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Multi-site PM2.5 prediction has emerged as a crucial approach, given that the
accuracy of prediction models based solely on data from a single monitoring
station may be constrained. However, existing multi-site PM2.5 prediction
methods predominantly rely on recurrent networks for extracting temporal
dependencies and overlook the domain knowledge related to air quality
pollutant dispersion. This study aims to explore whether a superior prediction
architecture exists that not only approximates the prediction performance of
recurrent networks through feedforward networks but also integrates domain
knowledge of PM2.5. Consequently, we propose a novel spatio-temporal
attention causal convolutional neural network (Causal-STAN) architecture for
predicting PM2.5 concentrations at multiple sites in the Yangtze River Delta
region of China. Causal-STAN comprises two components: a multi-site spatio-
temporal feature integration module, which identifies temporal local correlation
trends and spatial correlations in the spatio-temporal data, and extracts inter-site
PM2.5 concentrations from the directional residual block to delineate directional
features of PM2.5 concentration dispersion between sites; and a temporal causal
attention convolutional network that captures the internal correlation
information and long-term dependencies in the time series. Causal-STAN was
evaluated using one-year data from 247 sites in mainland China. Compared to six
state-of-the-art baseline models, Causal-STAN achieves optimal performance in
6-hour future predictions, surpassing the recurrent network model and reducing
the prediction error by 8%–10%.
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1 Introduction

Air pollution has emerged as a significant challenge to environmental sustainability in
the 21st century. Specifically, PM2.5 increasingly impacts urban health and the quality of life
of residents negatively (Yan et al., 2022). Chronic exposure to PM2.5 may elevate the risk of
non-communicable respiratory diseases, cardiovascular diseases, and diabetes (Yang et al.,
2022). Additionally, short-term exposure to PM2.5 has been shown to accelerate aging, as
evidenced by changes in DNA methylation profiles associated with blood coagulation,
oxidative stress, and systemic inflammation (Gao et al., 2022). Consequently,
PM2.5 prediction studies hold significant importance and are considered a critical issue
for environmental protection (Ai et al., 2019). However, current methods that predict
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PM2.5 concentrations using data from a single monitoring station
fall short in capturing spatial correlations among stations, thereby
limiting their predictive accuracy. Therefore, the development of a
multi-site PM2.5 prediction approach that harnesses spatial
relationships between air quality monitoring stations is crucial.
Such an approach would not only broaden the scope of
PM2.5 concentration predictions but also enhance the accuracy
of these models, providing stronger support for effective air quality
management strategies and improving public health protection
(Wang et al., 2023).

Over the past few decades, PM2.5 prediction models have
evolved from traditional physical and statistical models to more
sophisticated machine learning and deep learning approaches.
Traditional physical models have primarily been focused on
simulating the dispersion, deposition, and chemical reactions of
PM2.5 processes (Marvin et al., 2022). For instance, the WRF/Chem
model forecasts environmental conditions by assessing the potential
physicochemical impacts and dynamics of pollutants (Grell et al.,
2005). However, these models’ reliance on complex data structures
and limited generalization ability present significant challenges for
practical applications (Liu and Chen, 2020). Common statistical
models employed in PM2.5 prediction include multiple linear
regression (MLR) (Lagesse et al., 2020), autoregressive integrated
moving average (ARIMA) (Wang et al., 2017), and autoregressive
conditional heteroskedasticity (ARCH) (Wu and Kuo, 2012). A
primary limitation of these models is their reliance on linear
assumptions, which often fails to capture the inherently
nonlinear behavior of PM2.5, thus compromising their predictive
accuracy (Marsha and Larkin, 2019; Erden, 2023). In contrast,
machine learning models excel in capturing nonlinear patterns,
thus proving highly effective in PM2.5 prediction. These models
harness complex data patterns and relationships, enhancing
prediction accuracy by addressing the nonlinearity of
PM2.5 concentrations (Wang et al., 2024b). Notable examples
include support vector machines (SVM) (Lai et al., 2021),
extreme gradient boosting (XGBoost) (Liu et al., 2021), random
forest (Chen et al., 2023), and various integration techniques (Sun
et al., 2023; Teng et al., 2023; Liu et al., 2024). However, despite their
capabilities, many machine learning approaches primarily focus on
single-station predictions and often neglect the spatial interactions
and distributions among multiple monitoring stations, which limits
their effectiveness in comprehensive urban air quality management
(de Hoogh et al., 2018).

With advancements in deep learning, researchers are
increasingly exploring multi-site PM2.5 forecasting nationwide.
Convolutional Neural Networks (CNNs) are pivotal in extracting
spatial correlation features from time series, initially recognizing
spatial correlations between adjacent values, then leveraging
convolutional operators to augment learning processes (Faraji
et al., 2022). Recurrent Neural Networks (RNNs), known for
sequence modeling, utilize a hidden state vector updated
sequentially with each input, facilitating temporal information
transmission across time steps (Young et al., 2018). These
attributes make RNNs suitable for time series prediction tasks,
including PM2.5 forecasting (Shakya et al., 2023). Given that
multi-site PM2.5 prediction requires mastering spatio-temporal
sequences, hybrid models combining CNNs and RNNs have
become prevalent. These models employ CNNs to delineate

spatial correlations between stations, while RNNs handle the
temporal dynamics of PM2.5 concentrations at individual
stations (Chiang and Horng, 2021; Du et al., 2021; Zhang et al.,
2022; Teng et al., 2023). However, despite their advantages, RNNs
encounter significant challenges in managing long series and large-
scale multi-site forecasting due to their limitations in parallel
processing and capturing distant dependencies, as highlighted by
Liang and Tang (2022), along with others (Vaswani et al., 2017;
Khandelwal et al., 2018). To address these limitations, recent studies
have focused on developing novel feedforward models that better
accommodate the complexities of multi-site PM2.5 prediction
(Chinatamby and Jewaratnam, 2023).

Recent advances in multi-site PM2.5 prediction have
increasingly focused on innovative feedforward models, notably
those employing Temporal Convolutional Networks (TCNs) and
attention mechanisms. The significant advantage of TCNs in time
series prediction is attributed to their straightforward structure,
extensive expansion flexibility, and clear causal constraints (Bi
et al., 2022; Li et al., 2022; Nasr Azadani and Boukerche, 2022).
For example, Zhang et al. (2021) designed a causal convolutional
neural network for short-term PM2.5 prediction using TCNs, whose
convolution operation explicitly takes causality into account, i.e., the
output of a time step only depends on the same or earlier time steps
in the previous layer, providing a new perspective on
PM2.5 feedforward prediction modeling. However, TCNs
struggles to capture the dependency of distant locations in the
time series and to extract the internal correlation information of
the input data. The Airformer, recently introduced by Liang et al.
(2023), stands as a notable model founded on the attention
mechanism for air quality prediction. It depends entirely on this
mechanism to discern the spatio-temporal patterns of air quality
data and employs the Generation Model and the Inference Model to
grasp the inherent uncertainty within the air quality data. While
attention-based models demonstrate substantial predictive
capabilities, their large size poses practical limitations.
Furthermore, the Temporal Convolutional Attention-based
Network (TCAN), developed by Hao et al. (2020) for natural
language processing tasks, shows promise in sequential task
modeling by integrating TCNs with attention mechanisms.
However, its application to multi-site PM2.5 prediction is
potentially limited by insufficient consideration of spatial
correlations among monitoring sites and a lack of domain-
specific knowledge on PM2.5 dispersion.

To address the limitations of existing feedforward networks in
the task of multi-site PM2.5 prediction, we aim to develop a novel
architecture based on feedforward techniques that aspires to reach
predictive performance comparable to recurrent networks while
improving simplicity and efficiency. Furthermore, the accuracy of
multi-site PM2.5 predictions not only depends on advanced
modeling techniques but also requires a deep understanding of
domain-specific knowledge about the pollutant, such as the
direction of pollutant dispersion during events (Wang et al.,
2020; Zhou et al., 2021). It is crucial to integrate this knowledge
into the prediction models to improve accuracy.

Based on these objectives, this study introduces a novel
exploratory architecture: the spatio-temporal attention causal
convolutional neural network (Causal-STAN) for multi-site
PM2.5 prediction. First, we propose a multi-site spatio-temporal
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feature integration module. This module employs a CNN to identify
temporal local correlation trends and spatial correlations in spatio-
temporal data, integrates domain knowledge of PM2.5 pollutant
dispersion, and introduces a directional residual block to extract
directional features of PM2.5 concentration dispersion between
sites. Second, we designed a temporal causal attention
convolutional network, inspired by TCAN, that simulates the
input causality of RNNs using dilated causal convolution. This
network incorporates an attention mechanism to effectively
capture the internal correlation information and long-term
dependencies within PM2.5 time series. We aim to achieve an
approximate replacement of RNNs with temporal causal
attention convolutional network and assess the efficacy of the
networks’ unique “causal” properties in the PM2.5 prediction
task. To assess the proposed method’s effectiveness, experiments
were conducted with data from 247 air quality monitoring stations
across 41 cities in the Yangtze River Delta region of China. The main
contributions are as follows.

(1) Addressing the scarcity of concise and efficient feedforward
prediction models in PM2.5 prediction, this study introduces
a novel spatio-temporal attention causal convolutional neural
network (Causal-STAN) tailored for multi-site
PM2.5 concentration prediction.

(2) Incorporating domain knowledge of air pollutant dispersion,
a directional residual block was designed and integrated into
the multi-site spatio-temporal feature integration module,

enabling the extraction of directional features of inter-site
PM2.5 concentration dispersion.

(3) Maximum information coefficients are employed to
simultaneously detect similar sites processed by the
proposed model, facilitating the extraction of
comprehensive knowledge from the dataset.

(4) Performance evaluation results demonstrate that the
proposed multi-site PM2.5 feedforward prediction model
offers significant advantages over the baseline model,
surpassing even the recurrent models in comparison. This
model presents a viable alternative to RNNs for multi-site
PM2.5 prediction tasks, showcasing its potential effectiveness.

2 Materials and methods

2.1 Study area and data collection

Data for this study were sourced from 247 air quality monitoring
stations, spanning the period 1 January 2022, to 31 December 2022,
across the Yangtze River Delta region of China, encompassing
41 cities. Figure 1 illustrates the geographical distribution of all
study monitoring stations. Hourly data from each monitoring
station were compiled into a one-dimensional eigenvector,
incorporating pollutant data, meteorological data, and the air
quality index (AQI). Pollutant data and AQI were sourced from
the urban air quality real-time publishing platform of the China
National Environmental Monitoring Center1, amounting to
4,327,440 records. Meteorological data were acquired from the
National Climatic Data Center2, totaling 1,078,423 records.
Detailed data specifications are provided in Table 1. Since the
meteorological stations and air pollutant monitoring stations are
not directly matched, we selected meteorological data from the
nearest meteorological station (based on Euclidean distance) for
each pollutant monitoring station. This approach ensures that the
meteorological data closely reflect local environmental conditions.

2.2 Data preprocessing

Air quality data collected by the urban air quality real-time
publishing platform of the China National Environmental
Monitoring Center exhibit a certain percentage of missing values
and outliers. Missing values and outliers can result from prolonged
operation of monitoring equipment or exposure to extreme weather
conditions, such as heavy rain, storms, and haze. Table 1 presents
the rates of missing and outlier values for pollutant data and AQI in
the dataset, indicating a higher incidence of missing values for AQI.
In this study, outliers were detected using the interquartile range
(IQR) method, defined as the difference between the third quartile
(Q3) and the first quartile (Q1). The upper outlier limit is calculated
as Q3 plus 1.5 times the IQR, and the lower limit is Q1 minus
1.5 times the IQR. Data identified as outliers are subsequently

FIGURE 1
Geographical distribution of the 247 air quality monitoring
stations across 41 cities in the Yangtze River Delta region, China.

1 https://air.cnemc.cn:18007/

2 https://www.ncei.noaa.gov/
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replaced with missing values. To address the missing values in the
dataset, two-way linear interpolation was employed for imputation.

2.3 Spatio-temporal correlation analysis

Considering the evident spatio-temporal correlation of
PM2.5 across various monitoring stations, constructing a model
based solely on historical data from a single station may present
limitations. To enhance the accuracy of model predictions, it is
imperative to integrate data from multiple monitoring stations for
spatio-temporal correlation analysis. For a dataset with historical
data from N monitoring stations, input data are transformed into a
three-dimensional tensor X ∈ RN×T×F , where T denotes the time step
and F denotes the number of features associated with PM2.5. For any
given target site, the initial step involves determining the correlation
between its time series data and that of other sites.

The maximum information coefficient (MIC) is a
nonparametric statistical method that measures the correlation
between two variables, as proposed by Reshef et al. (2011). The
MIC is defined as shown in Equations 1, 2:

I x, y( ) � ∫ p x, y( )log2 p x, y( )
p x( )p y( ) dxdy (1)

MIC x, y( ) � max
a×b<B

I x, y( )
log2 min a, b( ) (2)

where x and y are two random variables, and a and b are the number
of bins into which the x and y-axes are divided, respectively. B is a
parameter whose size is approximately the 0.6 power of the sample
size (Zhu et al., 2021). MIC values range from 0 to 1, where
0 indicates no correlation and 1 indicates a perfect correlation.
Unlike traditional methods such as the Pearson correlation
coefficient, the MIC is capable of capturing more complex

nonlinear relationships and offers greater robustness (Wang
et al., 2024a). We employ MIC to quantify interactions between
sites and effectively capture nonlinear relationships between
variables, as shown in Equation 3:

θ Y*,Yi( ) � MIC Y*,Yi( ) (3)
where Y* and Yi represent the PM2.5 time series of the current
target site and the ith site among all study sites, respectively;
θ(Y*,Yi) the numerical value of correlation.

Upon obtaining the correlation values between the current
target site and all other sites, these values are compiled into a
correlation vector, as shown in Equation 4:

θ* � θ Y*,Y1( ),/, θ Y*,Yi( ),/, θ Y*,YN( )[ ] (4)

Considering that not all sites significantly impact the target site,
setting a correlation threshold to filter out sites with strong
interactions with the target site is prudent. As a result, the
spatio-temporal correlation analysis produces the final input
feature vector as follows, as shown in Equation 5:

X* � Xi|θ Y*,Yi( )> θth, i ∈ 1, 2,/,N{ }{ } (5)
where θth is the set correlation threshold, and X* ∈ RC×T×F is the
input feature vector for the target site after filtering based on spatio-
temporal information. In this vector, C represents the number of
monitoring stations that are significantly correlated with the target
site, as determined by exceeding the correlation threshold θth.

2.4 Architecture of the proposed network

The architecture of the proposed Causal-STAN is illustrated in
Figure 2, which comprises two main components. The first
component is the multi-site spatio-temporal feature integration

TABLE 1 Description of dataset in this study, the last two columns show themissing and outlier rates for the pollutant indicators in the dataset, respectively.

Data Feature Unit Miss rate Outlier rate

AQIs AQI - 4.8% 1.8%

Pollutants

PM2.5 µg/m3 2.6% 2.1%

PM10 µg/m3 2.0% 1.6%

SO2 µg/m3 1.7% 1.2%

NO2 µg/m3 1.8% 1.6%

O3 µg/m3 2.0% 0.7%

CO mg/m3 1.9% 1.2%

Meteorology

Temperature °C - -

Atmospheric Pressure mmHg - -

Humidity % - -

Wind Direction Encoding - -

Wind Speed m/s - -

Visibility Km - -

Precipitation mm - -
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module, depicted in Figure 2A, while the second component is the
temporal causal attention convolutional network, depicted in
Figure 2B. The following subsections elaborate on the details of
these two components.

2.4.1 Multi-site spatio-temporal feature
integration module

Given the input feature X*, a 3-dimensional vector with spatio-
temporal data from various sites, we propose a multi-site spatio-
temporal feature integration module to extract spatio-temporal
features across sites. The design of this module incorporates the
following considerations: 1) Spatio-temporal dependence:
Acknowledging the spatial dimension’s significance in spatio-
temporal data for feature extraction, we integrate a feature
dimension transformation strategy within the convolution
operation to enhance the model’s capability to extract spatio-
temporal dependent information from various monitoring
stations. 2) Directional features of PM2.5 concentration
diffusion: With domain knowledge of air pollution diffusion,
recognizing that pollutants typically exhibit directional diffusion
among stations, affected by environmental factors like wind

direction, we designed a directional residual block to capture
these directional features.

In Figure 2A, as an example, the first feature at the initial time step
has channels corresponding to the number of monitoring sites in X*.
Different target sites may have varying numbers of related sites,
denoted by the parameter C, which plays a key role in the
prediction model. The number of input channels in the first
convolutional layer is set to match the C value of the current
target site. This allows the model to dynamically adjust the input
channels for each site, optimizing the use of information from related
sites. The initial 3 × 3 convolution is used to identify temporal local
correlation trends and spatial correlations in the spatio-temporal data,
expanding the feature dimension from the specific C value to 64. In
other words, the initial 3 × 3 convolution expands the feature
dimension of the target site’s feature vector from the specific C
value to 64. Subsequently, the directional residual block is
introduced with this feature dimension, utilizing longitudinal Conv
3 × 1 and horizontal Conv 1 × 3 convolution kernels to pinpoint
pollutants’ spatial spreading characteristics on different axes, thereby
improving the model’s detection of potential spatial correlations
among sites. Following this, a second 3 × 3 convolution further

FIGURE 2
The proposed framework of Causal-STAN, which consists of two components. (A) Multi-site spatio-temporal feature integration module; (B)
temporal causal attention convolutional network, which we illustrate using eight time-step examples, here, kernel size = 2, dilation = 1, 2, 4.
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enhances the extraction of temporally localized correlation trends and
spatial correlations, increasing the spatio-temporal data’s feature
dimensions to 128. At this juncture, a second directional residual
block is applied to the higher-dimensional spatio-temporal data,
aiming to learn deeper directional features between sites.
Ultimately, a 3 × 3 convolution completes the feature integration,
reducing the spatio-temporal data’s feature dimension to 1 and
generating a two-dimensional synthesized feature vector as input
for the temporal causal attention convolutional network.

The directional residual block uses two convolution operations:
a longitudinal 3 × 1 kernel and a horizontal 1 × 3 kernel. These
kernels are designed to capture spatial patterns along specific axes,
enhancing the model’s ability to analyze pollutant diffusion across
the dataset.

2.4.1.1 Longitudinal convolution (3 × 1)
This kernel is structured to extend vertically over three rows in a

single column and is configured to extract correlations across
different features or sites, analyzing changes along a vertical axis
within the data. Such an arrangement is pivotal for identifying site-
specific pollution trends or environmental factors that may
consistently influence adjacent sites. By targeting vertical slices of
data, this convolution adeptly captures dependencies arising from
vertical stratification of atmospheric components or variations in
emission sources among proximately located sites.

2.4.1.2 Horizontal convolution (1 × 3)
The horizontal kernel, spreading over one row and three columns,

is engineered to monitor temporal sequences, enabling the model to
trace the evolution of environmental conditions or pollutant levels
over time. This kernel excels at detecting patterns across three
consecutive time steps, offering insights into how dynamic
environmental conditions, such as shifts in wind direction or
speed, impact the dispersion and concentration of pollutants.

The outputs from these directional convolutions are integrated
using a residual learning framework, where a skip connection adds
the block’s input to its output. This method is instrumental in
mitigating the vanishing gradient problem commonly encountered
in deep neural networks, while also preserving identity information
throughout the layers. Such an approach enables the model to refine
its predictions by continuously learning from the discrepancies
between predicted and actual pollution patterns, significantly
enhancing the model’s accuracy and sensitivity to subtle
environmental variations.

2.4.2 Temporal causal attention
convolutional network

Beyond spatial dependence, a site’s air quality is influenced by its
historical data. Given a site’s hidden state I(L)1: T ∈ RT×F (output from
the spatio-temporal feature integration module) across all past steps,
the basic feedforward neural network TCN fails to learn the
temporal dependence of distant locations within the sequence
and cannot extract the internal correlation information of the
inputs. Here, we introduce the temporal causal attention
convolutional network as an effective alternative to the standard
TCN for temporal modeling. As shown in Figure 2B, the key part of
the proposed network is the temporal causal attention convolution,
featuring two main modifications:

2.4.2.1 Temporal causal attention
To address TCN’s limitation, we introduce a self-attention

mechanism that captures internal time-series relationships and
long-range dependencies. Unlike standard attention, this
mechanism preserves the causal order of events.

2.4.2.2 Dilated causal convolution
Since air quality at the current time step is only influenced by

past events, we maintain the causal structure by applying dilated
causal convolution, which ensures the model respects the correct
temporal order.

The computation of intermediate variables within the temporal
causal attention convolution is illustrated in Figure 3:

1. Temporal causal attention is applied, as shown in
Equation 6:

IA L( )
1:T � TCA I L( )

1:T( ) (6)

where IA(L)
1:T represents the intermediate representation

after applying temporal causal attention on the first T
time steps.

2. Given IA(L)
1:T , we apply dilated causal convolution to it, as

shown in Equation 7:

I L+1( )
1:T � DCC IA L( )

1:T( ) (7)

where I(L+1)1:T represents the output of the dilated causal convolution,
as illustrated in the top square on the right side of Figure 3. To
maintain the output tensor’s length equal to the input tensor’s, zero
padding of length ((k − 1)2l−1) is added to the input tensor’s left
side, as depicted in the Zero Padding on the left side of Figure 3,
ensuring causal convolution.

3. The full temporal causal attention convolutional network is
built by stacking L layers of temporal causal attention
convolutions, covering both depth and time.

FIGURE 3
Temporal causal attention convolution, right-hand side, is
illustrated using an example of five time steps, here, kernel size = 2 and
dilation = 2.
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2.4.3 Temporal causal attention
Temporal causal attention, illustrated in Figure 4, involves

integrating the influences of previous time steps into the current
time step. Distinct from the self-attention structure, our attention
mechanism selectively uses information from previous time steps
only, thanks to a masking mechanism and optimized weight matrix,
ensuring relevance to the current and preceding time steps while
blocking future interactions.

Initially, three linear transformations, f(T), g(T), and h(T), map
I(L)1:T to dk- dimensional queries(qL1:T � f (I(L)1:T)),
keys(kL1:T � g(I(L)1:T)), and dv- dimensional values(vL1:T � h(I(L)1:T)).
Subsequently, batch matrix multiplication calculates the dot
products between kL1:T and qL1:T , dividing each result by

��
dk

√
to

compute the weight matrix WA(L) , as shown in Equation 8:

W L( )
i,j � k L( )T

i · q L( )
j��

dk

√ (8)

Next, an upper triangular masking matrix M(L) is constructed,
with elements on and below the diagonal set to 0, and those above
the diagonal set to 1. The masking matrix M(L) is then applied to
W(L) , as shown in Equation 9:

Wi L( )
i,j � W L( )

i,j , if M
L( )

i,j � 0

−∞, if M L( )
i,j � 1

⎧⎨⎩ (9)

For i, j � 1, 2,/,T. Finally, a softmax function is applied to
normalize Wi(L) to obtain WA(L). This effectively suppresses the
masked weights in Wi(L) to nearly zero, thus isolating the future
time step from the current one. Given v(L)i , the weighted output
is calculated using the normalized weights, as shown in
Equation 10:

IA L( )
t � ∑t

i�0WA L( )
i · v L( )

i (10)

Here, IA(L)
t represents the output of the temporal attention,

serving as the input for dilated causal convolution.

2.4.4 Dilated causal convolution
For a one-dimensional time series input xRn and a

convolution kernel f : 0,/, k − 1{ } → R, the dilated convolution
operation F on an element s in the series is defined as shown in
Equation 11:

F s( ) � xpdf( ) s( ) � ∑k−1
i�0 f i( ) · xs−d·k (11)

Here, p denotes the standard convolution operation, d the
dilation factor, k the size of the convolution kernel, and s − d · k
considers the elements in the past direction. When d = 1, the dilated
convolution simplifies to a regular convolution. The dilated
convolution expands the receptive field by increasing the size of
the convolution kernel k and the dilation factor d. To encompass
long-term historical data, the dilation factor follows an exponential
growth strategy by setting d for layer i to 2i.

Aligned with temporal causal attention, dilated causal
convolution preserves causality in sequence prediction,
preventing future time information from influencing the model.
This causality is essential for the PM2.5 prediction task as it
guarantees predictions are based solely on past and present data,
excluding future information.

2.5 Experimental setup

The entire dataset is divided into three parts: training, validation,
and test sets. The training set comprises the first 60% of each
month’s data, while the validation set contains the last 20% of
each month. Finally, the remaining 20% of data in each month is
allocated to the test set. This division aims to preserve the time series
continuity and adapt to monthly environmental changes, enhancing
the model’s relevance to real-world scenarios. Our model forecasts
6-hour future predictions based on the past 24-hour readings,
setting T = 24. To train our model, we employ the Adam
optimizer, utilizing MSE as the loss function, with a batch size of
32. Through a grid search spanning the range {2, 3, 4, 5, 6, 7, 8} for
the number of layers (levels) and kernel size in the temporal causal
attention convolutional network, it was found that optimal
performance is achieved with both parameters set to 4. For a
more detailed analysis of these hyperparameters and their impact
on model performance, please refer to Section 3.4. The model
underwent 150 iterations, employing an early stopping strategy to
prevent overfitting. Model performance evaluation employed three
metrics: root mean square error (RMSE), mean absolute error
(MAE), and the coefficient of determination (R2) , as shown in
Equations 12–14:

FIGURE 4
Illustration of the temporal causal attentionmechanism, showing
the integration of previous time steps’ influences into the current
time step.
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RMSE �
�������������
1
n
∑n

i�1 yi − ŷi( )2√
(12)

MAE � 1
n
∑n

i�1 | yi − ŷi | (13)

R2 � 1 − ∑n
i�1 yi − ŷi( )2∑n
i�1 yi − �y( )2 (14)

Here, n is the total number of samples, yi the ith observed value,
ŷi the ith predicted value, and �y the average of observed values.
Lower RMSE and MAE values signify higher prediction accuracy,
while R2 ranges between 0 and 1, with values closer to 1 denoting a
better model fit.

2.6 Experimental baseline model

Traditional time series prediction models like LSTM and GRU
effectively address the issue of vanishing and exploding gradients in
recurrent models through the use of gating mechanisms, showcasing
robust performance in PM2.5 prediction tasks. These models were
included in our comparative experiments.

CNN-BiLSTM (Du et al., 2021), among the earliest deep
network models, adopts a joint spatio-temporal prediction
approach by integrating CNN with BiLSTM.

ST-CausalConvNet (Zhang et al., 2021) highlights causality’s
critical role in PM2.5 prediction, inspiring the development of our
proposed temporal causal attention convolutional network.

TCAN (Hao et al., 2020), an exploratory feedforward sequence
prediction network in NLP, combines convolution with an attention
mechanism to approximate recurrent networks, laying the
groundwork for our proposed temporal causal attention
convolutional network. This model is included in a comparative
experiment to underscore the significance of inter-site spatio-
temporal feature extraction in multi-site PM2.5 prediction tasks.

DAGCGN (Tariq et al., 2023), developed in 2023 as a distance-
adaptive graph convolutional gated recurrent network, excels in
identifying complex spatio-temporal interactions between
neighboring monitoring sites. Employing GCN in conjunction
with the recurrent network GRU for multi-site PM2.5 prediction,
this model demonstrates the recurrent model’s significant prediction
performance and serves as our primary comparison model.

3 Results and discussion

3.1 Spatio-temporal correlation
analysis result

We examined the default thresholds for spatio-temporal
correlation analysis in the proposed model at four sample
monitoring stations. Figure 5 shows the number of correlated
stations identified at six different thresholds for sites numbered
1233, 1270, 1155, and 1141. Notably, these four sample sites are
located in four distinct provinces within the dataset. As illustrated in
Figure 5, we selected six specific thresholds—0.35, 0.40, 0.45, 0.50,
0.55, and 0.60—which are critical values between 0.35 and 0.60. At
these thresholds, the number of correlated sites identified varies
significantly, potentially impacting the model’s performance.

Therefore, we focused on analyzing the effect of these thresholds
on model accuracy. Additionally, we excluded thresholds below
0.35 and above 0.60 because they could either overly complicate or
oversimplify the predictive model’s input feature vector, unlikely
providing an optimal threshold. Specifically, thresholds below
0.35 might introduce a large number of sites with weak or no
relevance to the target site, cluttering the model’s input feature
vector with irrelevant features and reducing prediction accuracy.
Conversely, thresholds above 0.60 could significantly reduce the
number of correlated sites, potentially degrading the model to a
single-site prediction and neglecting spatial correlation features
between sites. We further investigated the optimal threshold
among the selected values.

Figure 6 shows the RMSE for the four sample sites when
predictions are made using Causal-STAN at various thresholds.
The results indicate a trend of decreasing and then increasing RMSE
values for all four sites, with prediction error minimized at a
threshold of 0.50. This suggests that thresholds set too high or

FIGURE 5
The number of relevant sites obtained at different thresholds for
the four sample sites, with each row representing the number of
relevant sites obtained at six different thresholds for that site.

FIGURE 6
RMSE predicted for the four sample sites at different thresholds
using Causal-STAN.
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too low adversely affect prediction outcomes: a high threshold limits
spatially associated sites, losing key information, while a low
threshold incorporates weakly related data, increasing noise and
potential inaccuracies. Thus, a default threshold of 0.50 was adopted
for Causal-STAN’s spatio-temporal correlation analysis in further
model evaluations.

3.2 Model comparison results

To validate the effectiveness of our model, we conducted a
performance evaluation using the test sets from all sites in the
dataset. The final forecasting results for each model were
determined by averaging the outcomes across 247 target sites. This
approach helps to comprehensively assess the overall performance of
each model across all sites, providing a thorough understanding of
their predictive capabilities. Figure 7 displays a performance
comparison between the proposed model and six competing
models for forecasting the next 6 h, with results averaged over the
247 target sites. The results indicate that Causal-STAN outperforms
the other models in predicting the next 6 h, achieving the lowest RMSE
and MAE, along with the highest R2, whereas the classical GRU

method exhibits the weakest performance. The performance among
CNN-BiLSTM, ST-CausalConvNet, andDAGCGN is closelymatched,
with DAGCGN slightly leading; however, none surpass Causal-STAN.

Table 2 provides a comprehensive enumeration of the average
results for the three evaluation metrics across each model, offering a
thorough numerical comparison that complements the visual
representation depicted in Figure 7. Experimental results indicate
that TCAN significantly outperforms traditional time-series
prediction models such as GRU and LSTM. This superior
performance is largely attributed to TCAN’s unique model
architecture. Unlike traditional recurrent prediction models based
on RNN architecture, TCAN employs a TCN combined with an
attention mechanism to predict PM2.5 concentrations. TCAN
integrates the unique dilated convolutions of TCN with an
attention mechanism, effectively expanding its receptive field in the
time series and capturing long-term dependencies within the time
series data. These features significantly enhance its performance in
PM2.5 prediction tasks. However, a notable limitation of TCAN in
multi-site PM2.5 prediction is its inability to perform spatial feature
extraction. In contrast, CNN-BiLSTM surpasses TCAN by effectively
capturing spatial dependencies between sites through CNN, yet it has
its limitations. Although BiLSTM considers temporal features bi-

FIGURE 7
Comparison of the proposed Causal-STAN (Ours) with six other methods for hourly prediction, utilizing test data from all 247 stations.
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directionally, this contradicts the causality principle of time series
prediction. Additionally, the large parameter count and complex
recurrent network structure of BiLSTM may impact model
efficiency and performance. ST-CausalConvNet also utilizes CNN
to capture spatial features but employs a feedforward network, TCN,
for processing temporal features, ensuring that causality is integrated
into the temporal prediction phase. This method effectively avoids
future temporal information interference, giving ST-CausalConvNet a
slight edge in predictive performance. This demonstrates that in
PM2.5 prediction, feedforward predictive models and consideration
of causality have distinct advantages. However, ST-CausalConvNet is
limited in capturing long-distance dependencies in the time series and
extracting internal correlation information from input data. In
comparisons of predicting PM2.5 concentrations over the next 6 h,
DAGCGN’s performance surpasses that of ST-CausalConvNet, thus
exhibiting the best predictive performance among all baseline models.
Unlike other baseline models, DAGCGN utilizes an enhanced GCN
network combined with a GRU framework to effectively learn
complex spatio-temporal features between sites. Yet, its limitation
lies in the complex structure of the GCN network used during the
spatial feature extraction phase. While this network adeptly captures
spatial correlations between sites, it is restricted to processing a fixed
number of related site features, allowing only a predefined number K
of related sites per target site. Moreover, it is noteworthy that these

baseline models do not account for the domain knowledge of air
pollution dispersion or the directional characteristics of
PM2.5 concentration dispersion between stations.

Compared to DAGCGN, Causal-STAN reduces the RMSE by
7.91%, the MAE by 9.23%, and improves R2 by 1.54% for the next
hour’s prediction. In the sixth-hour prediction, R2 for Causal-STAN
remains at 0.708, still better than DAGCGN’s 0.655, with its RMSE
and MAE also 9.21% and 8.82% lower, respectively. This outstanding
performance is attributed to the unique architectural design of Causal-
STAN. For spatial feature extraction, we employ CNNs to identify
temporal local correlation trends and spatial correlations within the
spatio-temporal data, and we introduce directional residual blocks to
extract directional characteristics of PM2.5 concentration dispersion
between sites. Compared to DAGCGN’s spatial feature extraction
module, our module can conveniently handle model inputs with
varying numbers of related sites. In terms of temporal feature
processing, instead of using complex recurrent neural networks, we
propose a more streamlined feedforward prediction network. By
integrating TCN with an attention mechanism, we effectively
capture the internal correlation information and long-term
dependencies within the PM2.5 time series, providing an efficient
alternative to recurrent network architectures.

To specifically showcase the predictive performance at a single
target site, we selected site number 1141 and displayed its forecasting

TABLE 2 Average metrics for each model based on test data from all 247 stations, with best results highlighted in bold.

Model Metric 1 h 2 h 3 h 4 h 5 h 6 h

GRU

RMSE 8.735 10.054 11.866 13.721 15.396 17.982

MAE 7.182 7.354 8.734 9.841 12.108 14.405

R2 0.664 0.556 0.384 0.188 0.098 0.016

LSTM

RMSE 5.754 7.629 9.452 10.342 11.130 11.465

MAE 4.501 5.901 7.383 7.998 8.253 9.397

R2 0.854 0.744 0.609 0.514 0.463 0.430

TCAN

RMSE 4.765 6.679 8.152 9.242 10.254 10.813

MAE 3.655 5.218 6.377 7.199 7.976 8.316

R2 0.899 0.804 0.709 0.628 0.544 0.495

CNN-BiLSTM

RMSE 4.588 5.654 6.617 7.464 8.466 9.126

MAE 3.517 4.324 5.057 5.753 6.503 6.955

R2 0.907 0.859 0.808 0.757 0.689 0.641

ST-CausalConvNet

RMSE 4.570 5.615 6.560 7.494 8.411 8.953

MAE 3.600 4.262 4.982 5.644 6.319 6.933

R2 0.908 0.862 0.812 0.756 0.693 0.654

DAGCGN

RMSE 4.539 5.604 6.322 7.424 8.317 8.943

MAE 3.577 4.353 4.887 5.604 6.288 6.774

R2 0.909 0.862 0.825 0.760 0.701 0.655

Causal-STAN (Ours)

RMSE 4.180 5.158 5.972 7.037 7.963 8.119

MAE 3.247 3.306 4.328 5.238 6.052 6.176

R2 0.923 0.916 0.858 0.798 0.729 0.708
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results on the test dataset, which consists of 1,749 data points, in a
scatter plot format. Figure 8 presents the comparison of the linear
correlation between the predicted and observed
PM2.5 concentrations using our model, Causal-STAN, and six

other models at this site. The results demonstrate that our model
attains the highest correlation coefficient (R2 � 0.929) and a better
fit between the predicted regression line and the observed
reference line.

FIGURE 8
Correlation analysis between observed and predicted PM2.5 concentrations from variousmodels on the test set at site number 1141. The dashed line
is the y = x reference line and the solid line is the regression line.
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3.3 Comparative evaluation of dataset
partitioning strategies

To assess the effectiveness of our dataset partitioning strategy
within the experimental framework, we conducted comparative
experiments at four sample monitoring sites (IDs 1233, 1270,
1155, and 1141), contrasting our monthly partitioning approach
(Causal-STAN) with the annual partitioning method commonly
used in many models. Specifically, in the Causal-STAN method, the
dataset is partitioned monthly with the first 60% designated for
training, the subsequent 20% for validation, and the final 20% for
testing. Conversely, in the comparative method (Causal-STAN-
year), the dataset is divided annually, maintaining a consistent
distribution of 60% for training, 20% for validation, and 20% for
testing. This involves using data from the first 8 months of the year
for training, data from September and October for validation, and
the final 2 months’ data for testing. Throughout the experiment,
both approaches were evaluated using the same model architecture,
hyperparameters, and training settings.

Table 3 presents the forecasting results obtained at various test
sites for both comparative methods. The Causal-STAN model
consistently showed lower RMSE and MAE values across all sites,
indicating a higher accuracy in predicting PM2.5 concentrations
compared to the Causal-STAN-year model. For example, at site
1233, the RMSE for Causal-STAN was 3.189, compared to 3.758 for
Causal-STAN-year, representing a 15.1% decrease. Similarly, the
MAE decreased from 2.754 to 2.224, a reduction of about 19.2%.
Furthermore, the R2 values, which measure the proportion of
variance in the dependent variable that can be predicted from
the independent variables, were also higher for Causal-STAN.
Specifically, at site 1233, R2 improved from 0.928 with Causal-
STAN-year to 0.951 with Causal-STAN, indicating a 2.5% increase
in the model’s explanatory power and demonstrating a better fit to
the observed data. At site 1155, the performance disparity was even
more pronounced. The R2 value increased by 4.54%, underscoring
the enhanced adaptability and predictive capacity of the monthly
partitioning model under varied environmental conditions, which is
crucial for accurate air quality forecasting.

The superior performance of the Causal-STAN model is
primarily due to its ability to effectively capture short-term
fluctuations and seasonal trends. The model’s monthly
partitioning strategy ensures comprehensive inclusion of a wide
array of critical environmental variables throughout the year during
the training process. This granular approach provides the essential
details necessary for accurately predicting changes in
PM2.5 concentrations. Moreover, by integrating data from each
month, the Causal-STAN model consistently represents the unique
environmental characteristics and conditions of all seasons. This
capability is particularly crucial for pollutants like PM2.5, which are

highly sensitive to both seasonal variations and episodic changes.
Consequently, this significantly enhances the model’s accuracy and
robustness, enabling it to perform effectively across various times of
the year. In contrast, the Causal-STAN-year model, while
demonstrating reasonable performance during training and
validation, exhibits a significant increase in error rates during the
testing phase. This suggests an overfitting problem, where the model
performs well on familiar data but struggles to adapt to new, unseen
data. The annual partitioning contributes to this by smoothing over
crucial short-term variations and anomalies within the dataset.
Furthermore, this partitioning method may overlook critical
PM2.5 variation patterns, such as lower concentrations in
summer and higher in winter. Since the model is trained
predominantly with summer data and tested on winter data, it
fails to account for these seasonal trends. This explains why, despite
effective training on large data blocks from the initial months, the
model fails to accurately predict data from later months.

3.4 Hyperparameter study

In the temporal causal attention convolutional network, we
investigated the effects of two crucial hyperparameters—number
of layers (levels) and kernel size—on the Causal-STAN model using
a grid search strategy. Experiments were performed at monitoring
site number 1141. In this context, “levels” denotes the number of
layers within the network architecture, reflecting the depth of the
network, whereas “kernel size” indicates the dimension of filters
within the network. Table 4 presents the performance of these
parameters across various combinations, utilizing RMSE as the
performance metric. The lowest RMSE (3.985) occurred when
both parameters were set to 4, with minimal error variance

TABLE 3 Comparative performance analysis of causal-STAN and causal-STAN-year models at four monitoring sites.

Model
Site 1233 Site 1270 Site 1155 Site 1141

RMSE MAE R2 RMSE MAE R2 RMSE MAE R2 RMSE MAE R2

Causal-STAN (Ours) 3.189 2.224 0.951 5.034 3.964 0.929 5.063 3.783 0.922 3.985 3.088 0.929

Causal-STAN-year 3.758 2.754 0.928 5.606 4.188 0.909 6.347 4.877 0.882 5.014 3.814 0.912

TABLE 4 Performance metrics of causal-STAN at various levels and kernel
sizes using RMSE at monitoring site 1141, with best results highlighted in
bold.

Kernel sizes

2 3 4 5 6 7 8

Levels

2 5.844 4.345 4.458 4.402 4.458 4.797 4.910

3 5.417 4.117 4.025 4.214 4.547 5.206 5.864

4 5.483 4.125 3.985 4.106 4.319 4.532 4.745

5 5.556 4.221 4.139 4.196 4.588 4.801 4.937

6 4.945 4.397 4.322 4.717 4.636 4.824 4.914

7 5.702 4.347 4.178 4.373 4.430 4.950 5.063

8 5.668 4.618 4.493 4.550 4.957 5.183 5.775
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around this configuration, highlighting that balanced selections of
layers and kernel size are crucial for optimal performance.

From the data in Table 4, it is evident that both overly large and
small parameter values negatively affect model performance. For
instance, when kernel sizes exceed 6 or levels surpass 6, RMSE
increases noticeably, indicating overfitting or insufficient model
generalization. Conversely, smaller values for these
hyperparameters may lead to underfitting, as the network is
unable to capture complex spatio-temporal relationships in the data.

The degradation in model accuracy stems from several factors.
Too many layers increase the model’s complexity, which
complicates optimization and risks overfitting. In contrast, an
insufficient number of layers fails to capture deeper data
relationships, leading to underfitting. Similarly, excessively large
kernel sizes may include excessive historical information,
introducing noise, while too small kernel sizes may not capture
sufficient long-term dependencies.

As shown in Table 4, the optimal range for both levels and kernel
size lies between 3 and 5. This range provides a balance between
model complexity and generalization capability, ensuring more
robust performance across different data conditions. These results
highlight the importance of considering the combined effects of
hyperparameters to maintain model accuracy.

4 Discussion

4.1 Effects of directional residual block

To validate the effectiveness of the directional residual block,
two comparison strategies were employed: a) removing the
directional residual block; b) substituting the directional residual
block with a standard residual block (3 × 3 convolution). The
outcomes, which reflect average data across all monitoring sites
in the dataset, are presented in Figure 9. Initially, removing the
directional residual block led to an increase in RMSE andMAE from
4.180 and 3.247 to 4.746 and 3.728, respectively, marking increases
of 13.54% and 14.82%. Concurrently, R2 declined from 0.923 to
0.896, a decrease of 2.93%. This highlights the importance of
incorporating domain knowledge in multi-site PM2.5 prediction.

Conversely, incorporating standard residual blocks did not
markedly enhance prediction performance. This indicates that
the directional residual block effectively captures the directional
characteristics of PM2.5 concentration diffusion between sites, and
incorporating such domain knowledge is practically beneficial for
PM2.5 prediction tasks.

4.2 Effects of temporal causal attention

To evaluate the effectiveness of temporal causal attention for
capturing temporal dependence, two comparison strategies were
utilized: a) the removal of temporal causal attention, and b) the
positioning of temporal causal attention after dilated causal
convolution (DCC-TCA). The outcomes, which reflect average
data across all monitoring sites in the dataset, are presented in
Figure 10. Experimental results show a decrease in RMSE and MAE
from 4.610 and 3.636 to 4.180 and 3.247, respectively, representing
decreases of 9.33% and 10.70%, with R2 improving by 1.65%
following the introduction of temporal causal attention. This
underscores the importance of considering the time series’ long-
term dependence.

Positioning temporal causal attention after dilated causal
convolution significantly diminishes the model’s predictive
performance. Compared to the proposed temporal causal attention
convolutional network, there is a significant increase in RMSE and
MAE, and a notable decrease inR2 by 4.01%. This phenomenon could
be attributed to dilated causal convolution losing or weakening critical
temporal information during computation, hindering temporal causal
attention from fully compensating for this loss. Hence, this confirms
the superiority of our proposed temporal causal attention
convolutional network design.

5 Conclusion

This study introduces Causal-STAN, a novel spatio-temporal
attention causal convolutional neural network, tailored for multi-
site PM2.5 prediction. It addresses prevalent issues in existing
methods, such as over-reliance on recurrent networks for
temporal dependency extraction, limited exploration of
feedforward modeling, and neglect of air quality pollutant
dispersion domain knowledge. Causal-STAN integrates a multi-
site spatio-temporal feature integration module and a temporal

FIGURE 9
Impact of the directional residual block on prediction
performance.

FIGURE 10
Impact of temporal causal attention on prediction performance:
(A) RMSE, (B) MAE, and (C) R2 comparisons for different models.
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causal attention convolutional network, significantly enhancing
spatial and temporal dependency learning while introducing
causality into temporal dependency analysis. Combining a
convolutional neural network with a directional residual block,
Causal-STAN effectively captures directional features of
PM2.5 dispersion and utilizes dilated causal convolution and
attention mechanisms as viable alternatives to recurrent networks
for long-term dependency learning. Research results indicate that
Causal-STAN can accurately forecast PM2.5 concentrations across
multiple monitoring station areas for the next 6 hours,
outperforming current methodologies. Specifically, its application
in forecasting future PM2.5 concentrations for 247 air quality
monitoring stations in the Yangtze River Delta region of China
will significantly assist policymakers in more effectively evaluating
and addressing air quality issues. This enhancement in predictive
capability is crucial for improving public health protection and
mitigating health risks associated with air pollution.

Despite the encouraging results, the Causal-STAN model has
several limitations. So far, the model has only been applied to the
prediction of PM2.5, and its generalizability to other pollutants, such
as NO2 or O3, remains uncertain. Additionally, the model has only
been tested in the Yangtze River Delta region, and its performance in
areas with different climatic or environmental conditions has yet to
be validated. The model also relies on data from existing air quality
monitoring stations, which limits its effectiveness in regions with
scarce monitoring infrastructure. Furthermore, data gaps are
currently filled using traditional interpolation techniques, which
may not fully capture the complexity of missing data. Finally,
external factors such as industrial emissions or policy changes,
which may occur unexpectedly, have not yet been considered,
and these factors could potentially affect the model’s predictive
performance.

In the future, we plan to enhance our model along three targeted
dimensions:

(1) Data Completion Using Deep Learning: We will integrate
advanced deep learning methods, such as generative
adversarial networks (GANs) or autoencoders, to perform
more accurate data imputation. Preliminary experiments
using a small subset of incomplete data suggest that these
techniques can significantly improve the model’s
performance in regions with data gaps. We expect that
adopting these methods will enhance overall predictive
accuracy, especially in areas where air quality monitoring
stations have significant data missing for certain periods.

(2) Geographical Expansion:We plan to obtain extensive pollutant
data and air quality indices from the past year for the Jing-Jin-Ji
or Pearl River Delta regions through the urban air quality real-
time publishing platform of the China National Environmental
Monitoring Center, as well as corresponding meteorological
data from the National Climatic Data Center. Using data from
these regions, we aim to validate the model’s predictive
performance under different climatic and environmental
conditions. These results will guide us in refining the model
for better generalization and applicability across diverse
geographical areas.

(3) Application in Unmonitored Areas: We plan to collect
additional data sources for unmonitored areas through

open-source APIs, including functional area classification,
road network data, weather forecast data, and pollutant
and meteorological data from the nearest air quality
monitoring stations. Furthermore, we will improve the
model’s training strategy with a focus on simulating the
interactions between different monitoring stations. By
leveraging these enriched data sources, we aim to predict
pollutant levels in unmonitored areas, addressing a critical
gap in air quality management and providing stronger
support for public health initiatives.
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