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The primary climatic parameter frequently scrutinized in water balance
assessments for water utilization is precipitation. Given its considerable
variability across locations and over time, it is imperative to rely on high-
quality statistical information to facilitate accurate analyses. This study aims to
refine the estimation of precipitation data by enhancing information obtained
from freely accessible satellite sensors with data collected from established
observation stations. Monthly precipitation data spanning from 2000 to
2015 were gathered from 24 stations. Three distinct methodologies were
employed to adjust individual station data to address missing data.
Consistency analysis and data refinement were conducted for stations
requiring adjustments, utilizing graphical analysis and non-parametric
statistical techniques. The satellite products under evaluation correspond to
the IMERG v6 algorithm. Subsequently, statistical metrics were used to
compare observed and estimated data. A correction coefficient was
computed by aligning monthly means between observed and calculated data
to mitigate random and systemic errors. The IMERG algorithm demonstrates
proficiency in accounting for altitude and seasonal variations, with the adjustment
significantly enhancing its performance under these conditions.
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1 Introduction

Precipitation is generally recognised as an important meteorological variable in the
water cycle and the primary supply source for various water resources (Diaz et al., 2009).
Therefore, analysing its behaviour in a region is indispensable. However, quantifying this
task becomes complex when its spatial and temporal distribution is highly variable
(Andrade, 2016).

In 1997, the Tropical Rainfall Measurement Mission (TRMM) was launched by NASA
and JAXA; out of any forecast, this mission lasted 17 years until April 2015. Among the
most significant achievements was the observation of rainfall rates in the tropics, the area of
the planet where two-thirds of the rainfall is concentrated, and these data could be
converted into three-dimensional images, allowing experts to identify the internal
structure of storms (Morrow, 2015).

Overall, the TRMM produced global rainfall estimates based on remote data
observations. The 3B42 algorithm provided information with a spatial resolution of
0.25° and a temporal resolution of 3 h, making it an important data set product for
hydrometeorological applications, particularly in areas without observed data (Zulkafli
et al., 2014).
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The Global Precipitation Measurement (GPM) was launched on
27 February 2014; this satellite is the successor to the TRMM
mission. The main difference is that the GPM imagery has
extended the measurement range to include precipitation less
than 0.5 mm/h, snowfall, and more global coverage (65° N/S,
compared to the TRMM 35° N/S). This has improved the
quantification of precipitation estimates, allowing better-quality
products to be obtained (Hou et al., 2014).

The Integrated Multi-Satellite Retrievals algorithm of GPM
version 06 (IMERG) has combined information from the GPM
satellite constellation and the first precipitation estimates
collected by the TRMM mission. By comparing present and
past data, specialists are optimising the climatological models,
making them more accurate; these data have been available since
June 2000 and have a spatial resolution of 0.1° (Huffman
et al., 2022).

Precipitation records are important for many applications, such
as drought monitoring, floods, and crop forecasting. Surface rain
gauges are the main source of direct observation of this data.
Unfortunately, there is a low density of these instruments in
developing countries such as ours, so the information is scarce or
non-existent. Satellite products seek to mitigate these limitations,
and calibration analyses with ground-based data are incorporated to
improve estimates (Alvarez-Mendoza et al., 2019; Huffman
et al., 2022).

In this context, the current study aims to refine satellite
precipitation estimates by incorporating surface-measured data
through a correction factor. This effort is geared towards
acquiring information suitable for various analyses to manage
and develop water resources in Ecuador’s Loja province,
acknowledging the constraints posed by limited access to
meteorological station data.

2 Materials and methods

2.1 Study area

The present study was conducted in the province of Loja, located
in the inter-Andean region of southern Ecuador. It has a surface area
of 11,063 km2, between latitudes 03° 19′49″and 04° 45′00″south.
Forty-five per cent of the province has a complex topography, partly
due to the presence of the Andean mountain range in its upper part,
while the lower part has a less rugged relief (cantons such as Macara
and Zapotillo). In the highlands, especially in cantons such as Loja
and Saraguro, rainfall distribution shows high spatial and temporal
variability, which can be attributed to the influence of the Amazon
region with which it borders. In the lowlands, there are more defined
periods with rainfall concentrated in certain months of the year and
prolonged periods of dry season. The temperature varies between
13°C in Saraguro in the high northern part and 24°C in the extreme
southern Macara and Zapotillo (Prefectura de Loja, 2019). In
addition, within the territory of the province, different
hydrographic units discharge their waters to both the Pacific
(Puyango-Tumbes, Catamayo-Chira, Jubones) and Atlantic
(Santiago) slopes. Loja has an average annual rainfall of 950 mm,
with variations ranging from 40% to 250% across its length and
breadth. Due to the great variety of temperatures, its orographic

characteristics and the different levels of rainfall, the region under
study has a series of microclimates (Ridrensur, 2014).

Due to the availability of existing pluviometric information, the
analysis period in Figure 1 corresponds to 16 years, from
2000 to 2015.

2.2 Methodology

Monthly precipitation data was collected for the period
2000–2015 from 49 stations registered by the National Institute
of Meteorology and Hydrology (INAMHI), then the information
was evaluated and reclassified, selecting those stations with at least
70% of the selected period; this criterion was used to have a
representative number of stations for a reliable evaluation (Luna
et al., 2018). In this way, the 24 stations that met this percentage of
information were defined in Supplementary Table S1.

Three methodologies were used to fill in missing information,
each of which was selected according to the number of data to be
filled in and further characteristics as described below Figure 2.

2.2.1 Missing data adjustment
2.2.1.1 Linear correlation method

This method constructs a linear model represented by the “x”
independent variable and “y” dependent variable. When the r
coefficient exceeds 0.7, the model represents a good correlation
between the data (Carrera et al., 2016), where n is the number of data
pairs, based on Eq. 1:

r � n∑xy − ∑x∑y��������������
n∑x2 − ∑x( )2[ ]√

n∑y2 − ∑y( )2[ ] (1)

Where:
r � Correlation coefficient
n � Number of observations
x � Represents the values of the observations for the variable x

(observed data).
y � Represents the values of the observations for variable x

(calculated missing data).∑xy � The sum of the products of the values of for all
observations.∑x,∑y � The sums of all values of and respectively.

FIGURE 1
Proposed Neural Network Schematic.
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(∑x)2, (∑y)2 � The sums of squares of all y-values respectively.
This method was used to fill stations with information that was

missing by no more than 10% and to maintain a station with similar
characteristics that could be used as a base station.

2.2.1.2 U.S National Weather service method
It is an average that considers the inverse of the squared distance

as a weighting factor, thus distributing the contribution of each
auxiliary station by weight, based on Eq. 2 (Chow et al., 1994), cited
by (Toro et al., 2017).

Pm � P1
1
d1

2 + P2
1
d2

2+P3
1
d3

2

1
d1

2 + 1
d2

2 + 1
d3

2

(2)

Pm = precipitation is generated for the station to be filled in.
P1, P2, P3 = Monthly precipitation of each station in

each quadrant.
D1, d2, d3 = Distance from each station to the station to

be refilled.
1/d1

2 = The weight applies to each station concerning the station
to be filled in.

This model was used to fill in the data of stations that, as in the
previous case, have a base station and do not exceed 10% of
missing data.

2.2.1.3 Neural network
The Neural Network (NR) corresponds to a mathematical

modelling technique; its structure is represented as links through
which information is transmitted between neurons, which finally
deliver a result by mathematical functions (Ovando et al., 2005).
This model was used to fill in the stations’ data with between 10%
and 30% of missing information, using three stations with similar
characteristics plus the station to be filled in. The proposed model
presents three layers of neurons with forward propagation of
information, and the activation function is in a linear category.
Its composition corresponds to A (input neurons, data from each
station), B (hidden neuron layer or processing unit) and C (output
layer or predicted data). In simplified form, it corresponds to a
predefined set of regressions with a defined number of iterations,
resulting in the prediction of the missing data, 2.

The NR was trained with the help of the Sklearn Python library,
a set of routines for predictive analytics that includes classifier
algorithms, regression and clustering algorithms, among others
(Pedregosa et al., 2019).

2.2.2 Consistency analysis
Once the data from the 24 stations was complete, an exploratory

graphic analysis was conducted to verify trends and changes in the
time series (Carvajal and Castro, 2010). The double mass curve
graph was used in this analysis, which compares the study series with
a standard series resulting from the averages of the series to be
analysed. If significant variations are identified in the series,
i.e., there is a break in the slope, it must be adjusted. This
adjustment is made using the corresponding slope ratio
(Guevara, 2015), based on Eq. 3:

Pa � ma

mo
Po (3)

Pa = Adjusted rainfall.
Po = Observed Precipitation.
ma = The slope of the graph to which the records are fitted. a �
Sub-index to be designated for the adjusted data in Eq. 3.
mo = The slope of the graph at the time Powas observed. o � Sub-
index that is designated for the existing data in Eq. 3.

The accumulated series were defined in seven groups of stations,
given that the climatic, hydrographic and topographic conditions are
variable throughout the study area and that the stations under analysis
are dispersed over it so as not to cause errors and distortions.
Considering the above, the criteria for grouping were climatic
similarity, altitude and hydrographic unit, Supplementary Table S2.

2.2.3 Confirmatory analysis
Hydrological processes evolve in space and time in a partially

predictable and random way. Hence, these are stochastic processes.
Various probabilistic distribution functions have been used to
describe such behaviour. Although most hydrological models
assume a normal distribution, it is necessary to test whether or
not to reject the null hypothesis that the data distribution follows
this type of theoretical distribution. In this study, the Kolmogorov
Smirnov (K-S) test was used to validate the fit of the theoretical
function. To carry out the confirmatory analysis, there are several
parametric and non-parametric statistical tests; the use of one or the
other depends on whether or not the theoretical assumption of
normal distribution of the data is fulfilled (García et al., 2010).
Parametric tests assume that the data distribution is normal and
sensitive to the amount of data, skewness, and outliers. On the other
hand, non-parametric tests do not require any assumption of known

FIGURE 2
Scheme for the extraction of raster data.
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distribution, which indicates that they are helpful for a wide range of
distributions.

2.2.3.1 F test
Corresponding to a parametric test that relates the variances of

two sets of data, these sets are the result of dividing the series to be
evaluated into two groups, based on Eq. 4 and Eq. 5.

F � σ12

σ22
� S1

2

S2
2 (4)

σ12, σ22 � Variances of missing data
S1

2, S2
2 � Variance of the existing data

The test is rejected if F is in:

0, F n1 − 1( ) n2 − 1( ), α
2

( ){ } u F n1 − 1( ), n2 − 1( ), 1 − α

2
,+∞( ){ }

(5)
(n1 − 1), (n2 − 1) � Degrees of freedom. n1y n2 � Amount of

data for each subset.

2.2.3.2 Median test
This is a non-parametric test to determine whether two samples

differ in relation to their medians (Gómez, Danglot, and Vega,
2003). The overall median value is determined by combining the
values of each sample, as shown in Supplementary Table S3. Then, it
is determined in each sample how many higher and lower values
exist concerning the overall median (Badii et al., 2012), cited by
(Valencia et al., 2020).

2.2.3.3 Student’s t-test
It is a parametric test that evaluates two sets of data resulting

from dividing the series to be evaluated into two groups. The test
requires that the variances are not significantly different. It is
rejected if T falls within the rejection region for a significance
level of α, based on Eq. 6 and Eq. 7 and Eq. 8.

−∞, t n1 − 1( ) + n2 − 1( ) α
2

( ){ }U n1 − 1( ) + nz − 1( ),{

1 − α

2
( ),+∞} (6)

S � ⎡⎢⎢⎢⎢⎣∑ni�1xi
2 −

∑n
i�1

xi( )2

n

n − 1

⎤⎥⎥⎥⎥⎦
1 /

2

(7)

t � x1 − x2
n1−1( )S12+ n2−1( )S22

n1+n2−2
1
n1
+ 1

n2
( )[ ] 1 /

2
(8)

n1, n2 � Number of subsets data
x1, x2 = Mean of the subsets
S � Variance
S1, S2 � Variances

2.2.3.4 Mann-Whitney U-test
This is the non-parametric alternative to comparing two

independent averages via Student’s t-test. The test’s null
hypothesis is that the two samples of size n1 and n2 are from

identical continuous populations. The alternative hypothesis can be
one-sided or two-sided and only assumes that the central tendency
of one population differs from the other, but not a difference in
shape or dispersion (Berlanga and Rubio, 2012).

Samples A and B are identified, with N and M observations. The
observations are ordered as if they were a single sample and ordered
ranges of values are assigned. Subsequently, the values belonging to
each sample are identified, and the sums of each sample’s ranges are
calculated, thus defining S, which corresponds to the sum of ranges
of the most negligible value in (Badii et al., 2012) cited by (Valencia
et al., 2020).

2.2.4 Precipitation satellite products
The satellite data evaluated in this work corresponds to GPM’s

Integrated Multi-Satellite Retrievals algorithm in its version 06
(IMERG). The data corresponds to monthly accumulated
precipitation estimates at a spatial resolution of 0.1° per pixel.
To download it, you must fill out the registration form on the
portal https://urs.earthdata.nasa.gov. Once registered, you can
access it with your username and password. Once inside the
server, in the Select Plot tab, locate the type of map to consult.
In our case, it is the accumulated map; select the temporal space
where you want to download the information in the Select Date
Range. For the present work, it will be monthly: in Select Region,
locate the area from where you want to download the information;
for this work, a box was marked between the coordinates −80.
5298, −5.0427 and −78.8928, −3.3838. At the bottom, in the
Keyword box, we place the variable to be searched for,
precipitation. Finally, all the information available on the server
is displayed, and we can choose according to the user’s
requirements, as it can be differentiated by units, resolution,
dates, and type of algorithm or satellite.

For the present work, 187 Tiff files were obtained, one for each
month and one for each year. To complete the analysis period, the
months from January to May 2000 were completed with the
weighted averages of the other years, as the satellite information
available corresponds to June 2000. Once the raster information had
been downloaded, a point-type ship of the 24 stations was produced,
and the Point Sampling Tool, a tool for extracting the raster
information to the ship attribute table in Supplementary Figure
S3, was installed in QGIS software.

2.2.5 Statistical indicators of efficiency
The statistical evaluation was performed for the uncorrected and

corrected satellite products, and this validation was performed
concerning the observed precipitation data. The statistical means
used are the root mean square error (RMSE), the bias (RVB), the
Nash-Sutccliffe coefficient (NS), the Pearson coefficient (R) and the
coefficient of determination (R2). The RMSE quantifies the
magnitude of the deviation of the simulated values from the
observed values. The BVR quantifies the extent to which the
simulated data overestimate or underestimate the expected value
of precipitation (Shahid et al., 2021). A positive value indicates
overestimating the amount of rainfall, while a negative value
indicates underestimation. The NS measures how much of the
variability of the observations is explained by the estimate in
Supplementary Table S4. Finally, R expresses the linear
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dependence between observed and simulated values over time
(Guachamín et al., 2019).

2.2.6 Bias correction
Satellite precipitation estimates are commonly affected by

random and systematic errors (bias) (Mendez, 2016). The present
work used a multiplicative correction factor through the Inter-
Sectoral Impact Model Intercomparison Project (ISIMIP)
method. The method preserves relative changes in monthly
precipitation values. In addition to the monthly correction, the
method also corrects for daily variability on the monthly mean;
however, this detail is not explored in the present work as no daily
scale data is being analysed.

Given the temporal and spatial variability of precipitation, the
method uses a multiplicative correction factor, a function of the
observed statistical series (the more data, the more optimal the C
factor). To avoid discrepancies between the observed and corrected
data series, the C factor has an upper limit of 10 to avoid very high
corrected values. This can occur when the observed series are too
short to approximate statistical parameters (Hempel et al., 2013).
The following expression gives the fit of the satellite estimates, based
on Eq. 9:

C � ∑n
i�1P

DObs
i∑n

i�1P
Dmod
i

(9)

PDObs
i � Monthly average data observed.

PDmod
i � Monthly average data of the series to be corrected.

The following equation will adjust the daily precipitation data
once the C-factor is defined, based on Eq. 10.

P′DMod
ij � CPDMod

ij (10)

P′DMod
ij � Adjusted satellite monthly data

PDMod
ij � Monthly satellite rainfall data.

C � Correction factor.
This correction is applied to the grid point closest to the station

point. Interpolation techniques generally underestimate high-
intensity rainfall and overestimate low-intensity rainfall (Bohling
and Wilson, 2006).

3 Results

3.1 Selected stations

Once the available data quality analysis has been carried out,
Figure 1 defines the network of rainfall stations that will be used to
evaluate satellite precipitation products.

3.2 Filling of data

3.2.1 Linear correlation
The linear correlation method, a widely used technique, is

instrumental in estimating the monthly and annual data of the
study stations. However, its effectiveness relies on the presence of a
nearby station, known as an auxiliary station, with consistent and
observable data. This auxiliary station plays a crucial role in

establishing a linear correlation and regression between the
station with missing data and itself. By doing so, we can extend
the record of the meteorological station based on the available
information between the years 2000–2015. The more extensive
the record or series of values observed in this auxiliary station,
the more accurate the estimates and statistical inferences based on
such data will be (Herrera et al., 2017).

The results presented in the table above show that the models fit
the data. The coefficient of determination represents the percentage
of variation in the response variable, which a linear model explains.
In other words, there is a good correlation between the data (Toro
et al., 2017), which obtained similar results when filling in missing
data using the linear correlation method for the Ambi River basin.

The summary of the fit by the linear correlation method for
stations with up to 10% missing data is presented in
Supplementary Table S5.

3.2.2 United States national weather
This method consists of applying an average with the inverse of

the squared distance that will act as a weighting factor; in addition, it
is necessary to the deductive rationale based on the percentage of
participation that the missing data has over the other available
monthly data, in addition, the dependent meteorological variable is
the value of the missing data in the station. The independent ones
are the value of the variable of the auxiliary stations (Campos, 1998).

United States National Weather was applied to stations
M0432 and M0142; given that there were no auxiliary base
stations to apply the linear correlation method and that the data
to be completed is less than 10%, this method was decided upon. In
addition, station M1161 was used to apply the model after verifying
the respective data based on Supplementary Table S6.

The precipitation values obtained by this method are quite stable
concerning the existing statistics since, as will be analysed later in the
double mass plot, both stations showed good consistency. They
passed the statistical tests of confirmatory analysis.

3.2.3 Neuronal network
The missing data adjustment by this methodology consisted of

using three auxiliary stations plus the station to be completed. The
training of the NR can be carried out considering several criteria
since the meteorological precipitation data adopted were climatic
similarity between stations, distance, altitude and preferably that
they are within the same hydrographic system.

Supplementary Figure S4–S13 shows the results obtained for the
ten stations that completed the missing data by this method. The
graphs show the annual distribution of precipitation at the auxiliary
stations in green, the station to be completed in red and the station
with complete data in blue. It can also be seen that the annual
distribution for all the auxiliary stations shows a similar trend, which
is evidence that a good selection criterion was used. It can also be
seen that the complete station graphically shows good results, which
are corroborated by the consistency analysis.

3.2.4 Consistency analysis
Once the data had been completed using the methodologies

described above, the double mass graph was used to detect series
with certain types of systemic errors due to data collection, changes
in instrumentation, etc. The results show that 20 of the 24 stations
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have consistent data for the period evaluated. The results show that
20 out of 24 stations present consistent data for the period evaluated
in Supplementary Figure S14–S36.

Stations M0435 in Supplementary Figure S37, M0544 in
Supplementary Figure S38, and M0147 in Supplementary Figure
S39 present a significant break in their slope, so an adjustment is
necessary. This methodology did not evaluate station M0142 as it
could not be incorporated into any group because it is located in
another hydrographic demarcation.

The adjustment made to stations Alamor M0435 in
Supplementary Figure S37, Colaisaca M0544 in Supplementary
Figure S38, and Yangana M0147 in Supplementary Figure S39 is
presented in the following graph: a) corresponds to the uncorrected
data, b) to the slope break, and c) corrected data.

The graphs in Supplementary Figure S40–S63 show that the slope
break disappears after adjustment. In other words, the adjusted series
presents a stable relationship of proportionality and consistency.

3.3 Confirmatory analysis

Supplementary Table S7 presents the results of the Kolmogorov-
Smirnov (K-S) test, which was performed to validate the fit of the
theoretical function. A significance level of 5% (p-value = 0.05) was used
as the threshold for judging whether a result is statistically significant.

Null hypothesis Ho; is no statistically significant difference
between the distribution of the station data and the Normal
distribution. Alternative Hypothesis Ha; There is a statistically
significant difference between the distribution of the sample
station data and the Normal distribution.

The results in Supplementary Table S7 indicate that for all
stations, the Ho is rejected, and Ha is confirmed because all
values are below the significance level. Since it is confirmed that
the data do not present a normal distribution, the statistical tests to
be used are the non-parametric ones.

Supplementary Table S7 also presents the results of the
confirmatory tests. The median test showed that none of the
stations presented statistically significant differences concerning
the value of the measure of central tendency, concluding that the
subgroups formed present identical statistical properties. On the
other hand, theMann-Whitney U test shows that, for all stations, the
subgroups formed have similar distributions, i.e., they are
statistically equivalent in their position.

3.4 Statistical indicators of efficiency

The statistical metrics between the observed and estimated data
without correction show graphically that the 24 stations evaluated
show a trend concerning the annual rainfall distribution. However,
the observed values are higher than the simulated values. Although
they show a similar trend, there is a deviation between the observed
and simulated values, which is confirmed by the RMSE values that
range from 34 to 157, as shown in Supplementary Table S8.

Supplementary Figure S40–S63 graphically show the annual trend
of observed and estimated rainfall for the 24 stations analysed. If we look
at Supplementary Table S1, where the altitude is presented, and
Supplementary Figure S1, where the distribution of the analysed

stations is given, it can be seen that the stations located in the lower
part (example M0151; 223 m. a.s.l) of the study area present a defined
distribution during the year, that means with months of high
concentration and months of low or no rainfall.

This differs from the stations in the upper part (example M0432;
2,525 m. a.s.l), where precipitation variability during the year
is observed.

Considering the above and observing the data in Supplementary
Table S9, it must be evident that the IMERG estimated data present a
better adjustment on the stations in the low zone and defined
seasonality concerning the stations in the high zone and with
variable seasonality, or vice versa. In other words, the altitudinal
difference and the seasonal variation are not factors that condition a
high or low performance of the estimates of the satellite products
analysed in this work since, for both scenarios, the adjustment is similar.

One thing to consider from the results presented is that stations
M0147 and M0432 are the least well-adjusted according to the
statistical parameters.

3.5 Bias correction

Supplementary Table S9 presents the bias correction
performance between observed and estimated data for the
methodology proposed in this paper.

Using the correction factor obtained for each station and each
month from Supplementary Table S9 significantly improves the
simulated data. The data simulated by IMERG without correction
present an underestimation in most stations concerning the
observed data. However, once the correction is made, it is
evident that the RVB tends to zero, i.e., there is a better fit
between the corrected and observed data.

4 Discussion

The training of the neural network to complete missing data,
according to the results obtained, is an interesting tool that provides
good results for this specific case. Studies by (Muñoz et al., 2020)
show promising results in estimating meteorological data through
NR. However, it should be pointed out that the training parameters
of the NR are entirely different for each case. This opens up infinite
possibilities and tools that can be incorporated for these types of
analysis, like Supplementary Figure S4.

Part of the confirmatory analyses carried out can be seen from the
results obtained in Supplementary Table S7, as well as in the studies
carried out by Carvajal and Castro, after analysing the probabilistic
distribution of the data, have evaluated various parametric and non-
parametric tests, as well as graphical analyses, and concluded that
graphical tests and confirmatory statistical analyses are essential tools in
the exploratory analysis of data.

In the statistical indicators of efficiency in the results obtained in
Supplementary Table S8 and as indicated by (Molnar et al., 2020) in
Supplementary Table S4, the NS values for the stations evaluated
range from satisfactory to good. The RVB is negative, i.e., there is an
underestimation between the observed and simulated data, and the
R coefficient presents values between 0.6 and 0.93, indicating a
correlation between the observed and simulated values.
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If we visualise Supplementary Figure S4, we can identify that these
are closer to the eastern mountain range; that is, by analysing this
scenario, the IMERG data present a low adjustment concerning those
observed in areas close to the Amazon. The above results are similar to
those obtained by (Mendez, 2016), where the IMERG products
represent very well the temporal variability in a region of Chile.
Also, Zulkafli compared the TRMM V6 and V7 products with data
from rain gauges in the northern region of Peru and southern Ecuador,
resulting in an underestimation between the estimated and observed
data in the western regions of the Andes. Both of these studies are
somewhat related to the present work.

It is important to emphasise that to compare results with other
regional studies. It is necessary to consider the conditions under
which they have been carried out, given that, as stated by (Wang and
Wolff, 2012) in their study on the evaluation of TRMM products in
Central Florida, these results cannot apply to other regions as there
are determining factors such as the rainfall regime and the spatial
and temporal scale that define the conditions of a region.

Likewise, the NS is between 0.36 and 0.89, and the Pearson
coefficient is between 0.6 and 0.91. What contrasts with these results
are the high RMSE values, which are between 104 and 25. These
RMSE error values can be associated with the analysis level, as data
are being analysed monthly. These results are also similar to those
obtained by (Ramoelo et al., 2013).

Based on the data obtained in this study, we seek to make a
significant contribution to water resource management and
decision-making; by estimating the calculation of missing data,
we seek to have more accurate hydrological modelling; this can
be used in the future to predict the behaviour of water bodies,
reservoir levels and the flow of water bodies such as rivers, lakes and
lagoons near the study area, in order to have more accurate planning
of water management and to give a better response to possible
extreme weather events (Minga et al., 2018).

Estimates of precipitation data are essential for drought
monitoring in the study area; with these results, there is more
reliability on the amount and distribution of precipitation in
order to detect early and accurately the drought conditions that
may occur, thus contributing to a faster response to mitigate the
impacts that are generated and may come to affect the needs of
different sectors such as agriculture, industry and domestic
consumption within the province of Loja (Aguirre et al., 2015).

5 Conclusion

1. In the present work, the satellite products corresponding to the
IMERG V06 algorithm were evaluated using rainfall data from
selected monthly scale stations for the province of Loja in
southern Ecuador. Four statistical efficiency indicators were
used for this evaluation: mean square error, bias, Nash-
Sutccliffe coefficient and Pearson coefficient. Previously, the
statistical series of observed data were analysed and adjusted.

2. The use of various methodologies for adjusting missing data
allowed better adjustment of the information and,
consequently, better results. This allowed a broader
approach according to each situation.

3. The exploratory graphical analysis applying the double
mass curve identified consistency in the statistical series

of 20 of the 23 stations evaluated by this method. In
addition to identifying that the series of three stations
presented inconsistencies, it allowed the adjustment of
these series, thus obtaining a series suitable for
subsequent analyses.

4. The application of non-parametric statistical tests such as the
Median and the Mann-Whitney U test helps to confirm the
exploratory graphical analysis, which in turn allows us to have
confidence in the statistical series to be used for
further analysis.

5. The results show good performance of the uncorrected satellite
products with R coefficients between 0.55 and 0.93 and
NS from 0.21 to 0.66. The RVB presents underestimates
between simulated and observed values and RMSE values
of 157 and 24.

6. The IMERG underestimates rainfall in most of the 24 stations
evaluated, except for stations M0759, M0760, M0143, M0145,
and M0147, where a slight overestimation is evident in both
cases without exceeding unity.

7. Applying the correction factor in general terms significantly
improved the simulated data, obtaining values of R between
0.6 and 0.95, NS, 0.5 to 0.91, RVB -0.007 and 0. The high values
of RSME are associated with the assessment being carried out
on a monthly scale.

8. The performance of the evaluated satellite products does not vary
at the altitudinal level nor the temporal level; the results show that
their performance is similar in both scenarios. Suppose it has been
identified that the performance is lower when approaching the
Amazon region of Ecuador. In that case, this result should be
corroborated with more detailed information since, in this work,
only two stations were close to this region, and the data obtained
from them allowed us to reach this conclusion.

9. The results show that the methodology applied for correcting
the simulated data performed well; however, it is
recommended that an evaluation with daily scale series be
carried out to obtain better results.
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