 5.76 × 105 kg, accounting for 32.33%. SOI in different areas have spatial
heterogeneity as the SOI such as building area, road network density and land
use characteristics are significantly different in different areas. Areas with superior
CSI were primarily situated in Heping, Hexi, Nankai, and Beichen, accounting for
83.90%. Conversely, areas under the basic CSI threshold included Xiqing, Jinnan,
and Dongli, accounting for 16.10%. Spatial characteristics of ULS-CSI in Tianjin
portrayed a significant spatial positive correlation, indicating the highest
autocorrelation degree of CSI at 500 m, with a Moran ’I value of 0.1733.
Although these findings reflect the spatial characteristics of ULS-CSI and the
SOI affecting the ULS-CSI at area scale, more perfect data are needed to reflect
the complexity of structural factors affecting ULS-CSI at area scale. This study is
helpful for urban planning to develop differentiated carbon reduction strategies
and promote low-carbon and healthy urban development.
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1 Introduction

Urban living space (ULS) is not only the spatial carrier of our
daily clothing, food, housing and transportation, but also a
substantial source of carbon emissions (Zheng et al., 2023).
Carbon emissions instigated by human endeavors are principally
disseminated in diverse categories of ULS including residence,
leisure, and employment (Luo et al., 2024). As per the
Intergovernmental Panel on Climate Change (IPCC), ULS
consumes approximately 67% of the global total energy
(Xepapadeas, 2024). The findings of the International Energy
Agency (IEA) suggest that ULS will hold sway over 73% of
global carbon emissions by 2030 (Zhang et al., 2021). The urban
living space carbon emissions (ULSCE) constitute one of the key
contributors to global temperature surges, greenhouse effect, and
human health risks (Chen et al., 2023; Xian et al., 2024). Studies
demonstrate that 8% of healthcare expenditure in developed nations
result from ULSCE (Bi and Hansen, 2018). Consequently, with the
escalation of ULSCE, the health peril of inhabitants will escalate by
12.06% (Gu et al., 2020). Therefore, reducing ULSCE is of immense
significance in mitigating global climate change and promoting
public health.

Investigating the relationship between ULSCE and spatial
organization index (SOI) represents a pivotal issue in executing
comprehensive urban carbon suitability assessments and mitigating
ULS. Some scholars have qualitatively analyzed the influence
mechanism of SOI on ULSCE through induction and summary
method (Leng et al., 2020). Alternatively, the influence of SOI on
ULSCE was quantitatively analyzed by establishing relevant
measurement models and selecting indicators from dimensions
such as scale, density and intensity (Lu et al., 2023; Li Z. et al.,
2024). For instance, Li et al. revealed that compact, dense and diverse
land use models mitigate ULSCE and airborne pollutants, whereas
industrial land expansion is unfavorable for climate change (Peskett
et al., 2023). Poggi et al. proposed that urban form, density, and
usage spatially shape ULSCE, with a Portuguese city serving as their
empirical case study. Results indicate distinct variations in ULSCE
among various form patterns, road system configurations,
population densities, as well as building features incidences.
Notably, differences in ULSCE among urban, suburban, peri-
urban, rural locations are significant (Jin and Xu, 2024). Some
scholars use field investigation, remote sensing data or statistical
data to explore the influencing factors of ULSCE by combining
qualitative and quantitative methods. For example, Vaccari
discovered 29.1 km2 of urban green space in 102.3 km2 of
Florence offset 6.2% of the ULSCE and suggested a suitable
carbon model for the suburban green ring (Yan et al., 2023).
Wang et al. analyzed the correlation between carbon emissions
and SOI of 6,754 ULS in Eindhoven, and found that the combination
of mid-high-rise buildings and low-rise buildings had higher carbon
emissions (Zhai et al., 2024). Eugenio et al. contended that the
presence of built geometric features may influence sky visibility
factors, with an enhanced sky visibility factor potentially mitigating
the ULSCE and urban heat island effect (Han et al., 2023).

Existing studies have evaluated the relationship between ULSCE
and SOI at macro and micro scales (Jiang et al., 2022). However,
there are few studies focusing on the characteristics of ULSCE and
the impact of SOI at the area scale, and the quantitative model is

mainly based on the evaluation framework built for a specific area,
which lacks representativeness. Additionally, there are differences in
the number and location of different types of ULS, as well as the
types of internal use, building area, and building density. Therefore,
the empirical evidence on the mechanism and difference of SOI
affecting ULSCE is still mixed and inconsistent. Area plays a central
role in carbon suitability planning (Gan et al., 2022). It
simultaneously operates as a significant macro-scale strategy,
serving both as transmission and foundation for micro-block
carbon planning, while guiding urban development and
construction (Peskett et al., 2023). As an urban physical
environment unit and a social function unit, the area is the most
important place of daily life for urban residents. The process of
urbanization and industrialization has caused the rapid
differentiation of residential space, thus shaping different types of
areas (Yang et al., 2023; Jin and Xu, 2024). For example, as a type of
green space leisure area (GLA) highly dependent on daily life, it is
generally believed that GLA may improve the level of recreational
physical activity of residents because it provides suitable sites and
functions nearby. Within the area, the morphology and mechanism
of ULS have certain similarities (Peskett et al., 2023; Zhao
et al., 2024).

With the expansion of research fields and the improvement of
theoretical methods, the carbon suitability of ULS has become a
research perspective and analysis tool for both economic and
sustainable development of ULS. Studies have shown that ULS,
as a complex system, has characteristics of both self-organization
and other tissues (Yan et al., 2023). The self-organizing
characteristics can be understood as the inherent toughness of
ULS, which has a certain independent absorption capacity for
carbon emissions. The other-organization relies on human
activities to optimize the spatial organization, prevent the
occurrence of high-carbon emissions scenarios in ULS, and
develop in the direction of adapting to carbon emissions. Among
them, the traditional space organizations mitigate carbon emissions
through refined human production and lifestyle adjustments, as well
as systematic inventory control of human and material resources
(Zhai et al., 2024). By means of environmental transformation and
engineering investment, the purpose of reducing carbon emissions is
realized, emphasizing the transformation of space organization to
reduce carbon emissions (Han et al., 2023). However, carbon
suitability emphasizes the process of actively adapting to periodic
or sudden drastic changes in ULSCE without relying on external
forces, or maintaining excess carbon emissions independently by
keeping human activities consistent with the adaptation and
adjustment of SOI, and then returning to a low-carbon state (Wu
et al., 2023).

Among them, the carbon suitability index (CSI), as an
evaluation index for the low-carbon development level of ULS,
refers to the ability to respond to changes in carbon emissions
and adapt to low-carbon development scenarios by optimizing
different types of SOI at the area scale. Therefore, the spatial
distribution of CSI has been widely discussed. It is found that the
urban living space carbon suitability index (ULS-CSI) has spatial
differences among different countries (Eugenio Pappalardo et al.,
2023), provinces (Zhao et al., 2023), cities (López-Guerrero et al.,
2022), counties (Leng et al., 2020) and regions (Xie et al., 2023; Zhu
et al., 2023), which is due to the significant spatial differences in

Frontiers in Environmental Science frontiersin.org02

Yin et al. 10.3389/fenvs.2024.1409624

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2024.1409624


urbanization, spatial organization, and carbon emissions. Most
studies analyze differences at regional and national scales and do
not reflect spatial variability within cities. The internal spatial
differentiation can reflect the distribution, spatial change, and
mechanism of ULS-CSI in a specific region.

In a word, to fill existing knowledge gaps, this study proposes a
conceptual framework to assess the level of low-carbon development
and spatial differences of ULS using the CSI. Using land use data
from Tianjin, entropy method and spatial autocorrelation model
were used to verify the framework. Specifically, three key questions
will be answered (Zheng et al., 2023): Where are the areas with the
highest carbon emissions and carbon absorption at the area scale
(Luo et al., 2024)? Where is the area with the highest carbon
suitability at the area scale? What are the spatial differences
within each area? (Xepapadeas, 2024) Where are the areas with
carbon emissions and carbon absorption conflict with carbon
suitability at the area scale? This paper, the first empirical study
of ULS in Tianjin with carbon suitability as the center, which will
contribute to the research of urban low-carbon development.

2 Materials and methods

2.1 Study area

Tianjin (38° 34′-40° 15′N, 116°43′-118°04′ E) is located in North
China. By the end of 2023, the total area of Tianjin is 11,917 km2,
with 16 administrative districts under its jurisdiction. The study area
covers the central urban area of Tianjin, including the core six
administrative districts and the surrounding four administrative
districts. The core six administrative districts are Heping, Hexi,
Nankai, Hebei, Hongqiao and Hedong. The four surrounding
districts are Beichen, Xiqing, Jinnan and Dongli. Additionally,
according to the Master Plan of Tianjin Territorial Space, the

10 administrative districts within the study area are divided into
1,683 areas, including nine types of areas: industrial development
area (IDA), residential and living area (RLA), commercial and
business area (CBA), comprehensive service area (CSA), storage
and logistics area (SLA), ecological control area (ECA), farmland
protection area (FPA), green space leisure area (GLA), and
transportation area (TA) (Figure 1).

Tianjin’s “high carbon” footprint is evident, necessitating
immediate low-carbon transformation. Firstly, the urbanization
rate of Tianjin in 2021 is 84.88%, an increase of 2.58%. With the
increase of urban population, people’s demands for housing,
employment, travel, and recreation also increases further, which
make the RLA, CBA, GLA, and IDA grow rapidly. Secondly, Tianjin
is a typical industrial city, and the secondary industry has always
occupied a high proportion. In recent years, the implementation of
major projects such as aerospace, petrochemical, equipment
manufacturing, electronic information, and biomedicine has
played a great role in driving the related upstream and
downstream industries, and promoted the upgrading of industrial
structure. However, the connotation and potential of the
construction land determined by the industrial city will still be
parallel with the extension expansion, and will continue at a
certain stage.

Additionally, Tianjin has recently achieved remarkable results in
transforming its economic development mode and accelerating the
construction of low-carbon cities. On one hand, urban development
pays attention to the transformation of land usemode and begins to pay
attention to the intensive use of land. According to the data of the third
national land survey, the total amount of construction land in Tianjin in
2020 will decrease by 268.03 km2 compared with 2014 due to the caliber
of the third national land survey and other reasons, and the scale of
urban industrial andmining land will increase by 407.99 km2 compared
with 2014. On other hand, the output value of construction land per
unit area has grown steadily, and the GDP output value per unit area

FIGURE 1
Location of the study area.

Frontiers in Environmental Science frontiersin.org03

Yin et al. 10.3389/fenvs.2024.1409624

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2024.1409624


will reach 470million yuan/km2 in 2021, with an average annual growth
rate of 6.94%. Therefore, in order to better support the low-carbon
transformation development of Tianjin, Tianjin is chosen as the
research object.

2.2 Research data

Data were collated from three sources. Firstly, the 2021 Tianjin
Statistical Yearbook furnishes electricity consumption information,
serving as a foundation for carbon emiss-ions calculate in
1,683 areas. Secondly, SOI data on 1,683 areas were collected
from the Master Plan of Tianjin Territorial Space Database. The
data were categorized into four types: land use, buildings, road
systems, and agricultural planting. Thirdly, the data of 35 IDA are
drawn from the industrial point of interest (POI) data of Baidu map.

2.3 Methods

The 2021 Tianjin statistical yearbook presents data on energy
consumption. Firstly, carbon emissions are calculated using the
coefficient method. Secondly, different types of SOI are calculated.
Thirdly, the ULS-CSI is calculated. Finally, the Pearson correlation
coefficient method and spatial autocorrelation model are used to
analyze the spatial distribution characteristics of ULS-CSI (Figure 2).

2.3.1 Carbon emissions measurement methods
According to different carbon emissions measurement methods,

carbon emissions are divided into three categories: industrial, road
traffic, and other forms of carbon emissions (agricultural,
residential, and commercial carbon emissions, etc.) (Chuai and
Feng, 2019). Among them, the measurement methods of
agricultural carbon emissions, residential carbon emissions and
commercial carbon emissions are consistent (Liu et al., 2020;
Jiang H-D. et al., 2023). This study takes the measurement
methods of agricultural carbon emissions and residential carbon
emissions as an example to illustrate. Carbon absorption mainly
refers to ecological carbon absorption.

2.3.2 Spatial organizational indexes
According to the control requirements of Master Plan of Tianjin

Territorial Space, combined with relevant literature research and
expert interviews, this study proposes 8 SOIs, including land mix
degree (LMD), road network density (RND), residential land ratio
(RLR), commercial land ratio (CLR), industrial land ratio (ILR), bus
station density (BSD), open space ratio (OSR) and public service
land ratio (PLR). The measurement method for 8 SOIs could be
found in (Fattah et al., 2021; Khajavi and Rastgoo, 2023; Zhang
et al., 2023).

2.3.3 Carbon suitability index measurement
method

In this study, entropy method is used to calculate the ULS-CSI
(Zhang C. et al., 2024; He et al., 2024). The principle of entropy method
can be presented by the formula as follows (Equations 1–9): there are n
evaluation objects, each evaluation object hasm indicators,Xij is the jth
indicator of the i year (i � 1, 2, . . . , j � 1, 2, . . .m).

(1) Create the matrix Xx of the original data.

Xx �
X11 X12 . . . . . . X1m

X21 X21 . . . . . . X2m

..

.

X n1

..

.

X n2

. . . . . .
..
.

X nm

(1)

(2) Standardize the indicators. For reverse indicators, the
treatment is as follows:

Yij � Xmax −Xij

Xmax −Xmin
(2)

For positive indicators, the processing method is as follows:

Yij � Xij −Xmin

Xmax −Xmin
(3)

As for the moderate property, it is first transformed into a
positive index and then transformed by the formula X,

ij = -|Xij − a|
(where a is the moderate value of the moderate index), and then
dimensionless processing is carried out (Jamin and Humeau-
Heurtier, 2020). After that, the negative numbers and zeros are
non-negatived (Wu et al., 2024).

When Yij ≤ 0, the translation coordinates are shown as follows:

Y’
ij � Yij + d (4)

Let Y,
ij > 0, where d is an integer slightly greater than |(Yij)min|.

Thus, the normalized matrix XY of SOI is obtained, as follows:

XY �
Y11 Y12 . . . . . . Y1m

Y21 Y22 . . . . . . Y2m

..

.

Y n1

..

.

Y n2

. . . . . .
..
.

Y nm

(5)

(3) Normalized processing.

Pij � Yij

,

∑n
i�1Xij

(6)

(4) Calculate the entropy, where k � 1
ln(n)> 0, as follows:

ej � −k∑n

i�1Pij ln Pij( ) (7)

(5) Calculate the differentiation coefficient, where ej > 0,
as follows:

gj � 1 − ej (8)

(6) After the weight of the indicator is obtained, wj is the weight
of the jth indicator, as shown below:

wj � gj∑n
j�1gj

(9)

2.3.4 Pearson correlation coefficient method
Pearson correlation coefficient method is a statistical analysis

method to measure the direction and degree of correlation between
two or more variables. The larger the absolute value of the
correlation coefficient, the closer it is to 1 or −1, the stronger the
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correlation is. The smaller the absolute value of the correlation
coefficient is, the closer it is to 0, indicating that the correlation is
weaker. The formula of Pearson correlation coefficient is shown in
Equation 10.

r � ∑n
i�1 Xi −X‾( ) Yi − Y‾( )������������∑n

i�1 Xi −X‾( )2√ ������������∑n
i�1 Yi − Y‾( )2√ i � 1, 2, . . . , n( ) (10)

where, r is Pearson correlation coefficient; X‾ is the average of the
data set X;Xi is the i-th data in data set X;Y

‾
is the mean of data set Y;

Yi is the i-th data in data set Y.

2.3.5 Spatial autocorrelation of carbon emissions
Spatial autocorrelation analysis is a method to judge the degree

of correlation between two or more variables through the analysis of
correlation, which is divided into Global Moran’s I and Local
Moran’s I (Tian et al., 2024). In this study, local Moran’s I was
selected for correlation analysis (Zhou Y. et al., 2023). Firstly, the
local Moran’s I can identify the correlation between typical and
atypical regions such as "hot spots” and "cold spots” by analyzing the
correlation between the observed values and the values of
neighboring points in the test space (Freitas et al., 2022).
Secondly, using LISA clustering in the spatial econometric
software Geoda and drawing on the theory of life circles, three
spatial weight matrices were constructed for distances of 500 m,
1,000 m, and 1,500 m, respectively. Based on the spatial weight
matrix of three distances, theMoran’I was calculated by selecting the
CSI as the sample, and the clustering characteristics of the CSI were
analyzed, and it was divided into four types: “High-High” cluster,
“High-Low” cluster, “Low-Low” cluster and “Low-High” cluster.
Then the spatial distribution law is analyzed (Mtshawu et al., 2023).

The value of Moran’s I is distributed between [−1, 1]. Moran’s I
greater than 0 indicates a positive correlation (Gedamu et al., 2024).

The closer the value is to 1, the stronger the agglomeration degree is.
Moran’s I less than 0 indicates a negative correlation. The closer it is
to −1, the greater the difference (Gedamu et al., 2024). The formula
of Moran’s I is shown in Equation 11.

I � n∑n
i�1∑n

j�1wij xi − x‾( )
∑n

i�1∑n
j�1wij xi − x‾( )2 (11)

Where n represents the total number of land patches within the
study area, wij is the spatial weight, xi is the variable observed in
patch i, xj is the variable observed in patch j, x‾ is the mean of the
observed value.

3 Results

3.1 Characteristics of ULSCE and SOI

3.1.1 Urban living space carbon emissions/
absorption

According to the Master Plan of Tianjin Territorial Space, the
study area is divided into 1,683 areas. Among them, the RLA has
the highest carbon emissions, with carbon emissions of 1.14 ×
1011 kg, accounting for 33.74%, which is significantly higher than
other types of areas, followed by the IDA, with carbon emissions
of 7.46 × 1010 kg, accounting for 22.12%. The carbon emissions
are ranked from high to low in RLA, IDA, CBA, GLA, TA, CSA,
ECA, FPA, and SLA. The result supports previous findings that
RLA carbon emissions are one of the major sources of carbon
emissions. Li X. et al. (2024) believes that RLA carbon emissions
account for 33% of ULSCE. IDA ranks second in carbon
emissions, which further indicates that Tianjin is a typical
industrial city with a high proportion of secondary industry.

FIGURE 2
The methodological framework chart.

Frontiers in Environmental Science frontiersin.org05

Yin et al. 10.3389/fenvs.2024.1409624

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2024.1409624


In recent years, Tianjin relies on the implementation of major
projects such as aerospace, petrochemical, equipment
manufacturing, electronic information, biomedicine, etc.,
which has played a great driving role in related upstream and

downstream industries and promoted the upgrading of industrial
structure. However, the level of conservation and intensive land
use in Tianjin still needs to be continuously improved. At the
same time, the industrial city determines that the connotation

FIGURE 3
Spatial Characteristics of different SOI.
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and potential of construction land will still be parallel with the
extension expansion, and will continue in a certain stage. Other
types of areas, such as CBA and CSA, have great differences in
energy consumption and carbon emissions due to different
building functions. Cho et al. (2024) combined with the
empirical study of South Korea found that the carbon
emission intensity of CBA was significantly higher than that
of area such as RLA, while the carbon emissions of CSA was more
complex.For carbon absorption shows the total carbon
absorption in central urban areas. Among them, the carbon
absorption of GLA was the highest, which was 5.76 × 105 kg,
accounting for 32.33%, higher than other types of areas. RLA
have the second highest carbon absorption, with a carbon
absorption of 5.62 × 105 kg, accounting for 31.51%. ECA have
the third highest carbon absorption, with a carbon absorption of
5.08 × 105 kg, accounting for 28.52%. The carbon absorption is
ranked from high to low in GLA, RLA, ECA, IDA, CBA, CSA,
FPA, TA, and SLA. The result supports the findings of previous
studies that GLA has an obvious absorption effect on carbon
emissions, the layout optimization of GLA can increase the
carbon absorption in the area to a certain extent (Zhao et al.,
2023; Moon et al., 2024). The result supports the findings of
previous studies. Zhou et al. found that green space leisure area
can affect the urban heat island effect in many ways, and the

temperature rise caused by the urban heat island effect will
further affect the energy consumption of buildings and the
carbon emissions of urban energy supply (Zhou W. et al.,
2023). For example, high-density urban construction
encroachment on green space leisure area leads to the
reduction of open space, resulting in the increase of
impervious surface, enhancing the urban heat island effect,
and significantly increasing urban carbon emissions. Although
the carbon absorption effect of green space leisure area has been
widely recognized by scholars, the carbon absorption effect of
different types of green space leisure area is different, and the
specific carbon reduction benefits need to be further analyzed.

3.1.2 Spatial organization indexes
In this study, 8 SOIs were calculated and visually analyzed in the

ArcGIS10.2 system, including LMD, RND, RLR, CLR, ILR, PLR,
BSD, and OSR in the central urban area. As shown in the Figure 3,
different types of SOI have significant spatial heterogeneity due to
the differences in building area, building density, and land use types
in different areas. For example, LMD exhibits a certain spatial
dispersion layout pattern, while RND exhibits a central
agglomeration layout pattern. The results supported Zhang et al.
(Zhang and Zhang, 2023) and Wangs’ (Wang, 2024) conclusions
that as a quantitative representation of the evenness of different

FIGURE 4
Distribution of ULS-CSI at the area scale of Tianjin.
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types of land distribution, LMD represents the land use diversity in
the area. With the increase of LMD in the area, the travel carbon
emissions of residents in the area will decrease to a certain extent.
Meanwhile, with the increase of mixed building types within a
certain range, the RLA carbon emissions will change accordingly.
Liu et al. took Changxing County, Zhejiang Province as an example.
Based on the annual energy consumption data of different types of
buildings in the area and combined with spatial vector data such as
land use, they quantitatively analyzed the correlation between land
use mixing degree and carbon emission. The results showed that
there was a significant negative correlation between land use mixing
degree and carbon emission of urban living space. It is believed that
with the improvement of land use mixing degree in the area, it is
conducive to promoting residents’ travel willingness, thereby
reducing building carbon emission, and thus reducing the overall
carbon emission level (Liu et al., 2022). The RND substantially
influences traffic patterns. A dense RND down-town can quickly
cause traffic congestion, as a higher RND boosts motor travel. The
results supported Ellena’ conclusions that the RND and traffic travel
carbon emissions in Montreal, Canada, and found that every 10%
increase in RND would reduce carbon emissions by 5.8% (Ellena
et al., 2023). Chang et al. used multi-source data to establish a
relationship model among spatial organization, social economy, and
transportation carbon emissions, and the results showed that RND
was positively correlated with carbon emissions. Therefore, it is

suggested that the RND should be determined in a reasonable way to
provide planning guidance for low-carbon city construction (Chang
et al., 2020).

3.2 Spatial characteristics of ULS-CSI

3.2.1 Spatial distribution characteristics of ULS-CSI
The areas wherein ULS attain fundamental carbon suitability or

beyond under the supervision of carbon suitability objectives are
primarily concentrated in the southern sector of the urban center,
whilst the Beichen on the northeastern side also possesses a
considerable quantity of areas with proficient carbon suitability
levels, exhibiting a radiant distribution (Figure 4). Overall, the
areas with commendable CSI are predominantly located in
Heping, Hexi, Nankai, and Beichen. The areas where ULS have
not achieved the basic carbon suitability level or below encompass
Xiqing, Jinnan, Dongli, etc. The findings reflect that vast majority of
the ULS at the area scale are in a basic carbon suitable state,
accounting for 83.90%, however, some areas are lesser than the
fundamental carbon suitable state, accounting for 16.10%,featuring
a “high carbon” phenomenon and substantial room for
amelioration. Furthermore, through comparing the CSI of
various types of areas, the CBA has the highest CSI, which is
0.0804, followed by the RLA, which is 0.0712, and other areas

FIGURE 5
Spatial clustering of ULS-CSI at the area scale of Tianjin.
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possess comparable CSI, indicating a considerable room for
enhancement in carbon suitability.

3.2.2 Spatial autocorrelation of ULS-CSI
3.2.2.1 Correlation between ULSCE and SOI

Based on the data of ULSCE and SOI at the area scale of
1,683, Pearson correlation coefficient was selected to represent
the strength of the correlation between ULSCE and SOI, and
then determined that SOI were significantly correlated with
different types of ULSCE. The correlation coefficient between
RND and ULSCE is −0.313, and the significance level is 0.000,
indicating that RND is significantly negatively correlated with
ULSCE. The correlation coefficients of RLR, CLR, ILR, BSD, PLR
and ULSCE were 0.415, 0.216, 0.424, 0.167 and 0.228,
respectively. The correlation coefficient between OSR and
ULSCE is −0.091, and the significance level is 0.013,
indicating that OSR and ULSCE are significantly negatively
correlated. The correlation coefficient between LMD and
ULSCE is −0.049, which does not pass the significance level
test of 0.05, indicating that although LMD is negatively
correlated with ULSCE, the significance is not strong. In
terms of correlation degree, the ILR has the strongest
correlation degree with the ULSCE, followed by the RLR,
RND, PLR, CLR, BSD, OSR, and LMD. In other words, at the
area scale, the ILR has a greater impact on the ULSCE.

3.2.2.2 Local spatial autocorrelation of CSI
Global spatial autocorrelation can only explain the spatial

correlation of attribute variables in the global geographic space,

but cannot explain the local spatial correlation features. Local
spatial autocorrelation can determine whether a certain attribute
of a specific local region has aggregation in spatial distribution.
Local spatial autocorrelation is represented by Moran’s I. When
Moran’s I > 0, it means that there is a spatial positive correlation
between local spatial units and adjacent units, which is
represented by “High-High” and “Low-Low” clustering.
Conversely, when Moran’s I < 0, it indicates that there is a
spatial negative correlation between local spatial units and
adjacent units, which is manifested as "High-Low” and "Low-
High” clustering.

In this study, three spatial weight matrices with distances of
500 m, 1,000 m and 1,500 m were constructed with reference to
the life circle theory, and the Moran’I of the CSI under different
spatial distances were compared. According to, when the distance
is 500 m, the Moran’I of the CSI is the largest, which is 0.1733,
and the standard error is 0.0185. The P < 0.01 indicated that they
had passed the significance test at the 1% level, and the Z value >
1.96 indicated that they had passed the Z test. The results show
that the ULS-CSI in Tianjin presents a significant spatial positive
correlation. Additionally, with the gradual increase of distance,
the Moran’I presents a decreasing trend, which means that with
the increase of distance between the two areas, the degree of
correlation between them gradually decreases. Finally, with the
further increase of distance between the two areas, they are no
longer related to each other, showing the characteristics of
random distribution.

Taking the spatial weight matrix at a distance of 1,000 m as an
example, it can be seen from Figure 5 that CSI is not evenly

FIGURE 6
Spatial distribution and land use of conflict areas.
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distributed in the four quadrants in Tianjin, excluding Not
Significant and Neighborless types. Among them, the number of
“High-High” areas is 227, accounting for 13.49% of all areas in
Tianjin. The number of “Low-High” areas is 111, accounting for
6.60%. The number of “Low-Low” areas is 177, accounting for
10.52%. The number of “High-Low” areas is 39,
accounting for 2.32%.

3.3 Optimization of ULS-CSI

Based on the SOI measurement method, this study proposes to
establish reference values of different SOI as the basis for the
optimization (Lu et al., 2024). Firstly, international or domestic
authoritative standards are used for reference and assigned values,
such as “LEED-ND Evaluation System” and “Green and low-carbon
Key Small Town Indicators” (Zuniga-Teran et al., 2016). If different
standards have different reference values for the same indicator, a
more stringent reference value is selected. Secondly, the research
reports of authoritative academic groups in the field were used for
reference, such as the “2016 Report on China’s Sustainable
Development Strategy” and the “2018 Report on China’s Urban
Transportation”. Finally, the index values of mature low-carbon eco-
cities are used for reference, such as Shenzhen low-carbon eco-city
index system and Tianjin Sino-Singapore eco-city index system. The
newly proposed index is based on the overall development
conditions of ULS, and the reference value of the index is
determined by the method of existing literature or expert rating.
After the above three steps, this study established a reference value
for the evaluation system of carbon suitable level of ULS to guide the
optimization of SOI.

According to the calculated value and reference value of the
SOI, the carbon-suitable optimization direction and optimization
interval of different SOI are obtained through comparison. The
specific optimization results are shown in. The results can not
only obtain the appropriate range of SOI at the area scale, but also
determine relatively advantageous indicators, such as the index
values of LMD and RND are higher than the reference value,
while other index values need to be further improved. For

example, the BSD in the area scale is only 9.04%, compared
with the reference value of 10.3%, there is still a certain margin of
improvement.

4 Discussion

4.1 Applications

4.1.1 Spatial conflict of carbon emissions/
absorption and CSI

The spatial conflict areas between carbon emissions/absorption
and CSI can be obtained, which further proves the study of Zhang Y
et al. (2024). Firstly, areas with carbon emissions above 5.07 × 105t
were extracted. Secondly, areas with CSI above 0.0972 were
extracted. Thirdly, the selected areas were superimposed in GIS
to further obtain the areas with spatial conflicts with high carbon
emissions and poor CSI (Figure 6). Based on the identification
results, it is found that the spatial conflict between carbon emissions/
absorption and CSI are mainly distributed in the periphery of urban
center (Wang et al., 2022). On one hand, the peripheral areas are
mainly areas where industrial enterprises are concentrated, and the
leading function of the area is mainly industry, with high carbon
emissions (Jiang W. et al., 2023). On the other hand, many areas in
the periphery are limited by the distance from the city center, public
service facilities such as bus stations and road network are
insufficient, and the production process of industrial enterprises
is backward, so the carbon level is poor, which makes the low carbon
development level poor. At the same time, the management of these
areas lags behind the social and economic development, making it
difficult to improve the conflict areas in a short time (Cai et al., 2024;
Liu et al., 2024). Additionally, by identifying the spatial distribution
of the conflict areas, the spatial organization, the coupling
characteristics of carbon emissions/absorption and carbon
suitability systems, the spatial correlation characteristics and the
characteristics of main impact indicators can be further judged, so as
to guide the subsequent SOI optimization and serve the construction
of low-carbon cities (Feng et al., 2024). For example, Zhang et al.
believe that the distribution of industrial enterprises mainly depends

FIGURE 7
Schematic diagram of changes before and after optimization of LMD.
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on the distribution of resources, which makes them far away from
urban residential centers, resulting in a large number of long-
distance commuter traffic. By rationally distributing employment
and residential land, promoting the balance between employment
and housing, and optimizing the urban industrial layout, carbon
emissions can be significantly reduced and carbon suitability can be
improved (Zhang and Zhang, 2023). Wei et al. proposed that
carbon-suitable planning should adjust the urban industrial
structure, extend the industrial chain, and develop various types
of low-carbon industries based on the development direction and
regional functions of the city. At the same time, carbon emissions
can be further reduced by reasonably determining the scale of
industrial development, optimizing the industrial layout,

establishing multiple industrial spaces, and carrying out
brownfield remediation and reuse (Li et al., 2023).

4.1.2 Optimization of SOI
The ULSCE at the area scale possess close ties with the 8 SOIs

envisaged in this study. Owing to constraints of space, this study
primarily utilizes LMD as a case study to illuminate and propose the
carbon suitable optimization strategies for ULS at the area scale. As
the progressive extension of ULS in Tianjin continues, a growing
disparity between urban industrial space and residential space is
emerging (Liu et al., 2021). In 2021, the proportion of commute of
more than 60 min in Tianjin is 17%, and the average one-way
commute takes 39 min, ranking the fourth from the bottom of

TABLE 1 Measurement methods of ULS.

Type Formula Description Source

Carbon
emissions

Industrial Cij � AD × EF × Eij

Ej

(i, j � 1, 2, . . . , n)
Cij is the carbon emissions of enterprise i of industry j, Cej is
the total carbon emissions of industry j. Eij is the energy
consumption of enterprise i of industry j, Ej is the total
energy consumption of industry j. AD is electricity

consumption (kW h), EF is carbon emissions coefficient
(CO2/kW h), which is quoted from the China Energy

Statistical Yearbook, and the value is 1.246 kg CO2/kW h.

Wu et al. (2021)

Road
traffic

Cij � C × Qj × Sj∑n

j�1(Qj × Sj) ×
Sij
Sj

(i, j � 1, 2, . . . , n)
Cij is the carbon emissions of segment i of the road grade j,
C is the total carbon emissions of the road system, Sij is the
area of segment i of the road grade j, Sj is the total area of the
road grade j, Sj is the total area of the road grade j, Qj is the
traffic flow of the road grade j. Among them, the Qj of

regional road is 4,500 v/h, the Qj of urban road is 2,067 v/h,
the Qj of rural road is 500 v/h.

Konishi and
Kuroda (2023)

Other
forms

Residential Ci � C × Si∑Si
(i, j � 1, 2, . . . , n) Ci is the carbon emissions of land patch i of urban

residential land, commercial land, etc. C is the total carbon
emissions of urban residential land, commercial land, etc. Si

is the area of land patch i.

Huang et al. (2024)

Agricultural Ci � Ce × Ai (i, j � 1, 2, . . . , n) Ci is the carbon emissions of land patch i of arable land, Ce

is the carbon emissions coefficient of arable land, Ai is the
area of land patch i of arable land.

Xia et al. (2024)

Carbon absorption Ci � Cei × Ai

(i, j � 1, 2, . . . , n)
Ci is the carbon absorption of land patch i, Cei is the carbon absorption coefficient of land patch i.
Ai is the area of land patch i. Among them, Ce is quoted from the IPCC, the Cei of forest land is
0.6125tCO2/hm2.a, the Cei of grassland is 0.0205tCO2/hm2.a, the Cei of water is 0.0253tCO2/

hm2.a, the Cei of unused land is 0.005tCO2/hm2.a.

Liu et al. (2024);
Shi et al. (2024)

TABLE 2 Carbon emissions and absorption proportion of ULS in Tianjin in 2021.

Types Number Carbon
emissions (103t)

Proportion
(%)

Average
value (103t)

Carbon
absorption (kg)

Proportion
(%)

Average
value (kg)

IDA 35 74,640.60 22.12 2,132.59 65,512.53 3.67 37.31

RLA 431 113,822.54 33.74 264.09 561,708.86 31.51 1,303.27

CBA 114 66,027.43 19.57 579.19 47,206.33 2.65 414.09

CSA 63 14,028.58 4.16 222.68 11,825.66 0.66 187.71

SLA 2 116.01 0.03 58.01 67.15 0.003 2.03

ECA 75 10,829.56 3.21 144.39 508,483.34 28.52 96.16

FPA 1 314.49 0.09 314.49 8,563.27 0.48 30.58

GLA 914 41,675.55 12.35 45.60 576,415.83 32.33 56.72

TA 48 15,909.43 4.72 331.45 3,093.37 0.17 3.49
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super-large and megacities, only better than Beijing, Shanghai and
Chongqing, and the irrational land use structure in the central urban
area is obvious (Ma et al., 2024). Additionally, the employment and
housing index of each district reveals the attributes of the key six
central city districts and the adjoining four districts. Even though the
demolition cost of industrial land in the central zone yields it a prime
area for urban redevelopment, the focus primarily lies on residential
and commercial development, and symptom of decentralization has
emerged (Song et al., 2019).

Studies indicate optimal LMD range of 1.8–2.0. This study
proposes specific carbon suitable strategies for diverse ULS. For
instance, due to low blend of land functions within the
commercial district, an emphasis should be placed on near vicinity
layouts richly integrated with residential, office, leisure, and additional
amenities to elevate multi-functionality. Given the disparity between
employment and residential spaces in residential districts and living
precincts, strategic deployment of suitable job accommodations and
ancillary services at residential hubs and public transport terminals
can bolster resident’s low-carbon commuting while diminishing the
proportion of lengthy “pendulum” transportation journeys, thereby
reducing carbon emissions (Figure 7).

To summarize, the optimized land configuration seamlessly
blends various synergistic city roles based on retail and
commercial land, such as incorporating facilities like finance and
insurance, entertainment, book exhibitions, and cultural endeavors,
thereby furnishing diverse travel contemplate choices for the
residents in the vicinity, and augmenting the appeal of low-
carbon travel. After optimization, the distribution of diverse ULS
within the core six districts of the central urban area is more
equitable, achieving an employment-to-residence ratio in the
vicinity of 50%. The average journey distance of the central
urban area is 5.7 km, with a travel component attributed over
70% to the core six districts, maintaining a travel distance under
5 km, ideal for the proliferation of slow traffic within a practical
service radius of slow traffic. Furthermore, from the vantage point of
traffic travel volume, LMD can satisfy the demands of travelers to
execute multiple objectives in a single journey, thereby reducing the
aggregate travel volume.

4.1.3 Policy implications
The empirical evidence from this study has several implications

for planning and urbanization policies, with particular relevance to

TABLE 3 The Moran’ I of CSI.

Distance Moran’I Mean Standard error z-value P value

500m 0.1733 −0.0001 0.0185 9.3941 0.001

1,000m 0.1679 −0.0005 0.0108 15.6628 0.001

1,500m 0.1275 −0.0010 0.0071 17.9472 0.001

TABLE 4 Quadrants distribution statistics of land patch carbon emissions in Tianjin.

High-High Low-High Low-Low High-Low Not significant Neighborless

Number Ratio Number Ratio Number Ratio Number Ratio Number Ratio Number Ratio

227 13.49% 111 6.60% 177 10.52% 39 2.32% 1,126 66.90% 3 0.18%

TABLE 5 The reference value and optimization of SOI.

Name Value Comparison index Reference
value

Optimization
range

Source

LMD 23.70% Mixed-use land ratio 10% — Yang and Deng (2013)

RLR 9.2 km/
km2

Road network density 8km/km2 — Several Opinions of the CPC Central Committee and
The State Council on Further Strengthening the

Administration of Urban Planning and Construction

RND 10.15% Mixed-use land ratio 25% 0.01%–14.85% Lin et al. (2023)

CLR 2.78% 10% 0.01%–7.22% Yang and Deng (2013)

ILR 3.48% 15-25% 0.01%–21.52% Land Administration Law of the People’s Republic of
China

BSD 9.04% Bus stop density 10.3% 0.01%–1.26% Shanghai Transportation Industry Development
Report (2022)

OSR 3.28% Green coverage rate 40% 0.01%–36.72% Li et al. (2021)

PLR 2.40% The proportion of land used for public
service facilities to the assumed land

7.68% 0.01%–5.28% Sun et al. (2019)
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the climate change. Firstly, in 2015, the United Nations Sustainable
Development Summit was held in New York, which identified
17 sustainable development Goals for 2030. Among them, in
order to cope with global climate change, the policies of building
high-density population cities have been proposed to achieve
efficiency improvement and technological innovation, and reduce
resource and energy consumption. Secondly, in the stage of China’s
new urbanization, policies such as optimizing the form, density,
functional layout, and construction mode of RLA are proposed,
which will have a fundamental and important impact on carbon
emissions. By carrying out the construction of green and low-carbon
communities, promoting mixed areas with composite functions, and
advocating the mixed layout of residential, commercial and
pollution-free industries. In accordance with the “Standards for
the Construction of Complete Residential Communities”, basic
public service facilities, commercial service facilities for the
convenience of the people, municipal supporting infrastructure
and public activity Spaces will be built, and the coverage rate of
complete residential communities in cities at prefecture level and
above will increase to more than 60 percent by 2030. Through a
walking and cycling network, several residential communities are
connected to create a 15-min life circle. Explore the construction of
zero-carbon community to meet the basic living needs of owners
within walking distance. Encourage the use of new-energy vehicles,
and promote the construction of community charging and replacing
facilities. Thirdly, an action system for energy conservation and
emission reduction in industrial enterprises should be established.
Through strict and reasonable control of coal consumption, improve
the absorption capacity of renewable energy, control the production
capacity and emission standards of key industries, to reduce carbon
emissions in industrial and domestic sectors.

Additionally, a low-carbon transformation development system
for ULS should be established. With low-carbon development as the
goal, establish and improve the urban physical examination
evaluation system of “1 year one physical examination, 5 years
one assessment”. Building information modeling (BIM) technology
and city information modeling (CIM) platform are used to promote
the construction of digital buildings and digital twin cities, and
accelerate the digital transformation of urban and rural low-carbon
construction.

4.2 Limitations and further improvements

This study encounters some limitations. Firstly, this study
compared the differences in carbon emissions characteristics
among different types of ULS at the area scale, and did not
systematically explore the carbon emissions characteristics of
different types of ULS at different scales, as well as the
differences within the same type of ULS, such as the carbon
emissions differences between RLA with different floor area
ratios and different building densities. Secondly, this study
mainly considers 8 SOIs that affect ULSCE, but it needs to
further consider the influence of multiple scales and different
types of SOIs, such as SOIs at city and block scales, and non-
SOIs such as social economy and human behavior. Additionally,
although different types of ULS change dynamically, they are
relatively stable in a certain period of time, and the

corresponding carbon emissions and CSI are also relatively
stable. Therefore, the 2021 Tianjin Statistical Yearbook is used in
this study. However, in order to more accurately explore the
interdependence between CSI and SOI, as well as the spatial
autocorrelation characteristics of CSI and its changes in future
studies. The dynamic change characteristics of different types of
ULS, as well as the corresponding dynamic change characteristics of
carbon emissions and CSI should be fully considered. Therefore, the
collection of panel data and spatio-temporal data over successive
years will be indispensable. In essence, in contrast to previous
studies, the study delves into the spatial attributes of the CSI at
the area level as well as the concurrent SOI bearing substantial
effects. Nevertheless, the precision requires further refinement,
possibly necessitating further comparative studies and empirical
data collection. Future studies could also consider refreshing the
fundamental big data and ascertainment procedures pertaining to
the geographical distribution of the CSI.

5 Conclusion

Using Tianjin land use data this study has developed the ULS-
CSI based on SOI for comparing and analyzing carbon suitability
inequality and spatial differences in different areas in Tianjin in
2021. The empirical study’s primary findings and contributions can
be threefold as summarized as follows.

Firstly, different types of ULS have obvious differences in carbon
emissions. Because the number of different types of ULS is different
in Tianjin, for example, the number of RLA in Tianjin is 431,
accounting for the highest proportion, and the carbon emissions is
also the highest. Additionally, different types of ULS host different
building functions, so the corresponding energy consumption and
carbon emissions are also very different. The RLA is mainly the
carbon emissions of residential electricity, including lighting,
refrigeration, other equipment, etc., while the CBA is mainly the
operation of large equipment, lighting, refrigeration, etc., and the use
law and intensity of building are obviously different from the RLA.
In contrast, the composition of CSA is more complex, including
different types of buildings such as administrative offices, museums,
and cultural centers, and the use behavior of these building types is
more complex and diverse. Studies show that due to the wide variety
of public buildings, the energy consumption requirements of public
buildings with different functions are different. When the energy
consumption of different functional buildings is converted into the
ULSCE, the ULSCE of different types show obvious difference. The
increase of GLA could increase the area carbon absorption, affect the
urban heat island effect, and reduce the ULSCE.

Secondly, the SOI of different areas have significant spatial
heterogeneity due to the differences in building area, building
density, and land use types in different areas. For the RND and
BSD, the closer the distance to the city center, the higher the value.
The areas with a high RLA and CBA are mainly distributed in the
outer areas of the city center. The areas with a high proportion of
ILA and OSA are mainly distributed in the northeast of the city
center, which is related to the distribution of industrial enterprises
and ecological forest land in Tianjin. The area with a high
proportion of CSA is mainly distributed in the southwest of the
city center, including Tianjin University and Nankai University. The
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area with high LMD showed the characteristics of random
distribution, and no obvious spatial distribution law was formed.

Thirdly, the distribution of ULS-CSI in Tianjin presents fan-
shaped clustering characteristics. At the area scale, the areas where
ULS reached basic carbon adaptation or above were mainly
distributed in the south of the urban core area and the north of
Beichen,accounting for 83.90%. The areas with better carbon
suitability are mainly distributed in Heping, Hexi, Nankai and
Beichen,accounting for 69.28%. The results reflect that most of
the ULS at the area scale are in a basic carbon suitable state. The
areas that do not reach or lower than the basic carbon suitability
level include Xiqing, Jinnan and Dongli, accounting for 16.10%.

Furthermore, the spatial distribution of ULS-CSI in Tianjin
showed a significant spatial positive correlation. By comparing
the Moran’I under the space weight matrix of 500 m, 1,000 m
and 1,500 m, when the weight matrix of the space distance is 500 m,
the Moran’I is the largest, and shows a gradually decreasing trend
with the gradual increase of distance, that is, with the increase of
distance between two regions, the degree of spatial autocorrelation
gradually decreased, which is the difference of 0.1733, 0.1679,
and 0.1275.

This study provides valuable guidance for the strategy of carbon
suitable planning. Civic leaders can employ the CSI to evaluate the
carbon suitable level of each area unit, paving the way for innovative
carbon emissions reduction strategies. Conversely, urban planners
can apply these outcomes to establish a foundation for the carbon
optimization of spatial organization, striving towards sustainable,
low-carbon and healthy urban evolution.
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Nomenclature

IPCC Intergovernmental panel on climate change

IEA International energy agency

ULSCE Urban living space carbon emissions

SOI Spatial organization index

CSI Carbon suitability index

ULS-CSI Urban living space carbon suitability index

IDA Industrial development area

RLA Residential and living area

CBA Commercial and business area

CSA Comprehensive service area

SLA Storage and logistics area

ECA Ecological control area

FPA Farmland protection area

GLA Green space leisure area

TA Transportation area

POI Industrial point of interest

LMD Land mix degree

RND Road network density

RLR Residential land ratio

CLR Commercial land ratio

ILR Industrial land ratio

BSD Bus station density

OSR Open space ratio

PLR Public service land ratio

BIM Building information modeling

CIM City information modeling
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