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In this paper, we select the China Carbon Market Price Index, which reflects the
overall price changes in China’s carbon market (CCM), and employs the TVP-
VAR-BK model to examine the risk spillover effects between the carbon market
and high-carbon-emission industries in China from a frequency domain
viewpoint. Employing the nonparametric quantile Granger causality test, it
delves further into the effects of economic policy uncertainty (EPU) in China
on the degree of risk spillovers between the carbon market and high-carbon-
emission industries. There are significant risk spillover effects between the carbon
market and high-carbon-emission industries. During the short term, the carbon
market affects the cement industry more than the electric power and steel
industries. However, the carbon market is affected by the volatility of the
high-carbon-emission industries over the long term. In addition, the effect of
EPU on the magnitude of risk spillovers between the carbon market and high-
carbon-emission industries is nonsignificant at extreme quartiles and significant
at the middle quartile level, which is typically asymmetric.
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1 Introduction

As global warming has gotten worse over the past few years, the world’s glaciers are
melting rapidly (Tran, 2022), and the international community has come together to
address this global crisis. The signing of the Kyoto Protocol and the Paris Agreement
marked significant progress in strengthening cooperation on climate governance at the
global level. In this context, the goals of “Carbon Peaking” and “Carbon Neutrality”
demonstrate a firm stance on climate change in China (Zhang et al., 2023). A lot of attention
has been paid by scholars to the carbon market as an important part of China’s high-quality
growth, green and low-carbon transformation, and reaction to global warming. The Chinese
Listed Companies Carbon Emissions Ranking was released in Beijing on 17 November
2021. The list is divided into “total” and “intensity”, which shows that electric power, steel,
and cement are the top three carbon emission industries. Therefore, exploring the spillover
effects between the carbon market and high-carbon-emission industries is vital for
effectively controlling the risk of carbon trading, advancing the “double carbon” target
and national conservation of energy and reduction of emissions.

As the CCM has steadily improved, some academics have started to concentrate on the
ways that the spillover effects between the CCM and high-carbon-emission industries. Tang
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et al. (2024) examined the risk spillover effects among China’s
electricity, coal and carbon markets using the DY spillover index.
The empirical results show that there are significant long-term
bidirectional asymmetric spillovers between these markets. In
addition, extreme risk events significantly exacerbate the volatility
spillover effects in the power, coal and CCM. Xu and Huang (2023)
investigated the relations between the CCM and ten high-energy-
consuming industries, such as electric power, paper, steel, and
nonferrous metals, using the variance spillover index constructed
with the TVP-VAR model. The research findings indicate that the
CCM had a more profound effect on energy-intensive companies
during the COVID-19 pandemic and the carbon market
establishment, as well as a more closer risk contagion network.
However, when most scholars study the spillover effect between
CCM and high-carbon-emission industries, the selected CCM
variables do not reflect the overall changes in CCM price as a
whole. For example, Tao (2015) considered the completeness and
authenticity of the data and thus studied the Shanghai carbon
trading market. On the other hand, Wang and Wang (2022)
studied the Hubei carbon trading market. Meanwhile, the
existing literature has not overcome the shortcomings of the
chosen model when exploring the relationship between carbon
and financial markets from the frequency domain perspective.
For example, Adekoya et al. (2021) used the BK model in order
to investigate the spillover effects that occurred between the EU
carbon market and a number of other commodities and financial
markets at varying frequencies. Ding et al. (2022) utilized the DY
and BKmodels to explore the time-frequency spillovers between the
carbon market, the fossil energy market, and the clean energy
market in both time and frequency domains. However, none of
these modeling approaches can avoid the specific drawbacks of the
rolling window VAR approach, such as the problems of arbitrarily
choosing the size of the rolling window and the loss of observations.

In addition, another shortcoming of the existing studies is that
they neglect to explore the impact of macroeconomic variables on
the spillover effects between carbon markets and high-carbon-
emission industries. Relevant studies have shown that economic
policy uncertainty has significant explanatory power on financial
market variables such as commodity prices (Prokopczuk et al.,
2019), bond market volatility (Kim et al., 2024), foreign exchange
spreads (Husted et al., 2018), and stock prices (Liang et al., 2020),
and the impact is more significant, especially during the crisis.
Therefore, it is important to explore the impact of EPU on the
spillover effect between the carbon market and high-carbon-
emission industries to realize the risk prevention and control
between the carbon market and high-carbon-emission industries,
as well as to introduce corresponding policies.

In summary, the main contributions of this paper are as follows:
First, in order to better study the spillovers between the CCM and
high-carbon-emission industries, this paper selects the Wind Power
Industry Index, China Steel Price Index and China Cement Price
Index as representative of high-carbon-emission industries and
selects the China Carbon Trading Price Index constructed by
Han and Jiang (2022) as representative of CCM, so that it can
better reflect the spillover effect of overall price changes in the CCM
on the high-carbon-emission industries. Second, this paper utilizes
the BK spillover index constructed by the TVP-VAR model, which
overcomes the shortcomings of the traditional BK spillover index

model, in order to study the spillover effect between the carbon
market and high-carbon-emission industries. Third, the impact of
the EPU on the spillover effects between the CCM and high-carbon-
emission industries is further explored. Overall, the research
framework of this paper provides some new ideas for analyzing
the spillover effects between carbon markets and high-carbon-
emission industries, and the conclusions of this paper also have
some guiding significance for the prevention of risk contagion in the
process of carbon market construction.

The paper is structured as follows. The related literature review
is in Section 2. The modeling methodology is in Section 3. The
analysis of the empirical results, conclusions and policy
recommendations are discussed in Sections 4, 5, respectively.

2 Literature review

The production of high-carbon-emission industries requires
considerable energy consumption, such as natural gas, oil and
coal. The use of these energy sources will exacerbate global
warming, so most scholars pay more attention to the relationship
between the carbon market and the energy needs of high-carbon-
emission industries. Current research focus on the EU carbon
market, the longest-established. Chen et al. (2022) used the
QVAR model in order to investigate the connection between the
carbon market and the energy and metal markets. Their analysis
found a strong spillover impact between these two marketplaces,
especially at the extreme quartile level. At the same time as Byun and
Cho (2013) made the discovery that there is an asymmetric link
between the volatility of carbon futures and energy volatility using
the GARCH model, they also noticed the direction of the spillover.
The findings of Byun and Cho (2013) were corroborated by Liu and
Chen (2013), who conducted additional research to examine the
extent of the spillover effects. Through the utilization of the TVP-
VAR-SV model and impulse response function, Qiao et al. (2023)
investigated the intensity of spillovers and the direction in which
they occurred in the carbon, fossil energy, and electric power
markets. In the end, the findings demonstrated that the carbon
market, the fossil energy market, and the electricity market all
exhibit time-varying asymmetric characteristics in terms of the
intensity and direction of their spillovers. With the help of the
quantile VAR network framework and the GARCHSK model, Zhou
et al. (2022) discovered that there are considerable risk spillover
effects between the carbon market, the energy market, and the
nonferrous metal market., and these effects have significant
dynamic characteristics. However, there are clear disparities in
risk spillovers across dimensions. Numerous studies have been
conducted on the carbon market and energy market in China,
coinciding with the gradual establishment and improvement of
the China carbon market (CCM). Sample entropy is used by Yin
et al. (2021) to investigate the volatility link between the coal and
CCM from a multiscale and crossover viewpoint. The study found
some degree of synchrony between the two markets. In the current
study, Song et al. (2022) examined the spillover effects between the
CCM and energy market using the VAR model and the BEKK-
MGARCHmodel. They found spillover effects between a part of the
CCM and the energy market, but there is a difference in the direction
and intensity of the spillover effect. Liu et al. (2023) employed the
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TVP-Copula-CoVaR methodology to examine the spillover effect of
extreme risk between the CCM and the energy market. Their results
suggest that, in comparison to the energy market, the CCM is more
vulnerable to severe external shocks.

Among the related volatility spillover studies, the literature mostly
analyses the link between the carbon market and various financial
markets from a time-domain perspective. Wang and Guo (2018)
employed the spillover index developed by Diebold and Yilmaz
(2012) to examine the presence of asymmetric spillover effects
among the carbon, crude oil, and natural gas markets. Using a
modified error variance decomposition and network analysis, Tan
et al. (2020) analysed the linkages between the EU carbon market
and other financial markets and found that the carbon market and the
oil and equity and nonenergy commodity markets are closely linked.
The “carbon-energy-finance” system is more heavily influenced by
macroeconomic variables than commodities considerations. Zhang and
Wei (2024) examined the volatility spillovers between energy,
agriculture, metals and carbon markets using a TVP-VAR model
and empirically showed that the overall volatility spillover intensity
between these markets is relatively low compared to the total return
spillover index, thus suggesting that the linkages between these markets
are weaker during periods of market turbulence. At the same time, a
number of researchers have also investigated the spillover impact
between the carbon market and the financial market from the point
of view of the frequency domain perspective. Wang and Wang (2022)
employed the BK model to examine the spillover effect between the
CCM and the electric power market. The findings revealed that the
spillover level is most pronounced in the short term and least
pronounced in the long term. Jiang and Chen (2022) investigated
the spillover effects between metal, energy and carbon markets during
theNewCrown outbreak in both time and frequency domains using the
DY spillover model and the BK spillover model, and the results showed
that the total spillover effects between carbon markets and metal and
energy were significantly higher in the post-epidemic period compared
to the pre-epidemic period. Among the total spillovers, the short-term
spillovers were significantly higher than the long-term spillovers.

In addition, as the financialization of the carbon market
continues to advance, price volatility and potential risks are
gradually interacting significantly with other financial markets
(Xu, 2021). Many variables impact financial markets, including
energy market volatility, military conflicts, monetary policies,
economic policies, and unpredictabilities in financial and energy
markets, can exacerbate carbon market volatility (Abbas et al., 2019;
Yu et al., 2021; Ge et al., 2022; Zhang et al., 2022) and further
diminish its effectiveness and impact in decreasing carbon emissions
(Mamirkulova et al., 2020; Dou et al., 2022), while increased
volatility in the carbon market leads to an increase in the
volatility spillovers of the financial markets to which it is linked.
Therefore, it is important to continue to investigate the influence of
macroeconomic variables on the level of risk spillovers between
carbon and other markets. Chevallier (2011) used three different
datasets and two testing methods to find that the increasing
uncertainty of annual compliance events explains the instability
of carbon price fluctuations, indicating a connection between
macroeconomics and carbon markets. Similarly, Koch (2014)
argued that the correlation between carbon and financial markets
can be significantly affected by uncertainty induced by
macroeconomic shocks during financial crises.

A review of the literature shows that, first, the above studies on
the selection of the CCM variables mostly selected one or more
carbon markets as representative of the China carbon market, thus
failing to reflect the total CCM price shift. Second, the majority of
previous research focuses on time domain analysis between the
carbon market and high-carbon-emission industries. Although
some scholars have also conducted research in the frequency
domain, the selected model has not overcome the rolling window
VAR method’s drawbacks. Finally, existing studies do not further
explore the influence of macroeconomic variables on the spillover
effects between the carbon market and other markets.

3 Materials and methods

3.1 TVP-VAR-DY

Since Sims (1980) proposed the VAR model, it has been widely
used in economic research. However, due to the defects of the model,
Sims (1986) improved it and proposed the structural vector
autoregressive SVAR model. Primiceri (2005) improved the TVP-
VAR model on the basis of the SVAR model, which well solves the
problem of effective estimation of nonlinear time series in the
SVAR model.

Antonakakis and Gabauer (2017) made a time-varying volatility
spillover index using the TVP-VAR model and the method for
making a spillover index by Diebold and Yilmaz (2012). This
method is called the TVP-VAR-DY methodology in this paper.
The TVP-VAR(p) equation is:

yt � Φ1tyt−1 +Φ2tyt−2 + ... +Φptyt−p + t x( ) t ~ N 0,Σt( ) (1)

where yt and ϵt are N × 1 vectors, Σt is the N × N time-varying
variance‒covariance matrix, Φit are the N × N time-varying VAR
coefficients, and i � 1, ..., p. Using thematrix lag-polynomialΦ(L) �
[IN − Φ1tL − ... − ΦptLp] and the Wold representation theorem, the
smooth TVP-VAR process can be rewritten in the form of TVP-
VMA(∞): xt � Ψ(L)ϵt, where Φ(L) � [Ψ(L)]−1. Ψ(L) has infinite
lag terms, thus it is approximated byΨh, which is calculated on these
lag orders of h � 1, ...H (Chatziantoniou et al., 2021).

The generalised forecast error variance decomposition
(GFEVD), which indicates the impact of a shock to variable j on
the forecast error variance of variable i, can be calculated using the
TVP-VMA coefficient Ψℎ. It is written as follows:

Cijt H( ) �
Σt( )−1∑H

h�0
ΨhΣt( )ijt( )2

∑H
h�0

ΨhΣtΨ
′
h( )

ii

(2)

~Cijt H( ) � Cijt H( )
∑N
k�1

Cijt H( )
(3)

where ~Cijt(H) denotes the contribution of variable j to the variance
of the prediction error of variable i at level H. By row normalisation
of ~Cijt(H), we can obtain ∑N

i�1 ~Cijt(H) � 1 and N
j�1i�1

~Cijt(H) � N.
With Equations 2, 3, all risk spillover levels can be

calculated, including:
Total spillover index:
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TACLt H( ) � N−1∑
N

i�1
TOit H( ) � N−1∑

N

i�1
FROMit H( ) (4)

The bigger the total spillover index, the stronger the relationship
between the variables in the system. This coefficient shows the
contribution of mutual spillovers between variables to the total
forecast error variance.

Net pairwise directional spillover:

NPDCijt H( ) � ~Cijt H( ) − ~Cjit H( ) (5)

It is the difference between the shock from variable i to variable j
and the shock from variable j to variable j, and it shows the net
spillover between two variables in the system.

Total Spillover TO others:

TOit H( ) � ∑
N

i�1,i�j
~Cjit H( ) (6)

It represents the spillover effect of variable i on all the other
variables in the system.

Total Spillover FROM others:

FROMit H( ) � ∑
N

j�1,i ≠ j

~Cijt H( ) (7)

It represents the spillover effect of all the other variables in the
system to variable i.

Net spillover effects:

NETit H( ) � TOit H( ) − FROMit H( ) (8)

It shows how variable i has a net spillover effect on all other
variables. When NETit(H)> 0, this indicates that the shock of
variable i on all other variables is greater than the shock of the
other variables on i.

3.2 TVP-VAR-BK

By integrating the TVP-VAR model with the BK model, which
was presented by Baruník and Křehlík (2018), we can investigate the
frequency domain volatility spillovers between variables. The
frequency response function Ψ(e−iω) � ∑∞

h�0 e−iωhΨh(i �
���−1√ ), yt

can be written at frequency ω as:

Sy ω( ) � ∑
∞

h�−∞
E ytyt−h

′( ) e−iωh � Ψ e−iωh( )ΣtΨ′ e+iωh( ) (9)

Normalised processing is applied to the frequency domain
generalised forecast error variance decomposition, and its
equation is:

Cijt ω( ) �
Σt( )−1jj ∑∞

h�0
Ψ e−iωh( )Σt( )ijt

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣
2

∑∞
h�0

Ψ e−iωh( )ΣtΨ eiωh( )( )ii
(10)

�Cijt ω( ) � Cijt ω( )
∑N
k�1

Cijt ω( )
(11)

Aggregating all the frequencies in a given range to calculate
spillovers in the short and long term, rather than at a single
frequency, yields �θijt(d) � ∫b

a
�θijt(ω)dω, where

d � (a, b): a, b ∈ (−π, π), a< b; furthermore, the magnitude of
risk spillovers can be calculated at all frequencies.

NPDCijt d( ) � �Cijt d( ) − �Cjit d( ) (12)

TOit d( ) � ∑
N

i�1,i ≠ j

�Cjit d( ) (13)

FROMit d( ) � ∑
N

j�1,i ≠ j

�Cijt d( ) (14)

NETit d( ) � TOit d( ) − FROMit d( ) (15)

TACIt d( ) � N−1∑
N

i�1
TOit d( ) � N−1∑

N

i�1
FROMit d( ) (16)

Additionally, we have

CN H( ) � ∑
d

CN d( ) (17)

Where CN(·) � [NPDC, TO, FROM,NET, TACL] denote the
frequency net pairwise directional spillover, frequency spillover
effects to others, frequency spillover effects from others,
frequency net spillover effects, and frequency total spillover
effects, respectively.

3.3 Nonparametric quantile Granger
causality test

To continue to examine the effects of EPU on spillovers between
variables, this study employs the nonparametric quantile Granger
causality test developed by Balcilar et al. (2016), building upon the
research conducted by Nishiyama et al. (2011) and Jeong et al.
(2012). This test is effective in determining causal relationships
between variables.

In the model, if xt denotes the explanatory variables and yt

denotes the explained variables, then

Qθ yt | yt−1,/, yt−p, xt−1,/, xt−p( ) � Qθ yt | yt−1,/, yt−p( ) (18)

Qθ yt | yt−1,/, yt−p, xt−1,/, xt−p( ) ≠ Qθ yt | yt−1,/, yt−p( ) (19)

Equation 18 indicates that the variable xt is not a nonlinear
Granger cause of the yt in the θ quantile at lag order P, and Equation
19 indicates that the variable xt is a nonlinear Granger cause of
variable yt in the θ quantile at lag order P, where Qθ(yt | ·) denotes
that variable yt is in the θth quantile (0 < θ < 1).

Letting Yt−1 ≡ (yt−1,/, yt−p), Xt−1 ≡ (xt−1,/, xt−p),
Zt ≡ (Xt, Yt), Fyt |Zt−1(yt | Zt−1) and Fyt |Yt−1(yt | Yt−1) are the
conditional distributions of yt under Zt−1 and Yt−1, respectively.

And letting Qθ(Zt−1) ≡ Qθ(yt | Zt−1) and
Qθ(Yt−1) ≡ Qθ(yt | Yt−1), it can be shown that the probability of
occurrence of Fyt |Zt−1 Qθ(Zt−1 | Zt−1){ } � θ is 1. Then, according to
Equations 18, 19, the following hypothesis can be proposed:

H0: P Fyt|Zt−1 Qθ Yt−1( )|Zt−1{ } � θ{ } � 1 (20)
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H1: P Fyt |Zt−1 Qθ Yt−1( ) | Zt−1{ } � θ{ }< 1 (21)

Jeong et al. (2012) measure quantile causality using the distance
measure J � εtE(εt | Zt−1)fz(Zt−1){ }, where εt is the regression
error term and fZ(Zt−1) is the marginal density function of Zt−1
i. The original hypothesis H0 holds if and only if
E[I yt ≤Qθ(Yt−1) | Zt−1{ }] � θ or I yt ≤Qθ(Yt−1){ } � θ + εt, where
I ·{ } is the indicator function. The formula for the distance
measure is:

ĴT � 1

T T − 1( )h2p ∑
T

t�p+1
∑
T

s�p+1,s ≠ t

K
Zt−1 − Zs−1

h
( )ε̂t ε̂s (22)

In Equation 22,K(·) is the kernel function, h is the bandwidth, T
is the sample capacity, p is the lag order of the vector Zt, ε̂t is the
estimation of the unknown regression error, and
ε̂t � I yt ≤Qθ(Yt−1){ } − θ, which is estimated by using
nonparametric kernel methods for Qθ(Yt−1):

Q̂θ Yt−1( ) � F̂
−1
yt |Yt−1 θ | Yt−1( ) (23)

In Equation 23, F̂yt |Yt−1(yt | Yt−1) denotes the Nadarya–Watson
kernel estimator with the following expression:

F̂yt |Yt−1 yt | Yt−1( ) �
∑T

s�p+1,s ≠ t
L Yt−1−Ys−1

h( )I ys ≤ yt( )

∑T
s�p+1,s ≠ t

L Yt−1−Ys−1
h( )

(24)

The kernel function is represented by L(·) in Equation 24, while
the bandwidth is represented by h. Balcilar et al. suggested a higher-
order quantile causality testing model based on Nishiyama et al. and
the research framework of Jeong et al.

yt � g Yt−l( ) + σ Xt−l( )εt (25)

In Equation 25, εt is the white noise process, and g(·) and σ(·)
are equal to the unknown functions that satisfy the smoothness
condition. Equation 26 is reformulated as the null alternative
hypothesis for variance causality as follows:

H0: P Fy2t |Zt−1 Qθ Yt−1( ) | Zt−1{ } � θ{ } � 1 (26)

H1: P Fy2t |Zt−1 Qθ Yt−1( ) | Zt−1{ } � θ{ }< 1 (27)

To obtain the feasible test statistic, the yt in Equations 22–24 is
replaced by y2t and the sequential test method described by
Nishiyama et al. is introduced. First, the nonparametric
Granger causality is evaluated for the first-order moment (k =
1). The original hypothesis is rejected at k = 1 because there is no
causal link between EPU and spillovers between carbon markets
and high-carbon-emission industries. Next, a second-order
moment (k = 2) causality test is performed in the study. The
empirical findings demonstrate the existence of a strong causal
link. The lag order p in the nonparametric quantile causality test
model was established using the Schwarz information criterion,
Gaussian-type kernels were eventually employed forK(·) and L(·),
and the bandwidth h was chosen using least squares cross-
validation procedures.

4 Results

4.1 Data

4.1.1 Data selection
To investigate the influence of the CCM and high-carbon-

emission industries, this paper selects the China Carbon Market
Price Index constructed by Han and Jiang (2022) for the carbon
market variables. The index is based on the average price of
transactions in the seven carbon markets of Shenzhen, Shanghai,
Beijing, Guangdong, Tianjin, Hubei and Chongqing, and is
compiled accordingly using the Paasche Index methodology with
monthly data. In the selection of variables for the electric power
industry (CPI), steel industry (CSI) and cement industry (CCI), the
Wind Power Industry Index, China Steel Price Index and China
Cement Price Index are selected as representatives of the three
industries. For the empirical analysis, we follow Yu et al. (2021) and
use monthly data to measure the spillover effects between the CCM
and high-carbon-emission industries in the short-term
(1–3 months) and long-term (more than 3 months) scenarios.
The starting point of the empirical evidence is August 2014, the
starting date of the China carbon market price index was
constructed by Han and Jiang (2022), and the sample study
interval was from August 2014 to September 2022. The EPU
index is selected from the China Economic Policy Uncertainty
Index constructed by Baker et al. (2016). The Wind database is
the source of the data.

4.1.2 Descriptive statistics
Table 1 shows the descriptive statistics of the CCM price index,

the power industry index, the steel industry index, and the cement
price index. Analyzed from the viewpoint of standard deviation, the
data of each series have different volatility, with the most drastic
fluctuation in the electric power industry, and a greater degree of
volatility in the iron and steel industry, the cement industry, and the
domestic carbon market. From the viewpoint of kurtosis coefficient
and skewness coefficient, the skewness of each series is not 0, and the
kurtosis is significantly larger than 2, showing significant sharp
peaks and thick tails. The value of Jarque-bara statistic of the original
series of CCM and electric power industry at 5% level is 14.062 and
31.960 respectively, which significantly rejects the original
hypothesis, so it does not obey normal distribution. However, the
values of Jarque-Bara statistic for steel industry and cement industry
at 5% level are 1.097 and 2.606 respectively, which do not reject the
original hypothesis and obey normal distribution.

TABLE 1 Descriptive statistics for samples.

CCM CEI CSI CCI

Mean 57.99656 3,341.433 137.6177 129.6211

Stdndard Deviation 28.48482 632.0163 34.28051 32.22320

Skewness 0.914069 1.131949 −0.072215 −0.015922

Kurtosis 3.181405 4.595387 2.507697 2.209719

Jarque-Bera 14.06248 31.96037 1.096759 2.606491

Note: *, **, *** indicate significant at the 10%, 5%, and 1% levels, respectively.
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4.1.3 Data testing
A smoothness test needs to be performed on the raw data before

empirical evidence is collected to prevent pseudoregression. The
ADF test results in Table 2 show that the China carbon trading
market price is stationary at the 10% significance level. The power
industry index, steel industry index and cement price index cannot
reject the original hypothesis at three significance levels, indicating
that the original series are not stationary. The China Economic
Policy Uncertainty Index is stationary at the 5% significance level.
Therefore, this paper selects the original CCM price and the original
China economic policy uncertainty index as well as the first-order
difference series of the electric power industry, the steel industry
index, and the cement price index for the subsequent
empirical study.

4.2 Empirical results

4.2.1 Static spillover effect results
Table 3 presents the total spillover effects between the CCM and

high-carbon-emission industries, while Tables 4, 5 demonstrate the
short-term and the long-term results of the spillover effects. The
total spillover effects have an average value of 61.33%, which is
divided into 53.85% attributable to short-term spillover effects and
7.48% attributable to long-term spillover effects. This indicates that
61.33% of the total spillover effects in the network “CCM – high-
carbon-emission industries” come from the network itself and that
the CCM has considerable spillover effects on high-carbon-emission
industries. According to frequency domain decomposition, short-
term spillovers dominate the CCM and high-carbon-emission
industries spillovers. In terms of net spillover effects to others, it
may be seen quite plainly that the CCM has the largest net spillover

effect of 13.46%, which is the main exporter of spillover effects in the
network “CCM – high-emission-carbon industries”, followed by the
steel industry and the electric power industry. Therefore, in the
network “CCM – high-carbon-emission industries”, the CCM will
have a substantial influence on high-carbon-emission industries.
Regarding the net spillover effects from others, the main net
recipient in the network “CCM and high-carbon-emission
industries” is the cement industry, with a value of −30.16%.
From the frequency domain decomposition standpoint, the
cement industry has the greatest impact in the short term,
at −35.33%, while in the long term, it is a net exporter with a net
spillover effect of 5.17%.

4.2.2 Dynamic spillover effect results
4.2.2.1 Total spillover effects of the “carbonmarkets– high-
carbon-emission industries” network

The frequency domain decomposition in Figure 1 shows that the
short-term spillover level is significantly greater than the long-term
spillover level, and the long-term spillover level is close to 0 most of
the time, illustrating that the spillover effect in the “CCM – high-
carbon-emission industries” network in the time domain lasts less
than 3 months, but the spillover effects have little effect after
3 months. Overall, the total spillover index in this network shows
different stages of change over time, and its time-varying trend is
influenced mainly by policy, the macroeconomy and other factors.
In 2014–2015, the stock market in China was in a bull market phase,
and in 2015, the stock market continued to fall due to the previous
irrational rise of the stock market, which created a large bubble; thus,
the central government adopted deleveraging and tightened
financial regulation to regulate stock market risks. Thus, due to
the volatility of macroeconomic conditions, the total spillover index
reached an extreme value between 2014 and 2015, followed by a

TABLE 2 ADF test.

Test variables Test
classes (C,T,P)

ADF statistical
values

1% Critical
value

5% Critical
value

10% Critical
value

Conclusion

CCM (0,T,0) −3.205 −4.053 −3.456 −3.154 stationary

CPI (0,T,0) −2.715 −4.053 −3.456 −3.154 Nonstationary

CSI (0,T,0) −2.968 −4.053 −3.456 −3.154 Nonstationary

CCI (C,0,0) −1.224 −3.498 −2.891 −2.583 Nonstationary

EPU (0,T,0) −3.927 −4.053 −3.456 −3.154 stationary

Note: (C, T, P) represent the constant term, time trend term, and lag terms, respectively, where 0 indicates the absence of this term. The selection of lag terms depends on the SIC.

TABLE 3 Total spillover effects.

CCM CPI CSI CCI From

CCM 50.91 23.07 23.66 2.36 49.09

CPI 21.64 31.83 32.37 14.17 68.17

CSI 21.70 31.55 32.69 14.05 67.31

CCI 19.21 19.76 21.78 39.25 60.75

TO 62.55 74.38 77.80 30.59 TCI

Net 13.46 6.20 10.49 −30.16 61.33

TABLE 4 Total spillover effects in the short term (1–3 months).

CCM CPI CSI CCI From

CCM 39.58 19.77 20.61 1.47 41.85

CPI 20.57 27.86 28.83 9.92 59.33

CSI 20.59 27.50 29.01 9.70 57.79

CCI 18.29 18.06 20.07 33.60 56.43

TO 59.45 65.32 69.52 21.09 TCI

Net 17.61 6.00 11.73 −35.33 53.85
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gradual decline from 2015 onwards. The second half of 2016 ushered
in a period of supply-side reform and the use of market-based
solutions to address overcapacity, so the overall spillover index rose
again from the second half of 2016 onwards. In 2018, due to the
continued escalation of the trade war between the United States and
China and the continued depreciation of the RMB, the total spillover
effect peaked in 2018 and remained relatively stable in subsequent
years. The overall spillover effect in the network “CCM – high-
carbon-emission industries” shown a considerable increase trend
after the formal start of the China carbon emissions trading
program in 2021.

4.2.2.2 Net spillover effect results
In Figure 2, we find that the CCM acts as a net exporter of short-

term spillovers for most of the sample period, with its net spillover
index value being positive for the vast majority of the time, while it is
a net recipient in the long-term. This result implies that the CCM
has a larger influence on the high-carbon-emission industries in the
shrot term. Notably, the short-term spillover index of the CCM was

negative in 2016, which may be related to China’s supply-side
structural reform and low trading prices and activity in the CCM.

The total spillover situation in the steel industry is almost the
same as that in the electric power industry, both being net exporters
of short-term spillovers for most of the sample period. However, the
electric power industry acted as a net recipient of spillovers in both
the short and long term between 2014 and 2015. Throughout the
sample period, the cement sector received short-term spillovers, but
in the long run, it was a net exporter of spillovers throughout the
majority of the time. The net spillover indices for each market are
vulnerable to unexpected events during the sample period. Examples
include China’s supply-side structural reform in 2016 and the trade
conflict between China and the United States in 2018. It is evident
that the spillover effects of all markets reach stage extremes under
the influence of unexpected events. Moreover, the short-term and
long-term net spillovers notably differ, and in the long-term
frequency domain, the net spillovers in each market are relatively
smooth and less volatile, reflecting that each market can digest
market uncertainty information in the long term.

4.2.2.3 Net pairwise spillover effect results
To enhance comprehension of the interactive influential

characteristics of the CCM and high-carbon-emission industries,
the net pairwise spillover effects between the CCM and these
industries are once again examined in the following from the
standpoint of the frequency domain Figure 3.

(i) Show that the short-term spillover effects of the CCM on the
electric power industry and the steel industry reached
extreme values in 2014–2015 but then declined rapidly.
Until the second half of 2016, the CCM was a net
recipient of the electric power and steel industries in the
short term, and after the second half of 2016, the CCM
affected the electric power and steel industries in the short
term. The short-term spillover effects of the CCM on the
electric power and steel industries in 2018 also reached
extreme values in the short term in this phase. However,
the CCM is a net recipient of the electric power and steel
industries in the long-term throughout the sample period.
Overall, the short-term spillovers between the CCM and the
electric power and steel industries are greater than the long-
term spillovers. This finding also supports, to some extent,

TABLE 5 Total spillover effects in the long term (longer than 3 months).

CCM CPI CSI CCI From

CCM 11.33 3.30 3.05 0.89 7.24

CPI 1.06 3.97 3.54 4.25 8.85

CSI 1.12 4.05 3.68 4.35 9.52

CCI 0.92 1.70 1.70 5.66 4.32

TO 3.10 9.05 8.28 9.49 TCI

Net −4.14 0.20 −1.24 5.17 7.48

Note: TO represents the spillover index, which indicates the spillover effect of a variable on all the other variables; FROM represents the inflow index, which represents the spillover effect

received by a variable from all the other variables; and NET is the difference between the spillover index and inflow index, which indicates the net spillover effect of a variable on all the other

variables. A value greater than 0 means that the variable is a net exporter; otherwise, it is a net recipient. TCI denotes the total spillover index, which represents the average of all the variables’

spillover or inflow indices.

FIGURE 1
Total Spillover effects.
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the conclusions of Wang and Wang (2022). This paper
argues that the extreme short-term spillover effects of the
CCM on the power sector and the steel sector in
2014–2015 arose because of the influence of financial
speculative factors in the stock market. Before the second
half of 2016, the CCM affected the electric power industry
and the steel industry mainly because the CCM at
establishment was still incomplete, and after the supply-
side structural reform in 2016, the CCM developed, so
that the influence on the steel industry and electric power
industry gradually strengthened in the short term. Moreover,
the trade war between China and the United States in
2018 intensified the influence of the CCM on the sectors
of steel and electric power in the near term. The findings of
the previous analysis on the net spillover impact are validated
by this as well.

(ii) As shown in Figure 3, the CCM had a significant impact on
the cement industry in the short term during 2014–2015, but
in the long term the cement industry had a significant impact

on the CCM. After 2015, the cement industry was a net
recipient of the CCM in both the short and long term. The
chart clearly shows that the CCM spillover impact on the
cement sector is considerably influenced by extreme
occurrences.

(iii) A comparison of the above graphs shows that the electric
power and steel industries had a significant impact on the
CCM before 2016. This is because the was initially
incomplete. In the early stage of operation, market
liquidity was insufficient, price signal distortion and
other problems occurred, and the price signal of the
CCM could not truly reflect the demand and supply of
carbon emission permits. Changes in the price of carbon
emissions cannot significantly impact the production
decision-making of enterprises, and enterprises lack
active emission reduction incentives. Moreover, it is clear
from the figure that the impact of the CCM on the cement
industry in the short term is significantly greater than that
on the electric power and steel industries. The paper

FIGURE 2
Net spillover effects.
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suggests that this may be due to the relatively high carbon
intensity of the cement industry’s production process.
Cement production involves the calcination of limestone
at high temperatures, a process that releases large amounts
of carbon dioxide. Since this chemical reaction is inherent
in cement production and limestone is difficult to replace as
a rawmaterial, the cement industry faces a greater challenge
in reducing carbon emissions. Secondly, the cement
industry may be relatively lagging behind in emission
reduction technologies compared to the power and steel
industries. The power industry has more choices and
greater flexibility in emission reduction technologies, and
the steel industry can also reduce carbon emissions by
improving production processes, using low-carbon raw
materials and recycling waste gas. The cement industry,
on the other hand, may find it difficult to find cost-effective
and technically feasible abatement options in the short
term, and is therefore more susceptible to price
fluctuations in the carbon market.

4.2.2.4 Dynamic spillover network analysis of CCM and
high-carbon-emission industries

The above examined the spillover effect between carbon
market and high-carbon-emission industries from the
perspective of frequency domain based on static and dynamic
analysis, and in order to further clarify the dynamic change
characteristics of volatile spillover among variables, and to
demonstrate the risk contagion paths between carbon market
and high-carbon-emission industries and the change of
contagion paths under the influence of typical events, this paper
examined the spillover network during the bull market in 2015
(August 2014–June 2015), the spillover network during the U.S.-
China trade friction (January 2018–November 2019) and after the
official start of the national carbon emissions trading (July 2021-
end of the sample period).

Figures 4–6 report the short-term and long-term networks of the
“Carbon Market - high-carbon-emission industries” system in the
time domain as well as in the frequency domain under three special
time periods:

FIGURE 3
Net pairwise spillover effects.
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(i) In terms of the structural characteristics of the spillover
network, the spillover networks under the three special
event segments are basically the same, but the structural
characteristics of the time domain and the short-term
network are obviously different from those of the long-
term network. From this, it can be seen that in the system
of “CCM – high-carbon-emission industries”, the short-term
and long-term have different transmission paths, and the
positions and roles of each node in the spillover network are
not the same.

(ii) Under the three special event segments, the steel industry is
the information leader in the time domain and in the short
term, and the spillover effect on other markets is the largest.
This may be due to the high sensitivity of the steel industry to
changes in the economic environment. During bullish
phases, when economic growth is expected to be strong,
demand for steel increases, and industry sentiment rises, the
market performance of the steel industry tends to
foreshadow the overall market trend. During the U.S.-
China trade war, steel as a key raw material, its price

fluctuations are directly affected by trade policies, which
in turn affects the cost and profitability expectations of the
relevant markets. And after the opening of the carbon trading
market, the cost of carbon emissions from the steel industry
became the focus of market attention, and its dynamics
directly affected the supply and demand and price
fluctuations in the carbon market.

(iii) Whether in the time domain or in the short term, there is a
significant spillover effect of the carbon market on high-
carbon-emission industries, while in the long term the
spillover effect of the carbon market on high-carbon-
emission industries is small. This is also consistent with
the conclusions drawn in the spillover analysis above, and
further supports the points made above.

4.2.2.5 Study of the impact of EPU on volatility spillovers
between CCM and high-carbon-emission industries

Thus, in order to better understand how EPU influences
volatility spillovers between the CCM and high-carbon-emission
industries, this paper employs Balcilar et al. (2016)’s nonparametric

FIGURE 4
Network spillover during bull market.

FIGURE 5
Network spillovers during US-China trade friction.
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quantile Granger causality test to examine the causal relationship
between EPU and both total and net pairwise spillovers.

Before studying the nonlinear effect link between EPU and
volatility spillovers between the CCM and high-carbon-emission
industries, it is first necessary to clarify whether there is a nonlinear
structure between the two. In order to filter out the linear influence
of the volatility spillover between EPU and the CCM and high-
carbon-emission industries, this research uses the Broock et al.
(1996) BDS test to design a VAR model. It then extracts the
residuals for testing. The Table 6 displays the findings. The
nonparametric quantile causality test may be performed as, as
the Table 6 shows, all residual series are able to reject the initial
hypothesis.

The findings of the nonparametric quantile causality test of the
volatility spillovers between the EPU and the CCM and high-
carbon-emission industries are shown in the Figure 7. First, the
study demonstrates that at most quantile levels, EPU has an impact

on both the total and net pairwise spillovers between the CCM and
the high-carbon-emission industries. Additionally, it also
demonstrates a greater correlation between EPU and volatility
spillovers from carbon markets to high-carbon-emission
industries. Furthermore, the figure indicates that the overall
spillovers and net pairwise spillovers within the network of the
“CCM – high-carbon-emission industries” are particularly
susceptible to the influence of EPU when it is at the mid-quartile
level. Basu and Bundick (2017) find declines in production,
consumption, investment and employment time under
uncertainty shocks. Therefore, economic policy uncertainty leads
to a reduction in the supply of money in the financial market, which
may trigger liquidity risk in the financial market, which in turn
affects the supply of allowances in the carbon market, which leads to
changes in the production, research and development (R&D)
management of high-emission carbon-based industries, etc.,
which in turn causes changes in the level of production

FIGURE 6
Network spillovers during the official start of China carbon emissions trading.

TABLE 6 BDS test.

Spillover series Dimension

2 3 4 5 6

Total spillover 0.0400*** 0.0803*** 0.1176*** 0.1424*** 0.1611***

Total spillover in short-term 0.0327*** 0.0812*** 0.1273*** 0.1592*** 0.1821***

Total spillover in long-term 0.0796*** 0.1388*** 0.1970*** 0.2374*** 0.2605***

Net spillover between CCM and CPI 0.0219** 0.0380** 0.0698*** 0.0848*** 0.0916***

Net spillover between CCM and CPI in short-term 0.0531*** 0.0772*** 0.1055*** 0.1170*** 0.1150***

Net spillover between CCM and CPI in long-term 0.0618*** 0.1248*** 0.1575*** 0.1676*** 0.1705***

Net spillover between CCM and CSI 0.0554*** 0.0940*** 0.1267*** 0.1406*** 0.1376***

Net spillover between CCM and CSI in short-term 0.0520*** 0.0868*** 0.1184*** 0.1305*** 0.1308***

Net spillover between CCM and CSI in long-term 0.0700*** 0.1319*** 0.1634*** 0.1708*** 0.1664***

Net spillover between CCM and CCI 0.0714*** 0.1101*** 0.1342*** 0.1332*** 0.1260***

Net spillover between CCM and CCI in short-term 0.0424*** 0.0732*** 0.1098*** 0.1272*** 0.1342***

Net spillover between CCM and CSI in long-term 0.0979*** 0.1628*** 0.1932*** 0.2122*** 0.2296***
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technology, and the price of products. Total spillovers and
volatility spillovers between the CCM and high-carbon-emission
industries are not greatly impacted by EPU at the low quantile
level; moreover, they are even less affected by EPU at the high
quantile level. The limited impact of EPU on volatility spillovers
between the CCM and high-carbon-emission industries is due to
the fact that producers in high-carbon-emission industries are
capable of making rational decisions when market volatility is low,
whereas they are driven by extreme pessimism or optimism when
market volatility is high.

5 Conclusion and policy
recommendations

The advancement of the carbonmarket under the background of
global warming is receiving increasing amounts of attention from all

countries, so it is urgent to address the problem of carbon emissions
from high-carbon-emission industries. Nevertheless, there has been
limited scholarly focus on the risk spillover effects from the CCM
and high-carbon-emission industries, specifically in relation to the
frequency domain. Consequently, in order to examine the spillover
impact between the CCM and high-carbon-emission industries
from a frequency domain perspective, this research first uses the
BK spillover index, which was built based on the TVP-VAR model.
Second, this research comprehensively examines the influence of
EPU on the spillover effects between the CCM and high-carbon-
emission industries in order to further explore the relationship
between the two.

First the study found that “CCM – high-carbon-emission-
industries” have much higher short-term spillovers than long-
term spillovers. In addition, there are strong risk spillover effects
between the CCM and high-carbon-emission industries. In the short
term, carbon markets are mostly net exporters of spillovers;

FIGURE 7
Causality-in-quantiles test results.
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however, in the long term, they are more susceptible to shocks from
high-carbon-emission industries. Second, while the carbon
emissions and intensity of the steel and electric power sectors are
considerably higher in comparison to the cement industry, the
short-term repercussions of the carbon market on the cement
sector are considerably more pronounced. This demonstrates that
the CCM is insufficient to drive the electric power and steel
industries. As a result, in order to achieve a low-carbon and
environmentally sustainable economic transformation, greater
emphasis should be placed on the interconnections between the
CCM and the steel and electricity sectors, in order to direct and
incentivize businesses to conserve energy and decrease emissions.
Third, the spillovers between the CCM and high-carbon-emission
industries are significantly affected by EPU, and the effect is typically
asymmetric; i.e., at the mid-quartile level, EPU is more likely to have
an effect on the spillovers between the CCM and high-carbon-
emission industries, while at the extreme-quartile level, EPU’s effect
is not obvious.

The foregoing conclusions lead this study to the following
suggestions:

(i) For high-carbon-emission industries, with the improvement
and development of the CCM, the influence of the CCM on
these industries is becoming increasingly important.
Therefore, high-carbon-emission industries should actively
set emission reduction targets, promote enterprise
transformation and upgrading, and realise green
development to reduce the risk of losses they may bear in
the process of carbon market development.

(ii) Regarding decision-making, the current carbon reform of the
electric power and steel industries is insufficient, so special
attention should be given to the coverage of the electric
power and steel industries. In the meantime, the range of
industries included in the CCM should be expanded further,
gradually including building materials, chemical,
petrochemical, nonferrous metals, and other high-carbon-
emission industries, in order to improve the coverage of
carbon emissions. At the same time, from the perspective of
dynamic spillover network, we should be alert to the risk
transmission of high-carbon-emission industries, identify
the center of the network, and effectively supervise the
key nodes to reduce the probability and scope of
individual risk transmission.

(iii) For investors, it helps them to save risk management costs
and improve risk prevention and control awareness. For
example, market participants should be especially aware of

the effects of changes in EPU when the spillover level
between the CCM and high-carbon-emission industries is
at the middle quartile level.
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