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The field of emergency risk management in chemical parks has been
characterized by a lack of fast, precise and dynamic prediction methods. The
application of computational fluid dynamics (CFD) models, which offer the
potential for dynamic and precise prediction, has been hindered by high
computational costs. Therefore, taking liquid benzene as a case study, this
paper combined machine learning (ML) algorithms with a CFD-based precise
prediction model, to develop an ML model for fast dynamic prediction of heavy
gas leakage consequences in chemical parks. Employing the CFD data as the
input, the prediction models were developed using ML algorithms, refined with
Bayesian optimization for parameter tuning. This study utilized PHOENICS
software to establish a dynamic prediction model for the diffusion of liquid
benzene leakage, validated by Burro nine experiment data. Comparative
analyses of models based on five ML algorithms were conducted to evaluate
the reliability of their predictions using both CFD standard and noisy data. The
results indicated that temperature had the most significant effect on the
consequences of the leakage accidents among four key factors (wind speed,
temperature, leakage aperture and atmospheric stability), followed by wind
speed. These factors served as input variables for ML model training. Among
the models evaluated, the eXtreme Gradient Boosting (XGBoost) model showed
superior performance, irrespective of the presence of noise in the data. An
XGBoost-based fast prediction model was ultimately developed for predicting
the consequences of liquid benzene leakage. A case analysis was conducted to
validate the feasibility of the model prediction. The relative errors between the
predicted and actual values of the model for acute exposure guideline level-1
(AEGL-1), AEGL-2, and AEGL-3 distances were 2.70%, 2.58%, and 0.23%,
respectively. Furthermore, the XGBoost model completed the prediction in
only 0.218 s, a stark contrast to the hours necessitated by the CFD model,
thus offering substantial computational time savings while maintaining high
accuracy levels. This paper introduces an ML model for fast dynamic
prediction of heavy gas leakage, enabling chemical parks to make more timely
and accurate decisions in emergency risk management.
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1 Introduction

Recent years have witnessed a marked increase in safety
accidents globally, leading to significant loss of life and
property damage, and severely impacting the chemical
industry (Kang et al., 2017). These accidents are primarily
attributed to shortcomings in risk management techniques,
such as insufficient monitoring systems and emergency
response capabilities, hindering effective risk detection and
management (Liu and Li, 2013). In response, government
regulations are escalating their safety management
requirements for enterprises, with a particular focus on
enhancing emergency response technologies in the chemical
industry. Consequently, the advancement and integration of
information technology, the Internet of Things, big data, and
artificial intelligence (AI) are facilitating the development of
smart chemical parks (Li et al., 2017). The application of
modern technologies for early warnings and precise prediction
of potential risks becomes imperative (Wang et al., 2017; Chai
et al., 2023), which is essential for fostering the establishment and
growth of smart chemical parks (Kang et al., 2017).

Model-driven methods, including the SLAB, AFTOX,
ALOHA, and PHAST models, have long been prevalent for
analyzing the consequences of heavy gas leakage accidents
(Zhang et al., 2007). Multiple studies (Li et al., 2019; Terzioglu
and Iskender, 2021; Barjoee et al., 2022; Cheng et al., 2022) have
used these models to determine the impact ranges of different
hazardous accidents. While these models are computationally
convenient and time efficient, their reliance on static
assumptions limits their application in the dynamic
environment of smart chemical parks. More recent
advancements have seen the application of models using the
MATLAB language (Bu et al., 2022; Liu and Wang, 2022) and
computational fluid dynamics (CFD) software (Wu et al., 2024;
Zhou et al., 2024), which offer refined simulations of leakage
diffusion by providing time-specific concentration distributions.
Nevertheless, the complexity and extensive computational time of
these numerical models (Wang et al., 2019) limit their application
in emergency response scenarios (Pan and Jiang, 2004). Therefore,
there is a crucial need for a prediction model that can combine
dynamic simulation capabilities with fast response to fulfill the
real-time prediction requirements in smart parks.

Data-driven methods, encompassing both statistical and
machine learning (ML) models, offer robust data processing
and learning capabilities for predicting pollutant
concentrations (Zhu L. et al., 2023; Fu et al., 2023). These
methods excel in identifying statistical patterns and providing
fast and efficient predictions. While data-driven methods analyze
data to predict trends from historical patterns, their assumption
of linear relationships often fails to capture the complex,
nonlinear dynamics present in environmental data (Arsic
et al., 2020; Lu et al., 2020), leading to less accurate
predictions (Zhang et al., 2018). In contrast, Ahmed et al.
(2020) demonstrated that ML models were better suited to
handle the complex characteristics of pollutant data, such as
nonlinearity, periodicity, and seasonality. Fang et al. (2019)
compared a multilayer perceptron (MLP) model with a linear
regression model using meteorological observations, PM2.5

concentrations, and air quality index (AQI), finding the MLP
model to be more accurate. Furthermore, ensemble learning (EL)
has also been extensively investigated for predicting pollutant
concentrations. Wang et al. (2021) analyzed pollutant emission
data and meteorological observations, including wind speed,
direction, temperature, and atmospheric pressure. They
compared the effectiveness of various ML algorithms—MLP,
Decision Tree (DT), Support Vector Machine (SVM), eXtreme
Gradient Boosting (XGBoost), Light Gradient Boosting Machine
(LightGBM), and Stacking—in predicting the impact of air
pollution in the park. Based on the prediction performance of
different algorithms, the more stable Stacking model, noted for
its stability, was ultimately selected to ensure reliable prediction
support for enterprises. Further, Zhu J. Y. et al. (2023) examined
models for ground-level ozone concentration prediction using
LightGBM, Random Forest (RF), SVM and Recurrent Neural
Network (RNN) algorithms, leveraging pollutant concentrations
and meteorological observations. The LightGBM model
outperformed its counterparts, with R2 of 0.92. These studies
underscore the importance of diverse input data, including
environmental, satellite remote sensing, and time-series data,
as well as meteorological variables such as temperature, wind
speed, direction, and humidity. Finally, a variety of mainstream
algorithms, such as MLP, DT, RF, XGBoost, and LightGBM, were
used to construct and compare prediction models (Kang et al.,
2020; Chen et al., 2022). Currently, scholars worldwide have
focused on employing data-driven methods in AQI studies to
predict pollutant concentrations (Ma et al., 2022; Peng et al.,
2023). However, the application of these techniques for
predicting the risks associated with accidents remains less
explored, primarily due to the reliance of pollutant
concentration predictions on extensive monitoring data, in
contrast to the limited data for accident risk prediction.

To improve risk prediction and overcome the challenges of
not having easy access to observational data, some researchers
(So et al., 2010; Wang et al., 2015; Qiu et al., 2017) initially trained
ML models using real-time monitoring data to predict
concentrations of hazardous gas leakage. However, due to
considerable measurement inaccuracies, these predictions
proved suboptimal. Currently, a methodology that integrates
model-driven and data-driven methods has been employed for
predicting pollutant concentrations. This method employs the
CFD model to generate extensive input datasets. Ni et al. (2020)
utilized simulation data from Fluent software to develop a deep
learning-based model that accurately predicted the diffusion
concentrations of toxic heavy gas. Jiao et al. (2021)
constructed a quantitative consequence prediction model
based on a toxic diffusion database derived from PHAST
software simulations. RF, XGBoost and Deep Neural Network
(DNN) algorithms were implemented and compared to identify
the best performance method for model construction. Wang et al.
(2023) formulated a leakage model for liquid ammonia storage
tanks using PHAST software, considering factors such as
atmospheric stability, wind speed, and leakage aperture. Six
models were compared, including linear regression, K-Nearest
Neighbor (KNN), AdaBoost, DT, RF, and XGBoost. The
emergency response model of liquid ammonia leakage was
ultimately developed based on the XGBoost algorithm.
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Additionally, some researchers (Wang et al., 2015; Qiu et al.,
2018) employed artificial neural networks trained on the PHAST
model and utilized particle swarm optimization (PSO)
algorithms to predict the diffusion of hazardous gases. These
methods were investigated with the aim of overcoming the
prevailing challenges of achieving both high accuracy and
prediction efficiency simultaneously. Despite these
advancements, existing risk prediction research has certain
deficiencies. Specifically, the dynamic process of hazardous
chemical evaporation is often disregarded. Therefore, in this
study, the CFD model was used to develop a dynamic model
for heavy gas leakage diffusion and to evaluate the impact of
various factors on accident consequences. Furthermore, while
standard data from numerical simulations are commonly used,
real-world data typically contain noise (Li X. et al., 2021; Liu
et al., 2023), challenging the accuracy of ML-based prediction
models when working with such data. The reliability of ML
prediction models in handling noisy data remains an area
requiring further investigation. Five algorithms—MLP, DT,
RF, XGBoost, LightGBM—were selected to develop prediction
models, which were systematically evaluated for their
performance using both CFD standard and noisy data.
Additionally, the prediction time of these models was
compared to provide faster and more accurate gas diffusion
prediction with the CFD model. The objective of these
advancements is to enhance environmental risk management
and mitigation efforts.

Section 2 of this paper introduces the scenario and simulation
scheme for a heavy gas leakage accident, the selected ML algorithms
and the modelling process, and confirms the reliability of the CFD
model in simulating heavy gas leakage. Section 3 analyzes the
influencing factors, correlation between variables and diffusion
mechanism of the consequences of the leakage accidents. It

evaluates the ML models based on standard data and noisy data
respectively, and identifies the most effective model for predictive
analysis. Section 4 summarizes the research and the shortcomings of
this study.

2 Materials and methods

2.1 Heavy gas leakage scenarios and
simulation schemes

2.1.1 Characteristics and hazardous of benzene
Benzene at ambient temperature is a colorless and transparent

fluid characterized by a density of approximately 880 kg/m3. The
saturated vapor pressure of liquid benzene demonstrates variation
across different temperatures (Figure 1). Prolonged or high levels of
exposure to liquid benzene can adversely affect health. A leakage
resulting in the inhalation of benzene vapor can lead to symptoms
such as headache, dizziness, drowsiness, causing severe neurological
and liver damage, and being potentially fatal. Therefore, this paper
aims to investigate the phenomenon of benzene leakage by
developing a prediction model for the concentration and
diffusion of heavy gas leakage.

2.1.2 Classification of hazardous distances
The standard concentrations of Acute Exposure Guideline

Levels (AEGLs), established by the US National Advisory
Committee (NAC), were utilized to determine hazardous
distances. AEGLs apply to the adverse effects associated with
short-duration and sudden-onset chemical leakages (Zhao and
Chen, 2014). AEGLs are categorized into three levels: AEGL-1,
AEGL-2 and AEGL-3. Each level corresponds to a specific level
of acute toxicity. Under these standards, AEGL-1, AEGL-2 and

FIGURE 1
The saturated vapor pressure of liquid benzene varies with temperature.
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AEGL-3 thresholds, corresponding to the 10-min liquid benzene
leakage, are 420 mg/m3, 6,500 mg/m3 and 31,000 mg/m3,
respectively. The concentration limits associated with specific
injury symptoms are outlined in Table 1.

2.1.3 Assumptions for accident scenario
This study examined an accident scenario involving a liquid

benzene storage tank located within a chemical park. The tank,
characterized by its horizontal orientation and a capacity of
135 m3, was maintained under ambient temperature and
pressure conditions. The tank suffered a rupture due to the
impact of an external object, forming a circular breach
approximately 0.5 m above the ground, encircled by a 35 m
radius cofferdam. Additionally, the internal and external factors
that influence tank leakage are crucial to the study of gas leakage
diffusion. Zhu et al. (2009) and Sun and Guo (2010) have discussed
the significant effects of wind speed and atmospheric stability on
gas diffusion. A summary of the current status of domestic and
international research on leakage diffusion has been provided, and
it has been demonstrated that leakage aperture, temperature and
wind speed were important factors affecting gas diffusion (Zhou
et al., 2012). Furthermore, Wang et al. (2023) constructed a liquid
ammonia leakage prediction model based on environmental
factors such as atmospheric stability, wind speed, and leakage
aperture. Therefore, a range of values was selected for four factors:
leakage aperture, wind speed, temperature, and atmospheric
stability. These values are presented in Supplementary Table S2.
The apertures considered were 100 mm 150 mm and 200 mm;
wind speed ranged from 1 m/s to 6 m/s in 1 m/s increments.
Temperatures were set at 20°C, 25°C, 30°C, 40°C and 50°C.
Atmospheric stabilities were categorized as unstable, neutral
and stable. The duration of leakage was set at 10 min. In total,
270 different scenarios were simulated, with the fundamental
parameters of the leakage tank detailed in Supplementary Table S3.

The leakage rate of liquid benzene after a leakage is calculated
using the Bernoulli Eq. 1 (Fu, 2008):

QL � CdAρ

��������������
2 P − P0( )

ρ
+ 2gh

√
(1)

where QL represents the rate of liquid leakage, kg/s. Cd, the liquid
leakage coefficient, is taken as 0.65. A denotes the area of rupture,
m2. ρ signifies the density of the liquid, kg/m3. P and P0 are the
internal and ambient pressures, respectively, Pa. g represents the
gravity acceleration at 9.81 m/s2. h indicates the height of the liquid
level above the rupture, m. Given that liquid benzene was stored at
ambient conditions, where both the storage and ambient
temperatures remained below its boiling point, flash and heat
evaporation processes were precluded. This scenario led to the

formation of a liquid pool on the ground. The subsequent
evaporation of this pool was primarily driven by the air
movement over its surface, and the mass evaporation rate is
thus calculated as:

Qv � αp
M

RT0
u

2−n( )
2+n( ) r

4+n( )
2+n( ) (2)

where Qv denotes the mass evaporation rate, kg/s. α and n represent
the atmospheric stability coefficients. p specifies the vapor pressure
at the surface of the liquid, Pa.M is the molar mass of the chemical,
kg/mol. R stands for the gas constant, J/(mol·k). T0 indicates the
ambient temperature, K. u refers to the ambient wind speed, m/s. r is
the radius of the liquid pool, m. The rate of mass evaporation varied
dynamically with the radius of the liquid pool. In cases of the
continuous leakage, the dynamics radius of the liquid pool, r(t), as a
function of time t, adhered to the following Eq. 3 (Nielsen et al.,
1995). Ultimately, a CFD-based dynamic diffusion model of liquid
benzene leakage has been developed. This model calculated the
radius of the liquid pool and the corresponding evaporation rate per
second throughout the 10-min leakage period under various
environmental conditions.

r t( ) � t����
9πρ

32gQL

3√⎛⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎠3
4

(3)

2.2 Machine learning (ML) algorithms

2.2.1 Introduction to ML algorithms
(1) Multi-layer perceptron (MLP)

The Multi-Layer Perceptron (MLP), a form of feed-forward
neural network, encompasses two main processes: forward and back
propagation (Ehteram et al., 2022). During forward propagation, the
input data is processed through the layers of network, guided by
weights and biases, to generate the predicted output of the model
layer by layer. Conversely, back propagation adjusts these
parameters via gradient descent by computing the gradient of the
loss function with respect to the weights and biases, thus refining
predictions to more closely match the true values.

(2) Decision tree (DT)

The Decision Tree (DT), a tree-based methodology, can
effectively capture nonlinear relationships and clearly illustrate
the decision-making process of each feature within a structured
tree format. Nonetheless, the DT model exhibits a high sensitivity to

TABLE 1 AEGLs for the 10-min leakage of liquid benzene.

Classification Concentration limit (mg/m3) Injury symptoms

AEGL-1 420 Obvious discomfort, anger or certain symptoms

AEGL-2 6,500 Irreversible or serious, long-lasting adverse effects

AEGL-3 31,000 Could be life threatening or even fatal
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noisy data, which can be mitigated by employing a Random Forest
model, which mitigates the impact of noise (Yu et al., 2019).

(3) Random Forest (RF)

The Random Forest (RF) model enhances efficacy and
robustness by integrating multiple DTs into a strong evaluator. It
operates by having each decision tree independently predict on the
input data, with the final prediction being derived through a method
of weighted averaging or voting, as represented by the Eq. 4
Breiman (2001):

g x( ) � f x( ) + f1 x( ) + f2 x( ) +/ + fn x( ) (4)
where g(x) represents the aggregate prediction from each simple
decision tree f(x). In constructing each decision tree, the RF model
mitigates noise and overfits by employing bootstrap sampling, which
means drawing from the training set with replacement (Wu and
Zhao, 2013).

(4) eXtreme gradient boosting (XGBoost)

The eXtreme Gradient Boosting (XGBoost) model represents an
advanced implementation of gradient boosting algorithms and
stands as a noteworthy component in the EL models, playing a
pivotal role in ensemble learning (EL) models due to its efficacy in
capturing complex and nonlinear interactions (Chen and Guestrin,
2016). The core of the XGBoost model is a gradient boosting
framework that sequentially constructs an ensemble of weak
learners, typically decision trees, to minimize a differentiable loss
function. What sets XGBoost apart is its efficient handling of sparse
data and missing values, an aspect crucial for robustness in real-
world data applications. It incorporates a sparsity-aware algorithm
for handling missing data and employs a weighted quantile sketch
for efficient approximate tree learning. To enhance generalization
and mitigate overfitting, the XGBoost model integrates specific
regularization mechanisms, including L1 (Lasso regression) and
L2 (Ridge regression) penalties. These regularization terms add a
penalization component to the objective function, effectively
controlling the complexity of the model. The main formulas for
the XGBoost model are as follows Eqs 5–7:

Objective Θ( ) � ∑n

i�1 yi, ŷi( ) +∑K

k�1Ω fk( ) (5)
l yi, ŷi( ) � yi − ŷi( )2 (6)

Ω fk( ) � γTk + 1
2
α∑Tk

j�1
wkj

∣∣∣∣ ∣∣∣∣ + 1
2
λ∑Tk

j�1
w2

kj (7)

In formula (5), the first term, ∑n
i�1(yi, ŷi) aggregates the losses

computed over all n samples, where l(yi, ŷi) measures the
discrepancy between the predicted ŷi and the actual yi values,
which is defined here as the square of the residuals. The second
term, ∑K

k�1Ω(fk), is the sum of regularization terms for K weak
learners, typically decision trees, to control the complexity of the
model. The term γTk adds a penalty proportional to the number of
leaf nodes Tk in the tree k, with γ serving as a non-negative
regularization parameter. This term restricts tree growth and aids
in mitigating overfitting by penalizing excessive complexity. The
expression 1

2 α∑Tk
j�1|wkj| denotes the L1 regularization (Lasso), which

imposes a penalty on the absolute values of the leaf weightswkj. This
promotes sparsity in the leaf weights, potentially reducing some to
zero, thereby facilitating feature selection within the trees.
Meanwhile, 1

2 λ∑Tk
j�1w

2
kj signifies the L2 regularization on the leaf

weights wkj of the tree, with λ serving as the regularization
coefficient.

(5) Light Gradient Boosting Machine (LightGBM)

The Light Gradient Boosting Machine (LightGBM) model,
also an ML algorithm based on gradient boosting trees (Zhu J. Y.
et al., 2023), employs an innovative histogram-based learning
method that not only reduces computational complexity but also
significantly enhances training efficiency on large datasets (Gao
et al., 2020). By iteratively learning from gradient boosting trees,
the LightGBMmodel consistently improves model performance,
exhibiting robust generalization capabilities and effectiveness,
particularly in addressing regression problems (Li Z. et al., 2021;
Wei et al., 2021).

2.2.2 Data pre-processing and model setting
The typical workflow for applying ML models encompasses

several critical steps (Bruha, 2000): data collection, data
preprocessing, feature correlation analysis, parameter tuning,
model training and validation.

This study generated various accident scenario hypotheses
using the CFDmodel, with the CFD simulation data serving as the
training datasets. For the accident scenario outlined in section
2.1.3, the CFD model was employed to simulate 270 different
working conditions. This simulation generated concentration
data at various downwind distances at 10-s intervals,
culminating in a total of 515,160 datasets. The variables
included in the analysis were time, leakage aperture, wind
speed, temperature, atmospheric stability and downwind
distance, with the concentration outcome (C1) serving as the
target variable. These variables were normalized using Z-Score
standardization. Atmospheric stability, a categorical variable, was
converted into a numerical format using One-Hot encoding.
Pearson correlation coefficient, designed by the letter ‘Pc’, was
employed to quantify the linear relationships between the
variables. The correlation coefficient between each pair of
variables was calculated using the following formula (8) (Shaik
et al., 2024). To assess the model performance, a subset featuring
specific conditions—200 mm leakage aperture, 6 m/s wind speed,
50°C temperature, and stable atmospheric stability—was selected
for validation. The remaining data was divided into an 80%
training set and a 20% testing set. Moreover, Bayesian
optimization and 10-fold cross-validation were applied for
parameter tuning and model training. Table 2 displays the
hyperparameter range domains for each model and the
optimization results achieved by the algorithm.

Pc � ∑n
i�1 xi − �x( ) yi − �y( )����������������������∑n

i�1 xi − �x( )2∑n
i�1 yi − �y( )2√ (8)

where Pc is the correlation coefficient. xi and yi denote the values of
the two variables. �x and �y represent the means of the two variables. n
signifies the number of samples.
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To assess prediction accuracy for diffusion concentration within
the ML algorithms, this study employed four principal metrics: the
root mean square error (RMSE), mean absolute error (MAE),
coefficient of determination (R2) and index of agreement (IOA).
The formulas are as follows Eqs 9–12 (Shaik et al., 2022; Shaik et al.,
2023; Shaik et al., 2024):

RMSE �
������������
1
n
∑n
i�1

Pi −Mi( )2
√

(9)

MAE � 100%
n

∑n
i�1

Pi −Mi

Mi

∣∣∣∣∣∣∣ ∣∣∣∣∣∣∣ (10)

R2 � 1 − ∑n
i�1 Mi − Pi( )2∑n
i�1 Mi −Mi( )2 (11)

IOA � 1 − ∑n
i�1 Mi − Pi( )2∑n

i�1 (( |Pi − Pi +| |Mi −Mi

∣∣∣∣ )2 (12)

where Pi represents the value predicted by the ML model. Mi

denotes the value simulated by the CFD model. Pi and Mi

correspond to the mean of ML predicted values and CFD
simulated values, respectively, with n signifying the sample size.

2.3 CFD modelling and model validation

2.3.1 Selection of validation dataset
Before providing accurate sample data for ML models, it is

necessary to validate the reliability of the CFD model in
simulating the diffusion of heavy gas leakage. The purpose of
this study is to validate the efficacy of the PHOENICS software in
simulating heavy gas leakage, specifically through the application

of the renowned Burro series experiments. These experiments
took place in a circular water tank, measuring 58 m in diameter
and 1 m in depth, where the liquefied natural gas (LNG) was
released at a temperature of −164°C (Koopman et al., 1982). The
significant temperature difference between the released LNG and
surrounding environment facilitated the rapid vaporization of
LNG, resulting in the formation of a cold and heavy gas cloud,
approximately 1.5 times heavier than air (Yu et al., 2018).
Methane concentrations were measured using sensors located
at distances of 58 m, 140 m, 400 m and 800 m downwind from the
release point. The initial conditions of the Burro series
experiments are comprehensively outlined in
Supplementary Table S4.

2.3.2 CFD modelling
(1) Physical model and governing equations

In this study, the computational domain was defined as
1,000 m × 300 m × 50 m. To enhance grid structure efficiency
and minimize computational time, the domain was segmented into
200 × 100 × 25 using a gradient grid. The mesh independence
analysis ensured that the CFD data remained consistent as the mesh
size varied, as detailed in the Supplementary Text S1. Figure 2
illustrates the configuration of the detailed domain and grid setup
within the CFD model. These modeling parameters were
meticulously chosen to accurately simulate the heavy gas leakage
scenario, laying a robust groundwork for subsequent analysis.

In this study, the Core module of the PHOENICS 6.0 software
was used as the simulation platform. The turbulence model chosen
was the widely used standard k-εmodel within PHOENICS, with the
specific equations given by Eqs 13, 14:

TABLE 2 Hyperparameter range domains of each model and results using Bayesian optimization.

ML model Hyperparameter Range domains Optimal value

MLP Hidden layer [50,600] 511

Learning rate [0.001,0.1] 0.088

DT Maximum tree depth [1,30] 25

Minimum sample size of nodes [1,30] 6

RF N estimator [10,400] 243

Maximum tree depth [3,25] 25

Minimum sample size of nodes [1,30] 7

XGBoost N estimator [100,300] 287

Maximum tree depth [4,30] 15

Minimum sample size of nodes [2,30] 22

Gamma [0,5] 1

Alpha [0,5] 1

Lamba [0,5] 2

LightGBM N estimator [100,300] 161

Maximum tree depth [4,30] 27

Learning rate [0.0001,10] 0.58
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∂ ρk( )
∂t

+ ∂ ρujk( )
∂xj

� ∂

∂xj
μ + μt

σk
( ) ∂k

∂xj
[ ] + Pk − ρε (13)

∂ ρε( )
∂t

+ ∂ ρujε( )
∂xj

� ∂

∂xj
μ + μt

σε
( ) ∂ε
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where μt denotes the turbulent viscosity, kg/(m·s). uj indicates the
velocity component in the j-direction, m/s, and xj corresponds to
the spatial coordinate in that direction, m. μ is the molecular
viscosity, kg/(m·s). σk and σε are the Prandtl numbers associated
with turbulence kinetic energy k and dissipation rate ε, respectively,
with their values set at σk = 1.0 and σε = 1.3. Pk is the turbulence
kinetic energy production term generated by the mean velocity
gradient, m2/s3. C1ε and C2ε represent empirical constants taken as
1.44 and 1.92, respectively.

(2) Physical Properties

In the Properties section, set the ambient temperature to
35.4°C and the atmospheric pressure to 101,325 Pa. The Inverse
Linear option was selected for the density setting to configure the
density of the methane-air mixture, thereby accurately
simulating the settling process of heavy gas, incorporating the
impact of gravity was vital. Additionally, activate the gravity
option Density Difference and set the gravitational acceleration
to −9.81 m/s2 in the Z direction.

(3) Boundary condition settings

The inlet boundary conditions of the model utilized the Wind
property to define wind speed and direction. The index method
ensured an accurate representation of the vertical gradient change in
wind speed (Li and Tian, 2011). Given that the Burro series
experiments were conducted in an open area without obvious
obstacles, the effective roughness height in this study was set at
0.0002 m, and the wind profile index was chosen as 0.16.

(4) Inlet settings

A series of Inlet objects were selected to simulate the evaporation
rates from the liquid pool. The leakage scenario was simplified to

model the complete evaporation of LNG from a 58 m diameter
liquid pool. The evaporation rate was approximated as the leakage
rate, with the Mass Flow of the Inlet object set to 24.2 m3/min.
Additionally, the solver variable C1 was added into the Models
section, assigning a value of 1.0. The results of C1 were extracted
after the completion of simulation and converted to the
concentration of methane (CH4) using calculation formula (15):

CCH4 � C1 × ρa × 106 (15)
where CCH4 represents the concentration of CH4, mg/m3.

2.3.3 CFD simulation validation
The Burro nine experiment was selected to evaluate the accuracy

of the CFD model in simulating the diffusion of heavy gas leakage.
Figure 3 illustrates the concentration distribution of the gas cloud at
T = 80 s for the Burro nine experiment across two planes. Figure 3A
shows the Y-Z plane at a distance of 140 m downwind, where the
observed gas cloud extended approximately 60 m to the left and
28 m to the right. Conversely, the CFD simulation showed an
extension of about 48 m on both sides, revealing a minor
discrepancy between the simulated and observed spreads. This
discrepancy is likely due to a deviation between the actual and
simulated wind directions, as well as the uneven terrain at 140 m.
This uneven terrain could account for the slightly elevated height of
the gas cloud on the northern side compared to the southern side.
Figure 3B illustrates to the X-Y plane at a height of Z = 1 m, where
the simulated range of CFD is slightly narrower than the actual
observed diffusion range. The violent phase change reaction
occurring near the leakage source affected the concentration
sensor at 57 m, resulting in a discontinuity in the 5%
concentration contour. Zhang et al. (2015) used the FEM3 and
CFD models to validate the Burro nine experiment, simulating the
gas cloud extent on the Y-Z plane at a downwind distance of 140 m
to be 53 m and 75 m, respectively. The farthest distances by the CFD
model for volume concentrations of 5%, 2%, and 1% on the X-Y
plane were about 190 m, 368 m, and 500 m. Figures 3A,B
demonstrate that the gas cloud extent simulated by the CFD
model adopted in this paper is reasonable. Additionally, the
simulated diffusion ranges being narrower than observed could
also be attributed to the instability of the wind speed. Despite

FIGURE 2
The configuration of the CFD model, focusing on: (A) model setting on the X-Z plane and (B) model setting on the Y-Z plane.
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FIGURE 3
Distribution of methane concentrations across various planes during the Burro nine experiment: (A) the distribution on the Y-Z plane at a distance of
140 m downwind at T = 80 s, and (B) the distribution on the X-Y plane at a height of 1 m, also at T = 80 s.

FIGURE 4
Methane concentration values at different downwind distances for the Burro nine experiment. (A) and (B) are plots of methane concentration values
with time at 140m and 400m downwind distance, respectively. (C) and (D) are the concentration distributions of experimental and CFD simulated values
at T = 120 s and downwind distance of 400 m, respectively.
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these differences, the overall diffusion ranges of the gas cloud were
consistent with the actual experimental results, accurately reflecting
the diffusion dynamics of the heavy gas leakage.

It specifically depicts the methane concentration over time at a
distance of 140 m downwind in Figure 4A, with the observed peak
concentration reaching 9.6%. The CFD simulation peaking at 9.62%,

FIGURE 5
Variation patterns of liquid pool radius and evaporation rate with time under different scenarios, where (A) and (B), (C) and (D), (E) and (F), and (G) and
(H) denote the dynamic changes of liquid pool radius and evaporation rate under different wind speeds, temperatures, leakage apertures, and
atmospheric stabilities, respectively.
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resulted in a minimal relative error of 0.2%. While at a distance of
400 m downwind, the observed maximum concentration was 3.96%,
compared to the CFD simulation’s maximum value of 3.23%,
leading to a relative error of 18.43% (Figure 4B). Sun and Guo
(2010) used the DEGADIS model to validate the Burro nine
experiment, and the relative errors of the simulation
concentrations at downwind distances of 140 m and 400 m were
44.7% and 16.49%, respectively. Sun et al. (2013) simulated the
maximum concentrations at different downwind distances of the
Burro eight experiment using the Fluent software, with an average
relative error of 19.62%. This demonstrates that the CFD model
utilized in this study effectively enhanced the precision of
concentration prediction, maintaining relative errors within
permissible limits. Therefore, the CFD model is considered to
accurately capture the trends of the observed methane
concentrations, although temporal variations are present. Such
variations may arise from the inconsistent evaporation rates of
LNG leakage and the dynamics size of the evaporating liquid
pool, which, if assumed constant in the model, will introduce
validation uncertainties. Figures 4C,D reveal that the simulated
heights of the air clouds with varying concentrations at a
distance of 400 m downwind slightly exceeded the actual
measurements, yet their lateral extents remained broadly
consistent. The overall trend alignment and acceptable error
margins confirm the CFD simulation’s efficacy for
subsequent research.

3 Results and discussion

3.1 Analysis of factors affecting benzene
leakage accidents consequences

3.1.1 Dynamic characteristics of liquid pool radius
and evaporation rate

Upon the leakage of benzene, its high boiling point resulted in
the formation of a liquid pool on the ground. The evaporation of the
liquid pool was facilitated by the airflow over the pool surface, with
both the radius of the pool and the evaporation rate changing
dynamically. Before exploring the impacts of various factors on
the diffusion distances of benzene, this study initially analyzed the
influences of four factors on the dynamic changes of the radius and
evaporation rate of the liquid pool. The results are presented in
Figure 5, which displays the dynamic changes of the liquid pool
radius and evaporation rate under different wind speeds,
temperatures, leakage apertures and atmospheric stabilities,
labelled A-L respectively.

An increase in wind speed from 1 m/s to 6 m/s extended the
duration required for the liquid pool to achieve its maximum radius
from 145 s to 163 s, currently elevating the evaporation rate from
7.36 kg/s to 31.88 kg/s (Figures 5A,B). This indicates that higher
wind speeds not only delay the attainment of the maximum radius of
the liquid pool but also substantially enhance the evaporation rate.
Such an increase accelerates the volatility and diffusion rate of
benzene, thereby enlarging the potential hazardous ranges.
Furthermore, a temperature increase from 20°C to 50°C similarly
impacted these dynamics, lengthening the time to reach the
maximum radius from 144 s to 163 s, while elevating the

evaporation rate from 6.03 kg/s to 31.88 kg/s (Figures 5C,D).
The rise in temperature not only accelerated the evaporation rate
but also slowed down the growth rate of the radius of the liquid pool,
prolonging the time to reach its maximum. Variations in the leakage
aperture slightly adjusted the time for the liquid pool to achieve its
maximum radius from 159 s to 163 s. The evaporation rate attained a
consistent peak of 31.88 kg/s at different apertures (Figures 5E,F),
indicating a minimal effect of the leakage aperture on the growth of
the radius and evaporation rate. Under disparate conditions of
atmospheric stability, the radius reached its zenith between 163 s
and 165 s, with the lowest evaporation rate under unstable
conditions at 31.88 kg/s, and slightly higher under stable and
neutral conditions at 33.62 kg/s and 33 kg/s, respectively (Figures
5G,H). Atmospheric stability exerts a minor influence on liquid pool
expansion and evaporation rate, as indicated by the coefficients α
and n in formula (2). Subsequent research will investigate the effects
of these factors on the distribution of concentrations and hazardous
distances, providing scientific support for effective risk management
and emergency preparedness.

A comprehensive analysis indicated that temperature was the
primary factor influencing the growth of the evaporation rate. The
impact of wind speed on the radius growth was negligible but
significantly enhanced evaporation rate. The impact of leakage
aperture and atmospheric stability was insignificant. Related
studies (Galeev et al., 2013; Hu et al., 2024) have also
emphasized the important role of environmental factors in
chemical leakage accidents, in particular the significant effect of
wind speed and temperature on the consequences of leakage.

3.1.2 Dynamic characteristics of concentration
distribution

To explore the dynamic characteristics of concentration
distribution, a specific scenario was chosen for detailed analysis:
liquid benzene leakage under stable atmospheric conditions,
featuring a 200 mm aperture, a wind speed of 6 m/s and a
temperature of 50°C. This study methodically examined the
changes in concentration distribution within the hazardous
distances for various AEGLs at 150 s, 300 s, 450 s, and 600 s.
Figure 6 illustrates the concentration distribution at different times,
where A-D, E-H, and I-N correspond to AEGL-1, AEGL-2, and
AEGL-3 distances, respectively.

Initially, at 150 s, the hazardous range of AEGL-1 was
predominantly near the leakage source (Figure 6A). By 600 s, the
concentration range had spread to 2780.20 m, revealing a significant
downwind stretch while the lateral enlargement of the plume
remained comparatively limited (Figure 6D). Compared to
AEGL-1, the diffusion rate and the hazardous range of AEGL-2
were markedly reduced. Notably, at 300 and 390 s, the maximum
AEGL-2 distance exhibited minimal change, suggesting a plateau in
the diffusion speed and expansion range once a certain
concentration was reached (Figure 6F). Beyond 300 s, both the
downwind distance and plume width remained relatively stable,
leading to a more homogeneous distribution of concentration
(Figures 6G,H). The diffusion speed and range of AEGL-3
showed an even more pronounced reduction (Figure 6I–L). By
270 s, the hazardous range reached a steady state at 74.27 m,
highlighting the restricted diffusion range for high-concentration
benzene over a brief period. The lateral expansion of the plume was
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notably constrained, primarily due to the dominance of wind speed
over turbulent mixing, facilitating predominantly downwind
diffusion. Consequently, wind speed emerges as a critical
determinant in the plume diffusion process, determining the
velocity of downwind diffusion (Gong et al., 2023). Meanwhile,
initial release conditions, such as leakage rate and temperature,
along with local turbulence, play collective roles in shaping the
plume width and diffusion uniformity.

3.1.3 Dynamic characteristics of hazardous ranges
In the case of liquid benzene leakage, the hazardous

consequences were evaluated using AEGLs distances. The
mechanism of the change of AEGLs distances under the four
main factors was analyzed by altering the environmental
conditions, with the findings illustrated in Figure 7. Notably, the
AEGL-1 and AEGL-2 distances increased significantly as
temperature rose. The trend for the AEGL-3 distance was only
exhibited at higher temperatures. This phenomenon may be
attributed to the fact that an increase in temperature elevated the
saturated vapor pressure of benzene, thereby expediting the
evaporation rate and diffusion process (Yu et al., 2021).
Furthermore, for AEGL-3, the concentration value (31,000 mg/
m³) represented a high concentration that may be life-
threatening following exposure. In this study, it was observed
that the distances of AEGL-3 were only present under higher
temperatures and were relatively short. This suggested that
elevated temperatures may facilitate rapid evaporation of

benzene, yet may also facilitate its rapid diffusion and dilution,
resulting in rapidly declining concentrations at a distance from the
leakage source (Zhou et al., 2024).

Wind speed significantly influenced the diffusion ranges of
benzene, with wind speed increasing from 1 m/s to 6 m/s, the
AEGL-1, AEGL-2, and AEGL-3 distances exhibiting different
growth trends. The increase in diffusion distances was attributed
to the turbulent mixing effect at higher wind speeds. However, the
extent of this increase was limited, particularly as the AEGL-2 and
AEGL-3 distances stabilized more quickly at higher wind speeds.
The AEGL-3 distance initially rose with an increase in wind speed
until it stabilized approximately 200 s. The maximum distance of
73.93 m was reached at a wind speed of 4 m/s, after which it slightly
decreased with further increases in wind speed. Before reaching a
steady state in concentration distribution, wind speed primarily
served as a mechanism for transporting the cloud over longer
distances within the same time frame. Upon reaching a steady
state, wind speed facilitated dilution in addition to transportation
(Zhou et al., 2021). An increase in wind speed not only enhanced the
dilution effect but also accelerated the diffusion speed, thereby
narrowing the hazardous range. The impacts of leakage aperture
and atmospheric stability on the hazardous distance were minimal.
An incremental rise in the AEGL-1 distance was observed with the
enlargement of leakage aperture, whereas the AEGL-2 and AEGL-3
distances exhibited negligible changes. Furthermore, the AEGL-1,
AEGL-2, and AEGL-3 distances showed no significant variance
under different atmospheric stabilities, indicating that over longer

FIGURE 6
Hazardous ranges corresponding to AEGL-1 (A–D), AEGL-2 (E–H), and AEGL-3 (I–L) at different time (T = 150 s, 300 s, 450 s, 600 s).
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periods, atmospheric stability exerted minimal influence on
diffusion distances.

3.2 Correlation analysis

Pearson correlation analysis was employed to evaluate the
linear relationship between the CFD-simulated methane
concentration (C1) and various characteristic variables,
including time, leakage aperture, wind speed, temperature,
atmospheric stability, and downwind distance. The
corresponding results are depicted in Figure 8. Specifically,
wind speed and downwind distance were negatively correlated
with C1, with correlation coefficients of −0.01 and −0.48,
indicating that an increase in wind speed and greater

downwind distance resulted in reduced methane
concentrations, respectively. Conversely, positive
correlations were identified between C1 and variables
including time, leakage aperture, temperature, and
atmospheric stability, with coefficients of 0.16, 0.01, 0.20,
and 0.02, respectively. The strong positive correlation
between C1 and time and temperature indicated that higher
concentrations were associated with longer leakage time and
higher temperature. These findings reveal that there exists a
significant but relatively weak correlation between C1 and the
characteristic variables, and a nonlinear relationship among
the characteristic variables. Given the complexity of the
atmospheric diffusion mechanism, which involves nonlinear
and dynamic processes affected by various factors, traditional
linear models are not the optimal choice. Therefore, it is

FIGURE 7
Effects of different factors on the variation of AEGLs distances. (A–C), (D–F), (G–I), and (J–L) indicate the effects of different wind speed,
temperature, leakage aperture, and atmospheric stabilities on the AEGL-1, AEGL-2, and AEGL-3 distances, respectively.
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FIGURE 8
Correlation coefficients between characteristic variables and between characteristic variables and the target variable (C1), "×" indicates that the
correlation did not pass the significance test at the significance level α = 0.05.

FIGURE 9
Performance evaluation of predictions based on MLP, RF, DT, XGBoost, and LightGBM models for standard (A) training data and (B) testing data.

Frontiers in Environmental Science frontiersin.org13

Fan et al. 10.3389/fenvs.2024.1409072

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2024.1409072


recommended that a nonlinear model be adopted for a more
accurate representation of the complex variable interactions
and effects. Furthermore, an analysis of the diffusion
mechanism was conducted to robustly support the
correlation between the variables, as detailed in the
Supplementary Text S2.

3.3 Feasibility analysis of ML algorithms
using CFD standard data

3.3.1 Model performance evaluation
To evaluate the performance of the five ML models on CFD

standard data, various evaluation metrics were calculated, as
depicted in Figure 9. Figure 9A reveals that R2 for the training
set among these models varied from 0.962 to 0.999, and IOA
varied from 0.990 to 0.999. Notably, R2 and IOA of the
XGBoost and LightGBM models were both 0.999, indicating
nearly-perfect prediction accuracy. In terms of RMSE, the
XGBoost model outperformed other models with a score of
181.669 mg/m³, closely followed by the LightGBM model,
which scored 204.089 mg/m3. Additionally, these models
also exhibited outstanding MAE, with the XGBoost model at
85.742 mg/m³ and the LightGBM model at 108.414 mg/m³,
underscoring the exceptional predictive performance of the
XGBoost model.

On the testing set, both the XGBoost and LightGBM models
exhibited strong correlations with R2 of 0.996 and 0.993, and
IOA of 0.999 and 0.998, respectively (Figure 9B). In contrast,
despite the MLP and RF models exhibiting high R2 on the
training set (0.962 and 0.964, respectively) and acceptable R2

on the testing set (0.894 and 0.968), their higher RMSE and MAE
suggested a significantly lower prediction accuracy compared to
the XGBoost and LightGBM models. The DT model performed
well on the training set, with RMSE of 1546.323 mg/m3.
Nonetheless, its accuracy decreased on the testing set, with
RMSE and MAE of 1483.873 mg/m3 and 686.351 mg/m3,
respectively, and slightly lower R2 and IOA. This analysis
indicates that the MLP and DT models may not be optimal
for low-dimensional sample data. However, ensemble models
such as the XGBoost and LightGBM models can effectively
mitigate the risks of overfitting by integrating multiple simple
models, thereby ensuring improved accuracy of concentration
prediction.

In the field of environmental science, numerous studies (Li
J. et al., 2021; Zang et al., 2021; Xu et al., 2022) have employed a
range of ML algorithms to construct prediction models for air
pollutant concentrations, with R2 primarily falling within the
range of 0.68–0.88. In comparison, our models demonstrated a
significant improvement in prediction accuracy. Moreover, in the
field of risk assessment of accident consequences, related studies (Ni
et al., 2020; Wang et al., 2023) have demonstrated the performance
ofMLmodels based on CFD simulation data, where R2 of the models
was higher than 0.90. The ML models constructed on the basis of
idealized CFD data in our study, in particular the XGBoost model,
not only matched but even outperformed these performance ranges
reported by these studies. These results demonstrated the
effectiveness of the XGBoost model in terms of prediction

accuracy, and illustrated the capacity of the model to process
complex and high-dimensional data. The findings suggested the
potential applicability of the model in the field of
environmental sciences.

3.3.2 Effects of model predictions on
concentration accuracy

To further assess the accuracy of various models in predicting
concentrations, a validation analysis was performed under a stable
atmosphere scenario, characterized by a 200 mm leakage aperture, a
wind speed of 6 m/s, and a temperature of 50°C. Concentrations at
different distances were compared, with the results presented in
Figure 10. This figure demonstrates that the MLP model was unable
to accurately predict concentration distributions and trends at both
near and distant distances, leading to unsatisfactory outcomes.
Conversely, the other models showed improved accuracy in
capturing the concentration trends. Notably, from distances of
10 m–500 m, the predictive curves of these models closely
aligned with the actual concentration curves, demonstrating high
consistency. At a distance of 50 m, all models except the MLP model
produced predictions nearly identical to the actual concentrations,
with the predictive and actual curves almost overlapping, indicating
their robust performance in near-distance prediction. However, the
accuracy of these predictions decreased as the distance increased.
Beyond 1,000 m, the MLP, DT, and RF models exhibited
considerable deviations and were unable to accurately capture the
actual concentration distribution and trends, highlighting their
limitations in distant-distance concentration prediction. In
contrast, the predictive curves of the XGBoost and LightGBM
models remained closely aligned with the actual curves,
demonstrating their capacity to handle large-scale and complex
data effectively. Nevertheless, Figure 10C clearly shows some
deviations between the predictive curve of the LightGBM model
and the actual concentration curve during abrupt increases.
Although the LightGBM model exhibited a slightly stable trend
aligning with the actual values in high concentration ranges (Figures
10A,B), the XGBoost model adapted more quickly to near-actual
values in rapidly changing concentrations (Figures 10E,H). This
indicated that the XGBoost model may provide more timely
decision support in dynamic prediction scenarios. Considering
their performance with respect to prediction latency and
accuracy in high concentration intervals, the XGBoost model
outperformed the LightGBM model, corroborating the findings
discussed in Section 3.3.1. These results provide a scientific
framework for model selection in particular scenarios.

3.4 Evaluation of ML algorithms based on
noisy data

3.4.1 Model performance evaluation
In order to more closely match real-world measured data and to

evaluate the generalizability of the model, noise is often introduced
into the standard data to mimic real-world variations (Li X. et al.,
2021). Therefore, Gaussian noise was incorporated into the CFD
standard data and the mean and variance of the Gaussian noise were
adjusted to generate datasets with different noise levels. The
performance of each model on the training and testing data was
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evaluated with a noise scale of 0.5, and the results of this evaluation
are depicted in Figure 11.

Figure 11 shows that the MLP model achieved RMSE and MAE
of 3062.884 mg/m3 and 1430.555 mg/m3 on the training set, and

3078.269 mg/m3 and 1494.641 mg/m3 on the testing set,
respectively. Although the DT and RF models performed
slightly better in terms of RMSE and MAE, they still exhibited
significant sensitivity to the presence of noise. In comparison, both

FIGURE 10
Comparison of model validation for concentration at different downwind distances: (A), (B), (C), (D), (E), (F), (G), and (H) correspond to the predicted
versus the true values of the different models at downwind distances of 10, 50, 100, 500, 1,000, 1,500, 2000, and 2,500 m, respectively.
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the XGBoost and LightGBM models demonstrated exceptional
performance across all evaluation metrics, with the lowest RMSE
and MAE. RMSE for the XGBoost and LightGBM models on the
training data were 1856.175 mg/m3 and 1831.244 mg/m3,
respectively, while MAE were 778.301 mg/m3 and 785.941 mg/
m3, respectively. R2 was 0.973 for the XGBoost model and 0.974 for
the LightGBM model, with both models achieving IOA of 0.993.
The difference in performance between the two models was
minimal, with the LightGBM model slightly outperforming in
terms of predictive accuracy. On the testing data, RMSE for the
XGBoost and LightGBM models were 2091.083 mg/m3 and
2162.072 mg/m3, with MAE were 918.705 mg/m3 and
41.887 mg/m3, respectively. R2 was 0.963 and 0.961, and IOA
was 0.991 and 0.990, respectively. Here, the performance of the
XGBoost model was more pronounced. Overall, both models
demonstrated high robustness in processing and predicting
noisy data, which is vital for the effective operation of ML
algorithms in diverse real-world situations. Nevertheless, the
XGBoost model displayed an advantage in predictive accuracy
and stability.

Previous studies (Ni et al., 2020;Wang et al., 2023) have typically
constructed ML prediction models based on idealized data from
CFD simulations. However, in real-world environments, real data
frequently contain noise due to monitoring equipment failures and
measurement errors. This study sought to assess the reliability of the
predictive performance of MLmodels based on noisy data by adding
noise to the data to reflect the real-world situation, and enhance the
robustness and generalization of the models. The results
demonstrated that the XGBoost model exhibited excellent
predictive performance despite the presence of noise.

3.4.2 Effects of model predictions on
concentration accuracy

A comparative analysis of concentration predictions at
various distances from the source was performed using noisy
data, with the results illustrated in Figure 12. The analysis clearly
indicated that as the downwind distance increases, the difference
between the predictions of the models and the noise values also

increased, indicating a higher level of uncertainty in the
prediction. At near distances, the’ predictions of all models
were closer to the actual values. However, at distant distances,
the prediction curves become more volatile, with the MLP
model’s predictions deviating significantly from the true
values. The MLP model was ineffective in predicting noisy
data. The DT and RF models, while providing predictions
closer to the true values, did not accurately reflect the overall
trends. Conversely, the XGBoost and LightGBM models
demonstrated exceptional predictive performance, accurately
capturing changes in concentration trends at both near and
distant distances. This evidence reinforces the notion that
ensemble models, especially the XGBoost and LightGBM
models, exhibit strong generalization capabilities and
robustness in both standard and noisy data, excelling in
predicting concentration distributions and trends effectively.
Overall, the inherent features of ensemble models, such as
model averaging, robustness, and overfitting prevention,
contribute to their effectiveness in making reliable predictions
within noisy environments (Cong et al., 2023). These attributes
render ensemble models indispensable tools for addressing the
complexity and uncertainty inherent in real-world data.

3.4.3 Analysis of predictive application using the
XGBoost model

In emergency rescue operations, accurately predicting the
temporal distribution of hazardous chemical concentration over
time and the corresponding hazardous distances for concentration
limits is essential for devising the effective emergency response
strategies. This study evaluated the efficiency of the XGBoost
model in predicting the diffusion of liquid benzene leakage
following a leakage from a tank with a 200 mm aperture under
conditions of a 6 m/s wind speed, a 50°C temperature, and stable
atmospheric conditions. The aim is to replicate an industrial
scenario with specific environmental parameters. The comparison
between CFD simulation results and hazardous distance predictions
from the XGBoost model, as presented in Figure 13, underscores the
exceptional ability of the model in accurately predicting benzene

FIGURE 11
Performance evaluation of predictions based on MLP, RF, DT, XGBoost, and LightGBM models for noisy (A) training data and (B) testing data.
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concentration levels and determining hazardous distances.
Specifically, the XGBoost model demonstrates the capacity to
accurately predict concentrations at different distances, whether
near the leakage source or at distant distances. Notably,

Figure 13A confirms the accuracy of the model in matching
saturation concentrations, whereas Figures 13B,C indicate a
minor temporal delay in the model’s predictions compared to the
actual values, suggesting a negligible hysteresis effect without

FIGURE 12
The comparison ofmodel validation for concentrations at different downwind distances: (A), (B), (C), (D), (E), (F), (G), (H) correspond to the predicted
values versus the true values of the different models at downwind distances of 10, 50, 100, 500, 1,000, 1,500, 2000, 2,500 m, respectively.
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compromising overall accuracy. Moreover, the model demonstrated
exceptional alignment with real-world distances for AEGL-1, AEGL-2,
and AEGL-3, with minimal relative errors. Specifically, it predicted
distances of 2705.1 m, 378.4 m, and 74.44m against the true distances of
2780.2 m, 368.9 m, and 74.27 m, achieving relative errors of 2.70%,
2.58%, and 0.23%, respectively. Compared to the CFD model, the
enhanced efficacy and speed exhibited by the XGBoost model
indicate that ML algorithms may significantly improve the real-time
emergency response capabilities, potentially reducing the risks these
accidents pose to humans and the environment. In addition, the
XGBoost model exhibited a markedly superior predictive efficiency
compared to the CFD model, resulting in significant savings in
computational costs. The model took only 0.218 s to output the
prediction results when running on a computer with an AMD Ralon
R7 6800H CPU and 32G of RAM, while the CFDmodel took about 3 h
to complete a simulation on a computer with an 11th Gen Intel® Core
(TM) i5-11400H CPU and 8G of RAM for this leakage scenario. It
should be noted that the simulation time may vary depending on the
specific leakage scenario under consideration. Obviously, using ML
algorithms can significantly improve the prediction efficiency and
meet the current demand for dynamic, accurate and fast predictions
in smart parks.

The precise prediction of hazardous distances is crucial for
assessing the consequences of leakage accidents and for
immediate emergency response measures. The investigation of
XGBoost models that not only provide accurate predictions but
also maintain prediction efficiency has enabled the fast provision of
prediction ranges for emergency response. It is recommended that
further development and integration of ML techniques for the
prediction and management of hazardous situation be a priority
in industrial safety and environmental protection strategies.

4 Conclusion

This study examined the consequences of chemical leakage
accidents by simulating Burro series experiments using the CFD
(PHOENICS version 6.0) model. The simulations were
benchmarked against Burro nine data, revealing a strong
correlation between the simulated and observed
concentrations within acceptable discrepancies, thereby
affirming the efficacy of the CFD model in simulating the
heavy gas leakage diffusion. Using liquid benzene as an
example, a CFD-based dynamic model was developed to
analyze the consequences of heavy gas leakage diffusion,
examining the impacts of wind speed, temperature, leakage
aperture, and atmospheric stability. The analysis underscored
the pivotal roles of wind speed and temperature in influencing
the distribution patterns of liquid benzene concentrations and
AEGLs distances over extended periods. In contrast, leakage
aperture and atmospheric stability minimally affected the
hazardous distances. Furthermore, five ML models were
developed using CFD standard and noisy data. The
performance assessment revealed that the XGBoost model
surpassed the other models for concentration simulation,
demonstrating resilience to noise interference. Consequently,
a fast prediction model for the dynamic diffusion of heavy gas
leakage based on the XGBoost model was established. This
model’s precision was confirmed by comparing actual and
predicted concentrations at various downwind distances and
hazardous distances. The relative errors between the actual
values and predictions of AEGL-1, AEGL-2, and AEGL-3
distances were 2.70%, 2.58%, and 0.23%, respectively. More
importantly, the XGBoost model demonstrated exceptional

FIGURE 13
Comparison of predicted and true values of concentrations at various downwind distances and hazardous distances based on the XGBoost model,
(A), (B), and (C) correspond to downwind distances of 10, 100, and 1,000 m, respectively. (D), (E), and (F) correspond to AEGL-1, AEGL-2, and AEGL-3
distances, respectively.
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efficiency, generating predictions in only 0.218 s, significantly
faster than the CFDmodel. This efficiency, coupled with reduced
computational demands, positioned ML algorithms as vital tools
for dynamic and precise emergency response planning in smart
parks, highlighting their potential in enhancing future response
strategies.

However, it is essential to acknowledge the uncertainties and
limitations inherent in our study. The reliance on data-driven
models, particularly the opaque nature of ML algorithms,
introduces uncertainties in understanding dynamic mechanisms.
Additionally, despite utilizing CFD outputs augmented with
Gaussian noise, it still differs from actual leakage scenarios.
Furthermore, the applicability of our model is confined to open-
space leakage incidents, omitting the influence of complex terrains
and various underlying surface types on predictive accuracy. The
efficacy of the XGBoost model in handling complex terrains or
enclosed spaces necessitates further investigation. This opens up
new avenues for our future research in this field. Future directions
include incorporating real observational data, employing
sophisticated data assimilation techniques for improved precision,
and expanding the model to encompass a wider array of factors
and scenarios.
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