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Introduction: At different times, China has pursued different carbon emission
reduction targets, so it is crucial to develop a reasonable and flexible allocation
scheme for Chinese carbon emissions quotas, referred to as Chinese Emission
Allowance (CEA), in order to achieve carbon reduction goals. As important
responsible entities for carbon reduction, each province needs to rely on a well-
designed CEA allocation scheme to help achieve their emission reduction goals.

Methods: Therefore, based on the utility perspective, this paper constructs
allocation principles and methods to formulate the inter-provincial CEA
allocation scheme for China in 2030. Specifically, the entropy method, SBM
model, improved variable weight function, and ARIMA time series model are
sequentially adopted to simulate the re-allocation scheme, examine its
rationality, and develop CEA allocation schemes under different principles.

Results and Discussion: The following conclusions are drawn: 1) The allocation
scheme formulated based on historical emission simulation methods, industry
benchmark methods, and other current CEA allocation methods has certain
irrationality, and future CEA allocation should not follow the original methods; 2)
The improved variable weight function is better suited for allocation in CEA than
the current original allocation method. The allocation scheme developed under
this method, which balances fairness and efficiency principles, is more
appropriate for the actual reduction of carbon emissions in China.
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1 Introduction

From 2007 to 2022, China has consistently been the world’s largest emitter of carbon
dioxide and the largest consumer of energy. This underscores China’s significant
responsibility in addressing climate change and, at the same time, facing substantial
pressure for carbon emission reduction. In response, China has decided to implement a
series of measures to reduce carbon emissions, with themost crucial being the establishment
of a nationwide carbon emissions trading market. The fundamental logic of its operation is
to convert carbon emission targets into corresponding CEA totals, initially allocated to
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various provinces nationwide and then further distributed by each
province to specific key emission units. However, due to differences
among Chinese provinces in terms of industrial distribution,
economic development stages, and emission reduction
technologies, the issue of imbalanced carbon emissions among
provinces has become particularly prominent (Cong et al., 2022).
Consequently, there are varying demands for CEA among
provinces. If these demands can be met to different extents, it
can enhance the enthusiasm of provinces for carbon reduction,
facilitating the overall carbon reduction efforts in China. Therefore,
to promote the orderly development of the national carbon
emissions trading market (Lin and Huang, 2022) and accelerate
the achievement of the “dual-carbon” goals, it is necessary to
formulate a reasonable CEA allocation plan that caters to the
diverse needs of each province.

In previous studies regarding CEA allocation, the majority of
scholars tend to focus on studying CEA allocation schemes from a
shallow path perspective, directly investigating CEA allocation
schemes under different allocation principles and methods. This
is because the formulation of allocation plans requires appropriate
allocation principles as allocation guidelines (Zhao and Yang, 2022),
using a rational allocation method as the allocation tool. While some
literature (Wang and Ge, 2022) provides important references for
specific CEA allocation plans, there are still issues such as the
complexity of implementing allocation methods. In order to
better formulate CEA allocation schemes, some scholars have
started conducting research from a deep path perspective, which
involves constructing allocation principles and methods from
different perspective, including supply and demand, output, and
other viewpoints (Wang et al., 2019; Ll et al., 2022). The rationality
of the CEA allocation scheme mainly lies in its ability to meet the
needs of various provinces for CEA. In economics, “utility” is
generally used to represent the degree to which a subject’s
demand is satisfied by a product, that is, the “satisfaction”
(LIESIO and VILKKUMAA, 2021). Therefore, the extent to
which the allocated CEA can meet the needs of each province
can be measured using “utility”. Moreover, the level of utility in
CEA allocation directly affects the implementation of carbon
reduction efforts. However, currently, there are very few scholars
conducting in-depth research from the utility perspective.
Additionally, with changes in climate and the Chinese context,
carbon reduction targets also change. The different carbon
reduction targets can be understood as the need to consider CEA
allocation based on different allocation principles. Therefore, the
question of “which allocation method should be used to flexibly and
simply formulate CEA allocation schemes” remains unanswered.

Therefore, in order to develop a CEA allocation scheme that can
meet the needs of various provinces in China and comply with the
requirements of carbon emission reduction targets, this paper aims
to conduct in-depth research and develop a future CEA allocation
scheme. Specifically, we will construct distribution principles and
methods from a utility perspective to formulate a reasonable inter-
provincial CEA allocation scheme for China in 2030. On one hand,
we will construct fairness and efficiency principles based on the
“utility” indicator in the distribution principles. On the other hand,
in the allocation method, this paper uses a variable weight function
to construct the objective function of maximizing the utility of CEA
allocation, improves the variable weight function, and thus flexibly

formulates the Chinese CEA allocation scheme under different
allocation principles. This will help achieve the dual carbon
targets, facilitate carbon emission reduction work, provide a new,
simple, and flexible CEA allocation scheme, and enhance the
enthusiasm and compliance rate of provinces as responsible
entities for carbon emission reduction.

Consequently, this article’s innovation mainly lies in two
aspects. Firstly, it innovates the research perspective by
constructing allocation principles and methods based on the
utility perspective to develop a reasonable CEA allocation scheme
that meets the needs of various provinces. This not only provides a
new approach for studying CEA allocation schemes but also
broadens the research perspective in the field of resource
allocation. Secondly, it innovates the research methods by
proposing a method of improving the variable weight function
for CEA allocation, which involves using corresponding
weighting functions under different principles. This enriches the
CEA allocation schemes and provides a flexible and simple method
for formulating and adjusting CEA allocation schemes based on
changes in carbon emission reduction targets.

The remaining structure of this article includes a review and
summary of relevant literature in Part 2, an introduction of the
methods and data used to develop specific CEA allocation schemes
in Part 3, an analysis of the results in Part 4, and a conclusion of the
research findings, as well as an explanation of shortcomings and
future research directions in Part 5.

2 Literature review

In the context of carbon emission reduction, CEA allocation has
become a current research hotspot in the field of carbon. Based on
the review of relevant literature, it is found that due to different
research paths, it can be categorized into two types. The first is the
shallow path, which directly investigates CEA distribution plans
under different allocation principle (Dong et al., 2018; Zhang et al.,
2023) and allocation methods (Zhang and Hao, 2017; LIESIO and
VILKKUMAA, 2021). The second is the deep path, which starts by
studying allocation principles and methods from different
perspectives and then delves into CEA distribution plans. As this
paper chooses to study CEA distribution plans along the deep path, a
comprehensive review of relevant literature under different research
perspectives in this approach is conducted. Furthermore, the text
proposes a novel methodology that can cater to the requirements of
diverse regions and create adaptable CEA allocation strategies. It
endeavors to incorporate utility-based value functions into CEA
allocation. Therefore, a focused review of existing research involving
allocation methods and variable weighting functions is also
carried out.

2.1 Research perspective

While only a small portion of the literature currently delves into
the deep pathways of studying CEA allocation issues, in recent years,
this approach has gained increasing attention from scholars
exploring it from various perspectives. Li et al. (2022), based on
a supply-demand perspective, proposed a dynamic adjustment
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scheme that utilizes price feedback as a response signal. This scheme
aims to rapidly reduce the supply risk of CEA. The price mechanism,
which is influenced by supply and demand, itself embodies the
principles of fair and efficient distribution. Wang et al. (2019), based
on an output perspective, constructed a CEA allocation model using
the production levels of various sectors as constraint conditions.
Using production levels as constraint conditions reflects the
consistency of CEA allocation with production levels, embodying
the principle of feasibility (Fang et al., 2019).

The utility perspective essentially represents the demand
perspective, but there is a lack of scholars considering this issue
from a utility perspective. The level of CEA allocation utility directly
affects the implementation of carbon emission reduction efforts.
One important reason for this may be that the utility assigned to
CEA is the satisfaction that each province obtains from the
allocation of CEA. Specifically, it can be understood as whether
the allocated CEA meets the province’s demand for carbon
emissions reduction, and whether it brings about certain benefits.
However, quantifying this satisfaction is challenging and comes with
a strong subjective component.

2.2 Allocation methods

In terms of allocation methods, there are four broad categories:
indicator method, optimization method, game theory method, and
hybrid method. Tian et al. (2022) utilized the entropy value method
and expert survey method to construct a comprehensive indicator-
based allocation of CEA based on historical data, demand,
contribution, and other factors. The optimization method,
specifically the Data Envelopment Analysis (DEA) model, has been
widely used in recent years. Cui et al. (2021) optimized the allocation
of CEA in various provinces in China using the ZSG-DEA model. As
CEA allocation involves balancing and negotiating the interests of
multiple parties, some scholars have considered using game theory
methods to achieve the best carbon emission reduction effect. Yao
et al. (2023) developed a stochastic game-theoretic model based on
existing game theory models and analyzed its feasibility for carbon
quota allocation. However, due to the subjectivity in indicator
selection, the inconstancy of weight assignment, and the opacity of
the game process in these three methods, more scholars choose to use
a hybrid method for CEA allocation. Zhao and Yang (2022) proposed
a new allocation framework that combines the DEA model with
Genetic Algorithm (GA) in a dual-level allocation scheme (DLA-GA).
Wang and Ge (2022) also studied the allocation of CEA frommultiple
dimensions using the entropy value method and the Modified Fixed
Cost Allocation Model.

From the above literature, it can be observed that scholars,
whether focusing on distribution principles or distribution methods,
tend to consider multiple aspects when studying CEA distribution
schemes, aiming to obtain more reasonable distribution plans.
However, due to the changes in carbon reduction goals,
governments need to adjust CEA distribution schemes promptly.
Different carbon reduction targets are often reflected in ways guided
by different distribution principles. This makes the question of
“which distribution method should be adopted to flexibly and
simply formulate CEA distribution plans” an urgent issue that
needs to be addressed.

2.3 Variable weight function

The weighting function is generated based on the concept of
weighting, which was proposed by Li and HAO (2014) after
conducting research on other studies. This concept takes into
account the significance of fundamental factors and the balance
of conditions to enhance the objectivity in selecting indicators.
Additionally, a more practical and adaptable index-type state
weighting vector was also established. This research offers the
possibility of utilizing weighting functions to develop CEA
allocation plans based on different principles. Moreover, Yu
(2018) demonstrated that weighting functions are defined and
constructed based on utility indicators in decision-making
problems. Therefore, Moradian and Kia (2021) used a variable
weight function for resource allocation in their study on
generators. In recent years, weighting concepts and functions
have been commonly adopted in evaluation fields. For instance,
Liu et al. (2018), Li et al. (2023) and others utilized them to evaluate
the vulnerability of countries and food import risks, respectively.
Furthermore, improved the variable weight function is extensively
implemented in this area. Wu et al. (2023) improved the existing
weighting models used to assess the risk of water inrush in coal seam
floor, as determining weighting parameters was cumbersome.

While previous studies have attempted to apply variable
weighting ideas and functions to various fields, there is limited
research applying them to the field of CEA allocation. Therefore, this
paper attempts to construct distribution principles and methods
based on the utility perspective, utilizing variable weighting
functions. It builds an objective function that maximizes the
utility of CEA allocation in China, solves for variable weighting
parameters under different allocation principles, and formulates
CEA allocation plans under different principles based on an
improved variable weight function. Additionally, considering the
difficulty of expressing other allocation principles, such as feasibility,
in utility form, this paper mainly formulates CEA allocation plans
for fairness, efficiency, and fairness-efficiency principles in China for
the year 2030, with a subsequent analysis to determine the final
allocation plan.

3 Methods and data

3.1 Methods

This paper investigates the 2030 inter-provincial CEA allocation
scheme in China based on the utility perspective, the specific details
are shown in Figure 1. Firstly, taking the year 2020 as an example,
the entropy method is employed to simulate the current inter-
provincial allocation method of China’s CEA and formulate
allocation plan. Secondly, the SBM (Slacks-Based Measure) model
is utilized to examine whether there is any irrationality in the current
allocation scheme. Thirdly, if no irrationality is found, the original
allocation method will be continued for the year 2030. However, If
there are any unreasonable aspects, try using a method of improving
the variable weight function. From the utility perspective, a CEA
objective function is constructed using improvement of the variable
weight function. Different weight parameters β values are obtained,
and then, based on the ARIMA time series model predicting the total
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CEA quantity in 2030, various allocation schemes for inter-
provincial CEA are formulated using the variable weight
parameters β and an improved variable weight function.

3.1.1 Developing and simulate the current
allocation plan for CEA
3.1.1.1 Entropy method

According to the framework, the first issue addressed in this
paper is to examine whether the current inter-provincial CEA

allocation scheme in China has any irrationality. To do so, taking
the year 2020 as an example, the entropy method is initially
employed to simulate the current CEA allocation method and
formulate an allocation scheme. Subsequently, the SBM model is
utilized to scrutinize this allocation scheme. Due to the current
distribution methods in China, which mainly include historical
emission methods, historical carbon intensity reduction methods,
and industry baseline methods, they are all, in fact, based on the
distribution of CO2 emission. Therefore, this paper draws

FIGURE 1
Research framework.

Frontiers in Environmental Science frontiersin.org04

Guo and Xiong 10.3389/fenvs.2024.1408970

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2024.1408970


inspiration from Li’s study on the allocation of CEA in the cities of
the BOHAI Economic Rim. Li et al. (2021a) used CO2-related
indicators, namely, population, GDP, historical CO2, and
historical cumulative net CO2 emissions. The entropy method is
then applied to allocate CEA, making the allocation scheme more
closely aligned with the current practical CEA allocation scheme.
Formulas 1–7 are provided for specific cases, where i denotes
provinces (i = 1,2,30, as defined in the following text), and j
denotes indicators (j = 1,2,30, as defined in the following text).

Normalize the indicators by defining Zij as the normalized value
of Pij, where Pij represents the value of indicator j in province i:

Zij � Pij − min Pij

maxPij − minPij
(1)

Zij � maxPij − Pij

maxPij − minPij

To calculate the entropy value of a given indicator, denoted by
nij, we need to first determine the share of that indicator in the total
sum of all provinces’ values for that indicator. This share is
represented by yij.

yij � Zij

∑30
i�1
Zij

(2)

nij � − ln( )−1∑30
i�1

yij × ln yij( )[ ] (3)

Calculate the weight, rj, for each indicator j:

rj � 1 − nj∑j 1 − nj( ) (4)

Build composite index hi:

hi � r1yi1 + r2yi2 + r3yi3 + r4yi4 (5)

Calculate the weight wi of province i:

wi � hi

∑30
i�1
hi

(6)

Finally, the allocated amount of DEA for each province should
be calculated, using C2020 as the total CEA amount in 2020.

xi � wi × C2020 (7)

3.1.1.2 SBM model
The SBM model, as one of the DEA (Data Envelopment

Analysis) models, not only calculates the input-output ratio of
input variables but also considers the redundancy of input
variables. Therefore, by taking the allocated CEA as the input
variable, the SBM model can assess whether the current CEA
allocation scheme has issues of wastefulness based on its
redundancy. It is worth noting that this is to examine the
rationality of the current allocation scheme, not to optimize it.
The SBM formula is represented as (3.8), where xio denotes the input
variable, yro represents the expected output, bko represents the non-
expected output, and si represents redundancy. Since data for the
Tibet region is missing, this paper considers a total of 30 Decision

Making Unit (DMU), and with the assistance of the DEARUN
software, the redundancy of CEA for each province is calculated.

θ � min
λ s−s+

1 − 1
n ∑n
i�1

s−i
xio

1 + 1
q+h ∑q

i�1
s+r
yro

+ ∑h
k�1

s−
k

bko
( ) (8)

s.t. xio � ∑n
j�1
λjxij + s-i , i � 1, 2,/,m;

yro � ∑n
j�1
λjyrj-s+r , r � 1, 2,/, q;

bro � ∑n
j�1
λjbkj + s-k , k � 1, 2,/, h

3.1.2 Formulating a new allocation plan for CEA
in 2030

This paper endeavors to allocate CEA via a novel approach,
where utility is first constructed as the basis for distribution
principles, followed by the construction of a distribution method
through utility and weight functions. Subsequently, improving the
variable weight function. Finally, the ARIMA model was employed
to forecast the total CEA in China for 2030. Developing a provincial
inter-regional CEA allocation scheme for China in 2030.

3.1.2.1 Constructing allocation principles
As this article adopts a deep-path study of the distribution

scheme of China’s CEA, the distribution principles are
constructed based on utility, with a primary focus on fairness,
efficiency, and a combination of both fairness and efficiency.
Therefore, drawing inspiration from indicators used to measure
income distribution fairness, the Gini Coefficient of individual
utility is selected as the indicator to measure the fairness of CEA
distribution. When the Gini Coefficient is 0, fairness is maximized.
Based on the research of other scholars (MORADIAN H and KIA,
2021) using variable weight functions in resource allocation
domains, the mean of individual utility is chosen as the main
indicator to measure the efficiency of CEA distribution. Finally,
using Matlab software and the FMINCON function for
optimization, the variable weight parameters corresponding to
fairness and efficiency values under different conditions are
calculated. Ultimately, by computing the ratio of efficiency loss to
fairness loss, the variable weight parameters under different
distribution principles are determined. The specific formula is
given by (Equation 9), where F represents fairness, E represents
efficiency, FF is the optimal solution for fairness, EE is the optimal
solution for efficiency, WF is the fairness loss, WE is the efficiency
loss, and ρ is the ratio of fairness to efficiency loss.

ρ � WE

WF
(9)

Among them:

WE � 1 − E

EE

WF � 1 − F

FF

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
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3.1.2.2 The variable weight function
As this paper adopts a utility-based perspective to construct

allocationmethods, it utilizes a variable weight function to formulate
the objective function for maximizing CEA allocation utility, and
thus, establishes a new allocation approach. The CEA objective
function is primarily composed of the variable weight function and
individual utility (Equation 10), where the variable weight function
is represented as the normalized Hardarmard product of the
constant weight vector and the state weight vector (Equation 11).
The state weight vector is crucial for achieving a reasonable CEA
distribution. In CEA allocation issues, governments typically focus
more on provinces with higher carbon emissions. Traditional
methods, such as allocating based on historical emissions, tend to
indirectly encourage provinces with higher historical emissions.
However, the state weight vector in the variable weight function
considers the variation in weight status, enhancing the importance
of smaller entities in decision-making. Therefore, the choice of the
state weight vector is critical.

Max U( ) � ∑30
i�1
viui (10)

In Equation 10, U represents the total utility, vi represents the
variable weighting function, and ui denotes individual utility.

Vi � WiSi X( )
∑30
j�1
WjSj X( )

(11)

In Equation 11, Wi denotes the constant weight vector and Si(x)
represents the state variable weight vector.

Commonly, there are three types of state weighting vectors, and
the specific choice needs to be considered from the perspective of
balancing force values. While the importance of individuals with
smaller utility is increased using the weighting function, it is also
undesirable for the weights after weighting to be overly concentrated
on individuals with the smallest state values. Therefore, the first two
forms of weighting vectors are not suitable for application in the
CEA distribution problem. On the contrary, exponential-type
weighting vectors can reflect different degrees of balancing force
by setting different weighting parameters. Leveraging these
weighting parameters, flexibility in the distribution of CEA
among provinces can be achieved. Hence, this paper mainly
chooses to use this type of weighting vector to establish the
weighting function for CEA distribution.

(1) The empirical formula: Si X( ) � ∏n
j�1
j ≠ i

xj, i � 1, 2,/, n( )
(2) Additive equilibrium functions: Si(X) �x−β

i ,(β≥0,i� 1, 2,/,n)
(3) Exponential form: Si(X) � e−βxi , (β≥ 0, i � 1, 2,/, n)

The weighting function not only needs to determine the state
weighting function but also define the constant weight as an
indicator. Considering two aspects, on the one hand, due to
significant differences in actual carbon emissions among
provinces, their demand for CEA also varies. Only when demand
is not considered, should the constant weights be equal among
provinces, but this is obviously not suitable for CEA distribution. On
the other hand, the size of the constant weight also reflects the
importance assigned by decision-makers to individuals. As

mentioned earlier, the government usually emphasizes provinces
with higher carbon emissions due to considerations of the
magnitude of emission reduction pressure. Therefore, this paper
chooses to use the mean of the actual carbon emissions (Di) of each
province in the past 5 years as the constant weight for each province,
as shown in Equation 12.

Wi � Di

∑30
i�1
Di

(12)

In addition, quantifying individual utility is necessary for
constructing the CEA objective function, which reflects the
impact of CEA distribution on each province, i.e., the satisfaction
generated by each province with the allocated CEA. Although
surplus CEA can be traded on the carbon emission trading
platform to obtain some income with positive benefits (Zhao
et al., 2022), the remaining CEA cannot be stored in the long
term to offset future carbon emissions. Additionally, an excess of
remaining CEA can lead to lower carbon emission permit prices,
reducing income from selling. Therefore, CEA exhibits diminishing
marginal utility. Hence, a marginal utility diminishing parameter p ∈
(0,1) is introduced. This parameter is challenging to directly obtain,
but when using the SBM model, GDP and carbon emissions are
considered as expected and non-expected outputs, respectively.
Thus, the mean value of the ratio of GDP to carbon emissions in
recent years is chosen as the value of the marginal utility p, i.e., the
ratio of expected output to non-expected output. Therefore, the
specific formula for individual utility is as shown in Equation 13,
where ui represents the utility function for each province, xi is the
actual CEA obtained, ci is the CEA input-output ratio for each
province, m is the total CEA in 2020, and p = 0.8.

ui � cix
p
i (13)

∑30
i�1
xi � m

So, by substituting the exponential weight vector into Equation 11,
we obtain Equation 14. Substituting this into Equation 10 and
combining it with Equation 13, we get the final CEA objective
function based on the weight function, as shown in Equation 15.
The constraint is that the sum of the CEA obtained by the
30 provinces in China, excluding Tibet, must not exceed the total
CEA for the country, denoted as m.

Vi � Wie−βxi

∑30
j�1
Wje−βxj

(14)

Max U( ) � ∑30
i�1

Wie−βxi

∑30
j�1
Wje−βxj

× cix
p
i (15)

s.t. ∑30
i�1
xi ≤m

3.1.2.3 Improvement of the variable weight function
Based on the formulas related to the CEA fairness efficiency loss

ratio and objective function, the value of the weight parameter β is
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obtained by comparing the efficiency principle, fairness principle, and
the principle of fairness and efficiency. While the weighting function in
the fairness distribution can also be used as a weight for predicting the
CEA distribution, it is essential to consider that in the original weighting
function, the β parameter is inversely proportional to the weighting
function. Additionally, small changes in β can lead to a considerable
change in the state weighting vector, causing a severe two-level
differentiation of the weighting function, which does not align with
the principle of fair distribution from the perspective of distribution
differences. Therefore, in calculating the distribution under the fairness
principle, the original weighting function formula is adjusted to the
form of Wi × [1 - Si(X)]. For the principles of fairness and efficiency,
both their weighting functions should be used, leading to the issue of the
weights of the two. If a uniform weight of 0.5 is adopted, it is
meaningless. However, as this study obtains the β values for fairness
and efficiency separately in the second step, an attempt is made to use
the respective β values’ proportions as weights. Given that the efficiency
parameter proportion is generally smaller, multiplying it with the
corresponding β value helps avoid the problem of significant
differences in distribution. Therefore, the final formula for predicting
CEA distribution is as shown in Equation 16.

Xl � M ×
WiSi X( )
∑30
j�1
Wj X( )

Efficiency Principle

Xl � M ×
Wi 1 − Si X( )[ ]

∑30
j�1
Wj 1 − Sj X( )[ ] Fairness Principle

Xl � M ×
WiSi X( )
∑30
j�1
WjSj X( )

×
βE

βE + βF
+ Wi 1 − Si X( )[ ]
∑30
j�1
Wj 1 − Sj X( )[ ] ×

βF
βE + βF

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
Fairness and Efficiency Principles (16)

3.1.2.4 ARIMA forecast of total CEA
In order to predict the total carbon emissions in China for the

year 2030, a basic analysis revealed a linear correlation between GDP
and time. Therefore, for predicting the total carbon emissions, this
study opted to use the most widely-used model in time series
forecasting - ARIMA, to forecast the GDP in 2030. Furthermore,

taking into account the significant pressure China faces in reducing
carbon emissions, this study set the target for reducing carbon
intensity at 60%.The formula is presented as (3.17), where M
represents the predicted CEA total, and I represents
carbon intensity.

M � GDP2030 × I2005 1 − 60%( ) (17)

3.2 Data

In this study, a sequential approach involving the entropy
method, SBM model, weighting function, ARIMA time series
model, and improved weighting function is employed. The
indicators used include population, GDP, historical CO2

emissions, net cumulative CO2 emissions, and total energy
consumption. The net cumulative CO2 emissions refer to the
deduction of plant-absorbed CO2 from the CO2 emissions.
Specifically, data on population, GDP, total energy consumption,
and vegetation area are obtained from the “Statistical Yearbook” of
each province. Historical CO2 emissions are calculated using the
accounting method proposed by Cong et al. (2014), utilizing the
IPCC (2006) method specified in the “National Greenhouse Gas
Emission Inventory Guidelines.” This involves calculating the sum
of the latest specified emissions in the three carbon emission scopes,
resulting in the actual carbon emissions for each province. The
specific accounting data are derived from the “China Energy
Statistical Yearbook,” “General Guidelines for Comprehensive
Energy Consumption Calculation,” and the China Carbon
Accounting Database (CEADs), among other sources.

4 Results and analysis

4.1 The current CEA allocation plan needs
adjustment

Figure 2 depicts the simulation results of the current inter-
provincial CEA allocation in China using the entropy method. As
shown in the figure, provinces such as Guangdong, Shandong,
Jiangsu, and Shanghai receive more CEA. This is mainly

FIGURE 2
Current CEA allocation scheme.
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attributed to the higher population, GDP, and CO2 emissions in the
eastern regions. However, the relatively low forest and vegetation
areas result in increased net CO2 emissions. On the other hand,
provinces like Inner Mongolia and Qinghai, with lower populations
and extensive forest and grassland areas, absorb a significant amount
of CO2, leading to lower net emissions and consequently receiving
fewer CEA. Although there are some differences compared to the
distribution of CEA reported in the “First Compliance Cycle Report
of the National Carbon Emission Trading Market” released in 2022,
this is mainly because the mentioned report only covers the
allocation of CEA in the power generation industry. However,
data from other sources, such as “Review and Outlook of China’s
Carbon Market,” show consistency with the results obtained
through the entropy method. Therefore, it can be generally
considered that this study accurately simulates the current inter-
provincial CEA allocation in China using the entropy method.

Table 1 provides an examination of the distribution results.
Firstly, it is evident that among the 30 provinces, only Beijing,
Guangdong, Jiangsu, Inner Mongolia, Qinghai, and Ningxia had
zero redundancy in their 2020 CEA allocations. Secondly, provinces
such as Guangi, Shanxi, Liaoning, and Gansu exhibited higher
redundancy in their CEA allocations. Additionally, Shandong
ranked first in the quantity of CEA obtained in 2020, but its
redundancy was as high as 2.96. This is primarily due to its
elevated historical carbon emissions and a GDP gap compared to
regions like Guangdong and Jiangsu. It indicates a substantial degree
of waste in Shandong’s CEA allocation, suggesting a need for a
reduction in the allocated CEA amount. These findings underscore
the significant issue of waste in the inter-provincial distribution of
CEA. Therefore, the future allocation of CEA among Chinese
provinces should not continue based on the current distribution
scheme and requires adjustment.

4.2 The new allocation plan for CEA in 2030

4.2.1 The variable weighting parameter β
To flexibly and conveniently adjust the CEA distribution

scheme under different allocation principles, this study utilized
the FMINCON function in Matlab to determine the values of
variable weight parameters for which the Gini Coefficient and
mean utility of each province were obtained under different
conditions of fairness and efficiency, as shown in Figure 3.
Overall, as the variable weight parameter gradually increased,
the fluctuation amplitude of CEA distribution fairness remained
relatively small, while efficiency showed a strict decreasing trend
after β = 4. Specifically, from a fairness perspective, when β = 17,
the Gini Coefficient of utility was minimized. A smaller Gini
Coefficient indicates a more equitable distribution. Therefore,
this β value is considered the variable weight parameter for
fairness orientation. Additionally, since the Gini Coefficient at
this point is 0.27, it implies that achieving absolute fairness in CEA
distribution is challenging regardless of the value of the variable
weight parameter; what can be achieved is relative fairness in
distribution. From an efficiency standpoint, when β = one to four,
the mean utility was consistently 174.25, the maximum value.
However, based on the analysis of the current distribution scheme,
there is significant waste in inter-provincial CEA distribution.
Therefore, individual provinces should not receive excessively
large amounts of CEA. Consequently, this study chose β = 1 as
the variable weight parameter for efficiency orientation. It was also
observed that the maximum value of mean utility coincided with
the total CEA distribution in China, indicating a certain
relationship between the efficiency of CEA distribution and its
total allocation.

As this paper explores the CEA allocation scheme considering
both fairness and efficiency principles, further determination of the
β values was conducted by calculating the efficiency-fairness loss
ratio using Formula 9, with specific results illustrated in Figure 4.
Although there is a certain range of fluctuations in the efficiency-
fairness loss ratio, the overall trend indicates an increase with the
growth of β values. On the one hand, according to this figure, it is
evident that when β = 1, the ratio is 0. In this scenario, an increase in
fairness loss does not lead to a reduction in efficiency loss,
emphasizing that a β value of one is preferred when efficiency is
the guiding principle. Similarly, when β = 17, the ratio approaches
infinity, signifying that an increase in efficiency loss cannot reduce
fairness loss. This situation represents the optimal scenario for
fairness. On the other hand, considering that 4 = 0 and 5 = 5.92,
there must be a∈(4,5), where a = 1. Therefore, when <β < 5,
efficiency loss exceeds fairness loss, and as β increases, more
efficiency loss is required to achieve a reduction in fairness loss.
When 4<β<a, efficiency loss is less than fairness loss, and an increase
in β results in a greater reduction in fairness loss with less efficiency
loss. Thus, based on the dual principles of fairness and efficiency, the
β value should be a, and after further calculation, when a = 4.35, β
equals 1. Therefore, β = 4.35 is the preferred β value that balances
fairness and efficiency principles.

4.2.2 Total CEA in 2030
Based on the ARIMA model used to forecast the 2030 GDP and

subsequently applying Formula 17, the calculated total CEA for the

TABLE 1 The redundancy of CEA for each province.

Provinces Redundancy Provinces Redundancy

Beijing 0 Henan 2.47

Tianjin 1.82 Hubei 2.66

Hebei 2.48 Hunan 2.17

Shanxi 1.44 Guangdong 0

Inner Mongolia 0 Guangxi 2.43

Liaoning 2.60 Hainan 0.04

Jilin 0.63 Chongqing 3.41

Heilongjiang 2.16 Sichuan 1.79

Shanghai 3.86 Guizhou 1.57

Jiangsu 0 Yunnan 0

Zhejiang 0.53 Shaanxi 1.36

Anhui 1.75 Gansu 2.83

Fujian 0.31 Qinghai 0

Jiangxi 0.77 Ningxia 0

Shandong 2.96 Xinjiang 0.19
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year 2030 is 210.73 billion tons. The results differ from the study by
GE (2021), mainly due to variations in the chosen reduction rate of
carbon intensity. In comparison to the calculation of 253 billion tons
by Fang et al. (2018), although some discrepancies exist, it might be
attributed to their fixation of GDP growth rate at 6%, resulting in a
higher GDP forecast and, consequently, a relatively higher final
prediction. However, in reality, the growth rate of GDP is unlikely to
remain constant. Therefore, the projected total CEA for China in
2030 in this study appears reasonably justified.

4.2.3 Distributional schemes under different
principles

Since the variable weighting parameter β under different
allocation principles has been determined, assuming that the total
China’s CEA in 2030 is 210.73 billion tons, the allocation scheme for
inter-provincial CEA in China in 2030 can be predicted using
Formula 16. The allocation schemes guided by different
allocation principles are shown in Figures 5–7. Horizontally,
there are significant differences in CEA distribution schemes

under different principles, especially between those guided by
efficiency and fairness. Under the efficiency principle, most CEA
is allocated to remote areas such as Inner Mongolia, Qinghai, and
Yunnan. Conversely, under the fairness principle, economically
developed provinces such as Guangdong, Shanghai, and Beijing
receive more CEA, with Guangdong receiving the highest. This may
be because under the efficiency principle, the variable weighting
parameters are smaller, and remote provinces like Inner Mongolia,
due to their lower historical carbon emissions in 2020, receive more
CEA even with lower demand. In contrast, provinces with higher
population, GDP, and historical CO2 emissions like Guangdong,
Shanghai, and Beijing receive more CEA under the fairness principle
due to their larger historical emissions and larger variable weighting
parameters.

From a vertical perspective, under the guidance of the efficiency
principle, there is a significant disparity in CEA allocation between
Inner Mongolia and Guangdong. Inner Mongolia, Qinghai, and
other regions receive a substantial amount of CEA. However, as
mentioned earlier, the utility of excess CEA diminishes over time.

FIGURE 3
Equity and Efficiency of CEA Allocation under Different β

FIGURE 4
Efficiency to equity loss ratio.
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The surplus CEA cannot be stored for an extended period, and even
if sold in the carbon market, the oversupply may lead to a reduction
in carbon prices. Therefore, the surplus CEA may not bring
additional benefits to these provinces. In contrast, the eastern
regions receive only a small portion of CEA, which is insufficient
to meet their carbon emission needs for economic development.
Notably, Guangdong receives almost no CEA, which appears to be
unreasonable. This distribution scheme may lead to dissatisfaction
among provinces receiving fewer CEA, hindering the progress of
China’s carbon reduction tasks. Therefore, the implementation of
such a distribution scheme requires careful consideration.

Under the guidance of the fairness principle, the disparity in
CEA among provinces noticeably decreases, with economically
developed eastern regions receiving more CEA than the central
and western regions. This observation broadly validates Dong’s
research findings, indicating a transfer of China’s CEA from the
central and western regions with lower input-output ratios to the
eastern regions with higher input-output ratios (Dong et al., 2018).
However, in this scheme, due to the small variations in the weight
function, the distribution is still primarily based on traditional
historical CO2 emissions. This makes it challenging to address
the issue of asymmetric disclosure of carbon emission
information among provinces. Additionally, according to the
results of the SBM, there is limited incentive for remote
provinces with minimal CEA redundancy. Regions like Inner
Mongolia, Qinghai, and Hainan experience only marginal
increases in CEA, highlighting certain shortcomings in this
distribution scheme.

In the distribution scheme that simultaneously considers both
the principles of fairness and efficiency, it reasonably addresses this
issue by appropriately increasing the CEA for provinces with less
redundancy. Moreover, for provinces with excessive CEA
redundancy, such as Shandong, their CEA increment is reduced
to minimize the wastage of carbon quotas, as illustrated in Figure 8.
While this scheme may impose significant emission reduction
pressure on provinces like Jiangsu and Henan, it results in CEA
surpluses for regions like Inner Mongolia and Qinghai. The
government can formulate policies related to CEA cooperation
based on these surpluses. Scholars like Li et al. (2021b) advocate
strengthening regional cooperation, allowing for more flexible
nationwide CEA distribution and fostering collaboration between
eastern and central-western provinces. From a comprehensive
perspective, as shown in Figure 7, CEA distribution in this
scheme still favors eastern provinces over western provinces,
consistent with the findings of Li et al. (2021a) in inter-
provincial CEA allocation results. Southern provinces also receive
more CEA than northern provinces, with CEA concentrated in
southern provinces such as Shanghai, Guangzhou, and Chongqing.
Kong et al. (2019), in studying the distribution of CEA, obtained
similar allocation results.

After a detailed analysis of the three principles-based
distribution schemes mentioned above, it becomes evident that
the variable weight function can be applied to the CEA
distribution problem, and the result of the improved variable
weight function is reasonable. However, distribution schemes
based solely on the efficiency principle or the fairness principle

FIGURE 5
Allocation plan under efficiency principle.
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have their own shortcomings, so this article does not recommend
using them for the distribution of China’s CEA in 2030. In
comparison to these two distribution schemes, the scheme guided
by both fairness and efficiency principles may be more suitable for
the distribution of inter-provincial CEA in China by 2030. This is
because the latter not only maximizes the utility of CEA distribution
but also aligns with the carbon emission demands of each province.
It significantly boosts the enthusiasm of provinces to reduce
emissions, providing robust support for achieving the “peak
carbon” target.

5 Conclusion

In order to achieve China’s goal of reaching peak carbon
emissions by 2030, it is necessary to ensure the fair distribution
of CEA. However, the current CEA allocation scheme has its
limitations. Therefore, this paper aims to propose a new
allocation method that takes into account the specific needs of
each province while also allowing for flexible and simplified
adjustments to inter-provincial CEA allocations based on various
allocation principles.

The final study has two main conclusions. Firstly, using the
entropy method to simulate the current inter-provincial CEA
allocation method in China and formulating the current
allocation scheme based on this, the study found that the scheme
has shortcomings in terms of inefficiency and waste. Therefore, the

CEA allocation should not be distributed according to the original
method. Secondly, the improved variable weight function is a more
suitable distribution method for resource allocation than the current
original allocation method. Under this method, the CEA allocation
scheme that balances fairness and efficiency principles is more
suitable for the inter-provincial CEA allocation in China in 2030.
This is because most CEA not only allocate to economically
developed and high carbon-emitting provinces, but also to
provinces with previously high CEA input-output ratios. These
findings not only enrich the CEA allocation scheme but also
expand the application of variable weight functions in the field of
resource allocation. They also provide a premise and guarantee for
the smooth operation of the carbon emission trading market, and
more importantly, provide a new method for China to flexibly
formulate and adjust CEA allocation schemes.

Certainly, there are some limitations in this study. On the one
hand, this article allocates CEA from the perspective of utility, but
only investigates two distribution principles, fairness and efficiency,
without studying other distribution principles such as feasibility and
sustainability. Therefore, future research could explore constructing
other distribution principles using the metric of “utility” to make CEA
distribution more in line with the needs of future carbon emissions.
On the other hand, the paper uses 2020 carbon emission and carbon
quota data to predict the 2030 CEA distribution scheme, and these
data are currently not directly obtainable. The inaccuracy of the data
will undoubtedly impact the calculation results, yet existing carbon
databases suffer from issues such as poor data timeliness and

FIGURE 6
Allocation plan under equity principle.
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significant variations in results due to different statistical methods. To
enhance the precision of future research related to carbon, efforts can
be directed towards developing standardized methods for measuring
carbon emissions and establishing a comprehensive carbon data
repository across multiple dimensions.
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FIGURE 8
Cea value added.

FIGURE 7
Allocation plan under Equity and Efficiency principle.
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