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Global climate change is considered one of the greatest environmental threats in
the world. It is expected to significantly change the global hydrological cycle. The
two main water cycle components, potential evapotranspiration (PET) and
precipitation (P), are closely related to vegetation dynamics. In this study, the
partial correlation analysis method was used to analyzed the relationship
between Normalized Difference Vegetation Index (NDVI) and climate factors
(PET and P) based on grid cells. PETwas calculated by FAO-56 Penman–Monteith
method. Moreover, we also investigated the NDVI and climate factors in different
vegetation cover types. The results showed that grassland, forest and cropland in
China were positively correlated with PET and P. The time scales of the maximum
partial correlation coefficients between NDVI and PET of grassland vegetation
were mostly longer than 5–6 months. These time scales were longer than the
time scales related to P. The partial correlation coefficients between NDVI and
PET, P of forest vegetation were higher in northern China, whereas the spatial
distribution of related time scales was the opposite. The partial correlation
coefficients between NDVI and PET, P of forest vegetation were higher in
northern China. However, the spatial distribution of related time scales was
the opposite. The correlations between NDVI and PET, P of cropland
vegetation and the time scales related to PET had clear spatial heterogeneity.
The time scale of the correlation between NDVI and P for cropland in the
northern China was about 2 months. P had a strong influence on the growth
of various types of vegetation in the study area, and grassland vegetation was
affected by P over the shortest time scale. We compare and analyze the results of
this study with other related studies. These results provide a reference for
exploring the dynamic changes in different vegetation types and factors
impacting them.
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1 Introduction

The global climate change occasioned by the greenhouse and has
become a common challenge facing humanity today (Shi et al., 2020;
Zhang et al., 2024). As an important component of the terrestrial
ecosystem, vegetation plays a key role in reflecting and regulating the
climate (Baldocchi et al., 2001). Vegetation influences the energy
balance, carbon balance, hydrological cycle, greenhouse gas fixation,
and climate stabilization (Zhang et al., 2013). A number of studies
have shown that vegetation dynamics in recent decades have been
closely related to climate change (Jiapaer et al., 2015; Ren et al.,
2020). In recent decades, rapid urbanization (Tan et al., 2016), forest
degradation and desertification (Sun et al., 2015; Hassan et al., 2018)
have led to significant changes in the types of vegetation systems in
China. These changes have in turn influenced China’s terrestrial
ecology system. The ecology system is seriously out of balance (Ding
et al., 2020). It is essential for us to pay closer attention to changes in
the ecosystem in China. Climate change has an unprecedented
impact on the environments on which humans depend, and the
structure and function of ecosystems have undergone rapid changes
(Wang et al., 2019). Therefore, it is necessary to conduct an analysis
of the influencing factors of climate change on Chinese
vegetation dynamics.

Climate change is the main factor affecting the hydrological
cycle (Dai, 2011). Global warming has exacerbated and expedited
the hydrological cycle, resulting in precipitation patterns shifting
towards higher variability, marked by more frequent wet and dry
years. (Trenberth, 2011). Precipitation is one of the main factors
limiting vegetation growth (Rundquist and Harrington Jr, 2000;
Tateishi and Ebata, 2004). Precipitation (P) affects the availability of
soil water, which in turn affects vegetation growth (Dermody et al.,
2007). Evapotranspiration, as a primary component of the
hydrological cycle, will affect vegetation water demand and the
planning and management of future water resources (Goyal, 2004).

Potential evapotranspiration (PET) is commonly used in
hydrology to estimate actual evapotranspiration. PET is a crucial
parameter for calculating drought severity indices, and its
application has been widespread for many years (Zhou et al.,
2018). PET is a function of climate, crops, and agricultural
management (Abbasian et al., 2021). Long-term changes have
been used to diagnose the influence of climate change on
ecosystems based on climate model projections (Milly and
Dunne, 2016). In recent years, evaporation measuring equipment
and potential evaporation in different regions of China have
decreased significantly (Xu et al., 2006; Shen et al., 2010).
Therefore, it is necessary to study the effects of PET and P on
different vegetation types in different climate zones under the
background of climate change.

Remote sensing is a common method for studying vegetation
temporal and spatial distributions and classification (Birtwistle et al.,
2016). In recent decades, the relationship between normalized
vegetation index (NDVI) and vegetation cover has been well
verified (Pettorelli et al., 2005), and NDVI has become an
effective indicator for quantifying vegetation cover. The
correlation between NDVI and climate factors provides a
practical method for exploring ecosystem response to climate
change (Potter and Brooks, 1998). Many studies have used NDVI
for extensive drought and vegetation dynamics assessments. Ji and

Peters (2003) studied the response of vegetation in the American
Great Plains to drought conditions. Ding et al. (2020) analyzed the
correlations between drought and vegetation dynamic changes in
China. Zheng et al. (2018) explored the impacts of different climatic
conditions on vegetation changes. Mo et al. (2019) studied the
spatiotemporal changes in vegetation coverage and precipitation
in the mountain-oasis river basin in the arid area of Northwest
China. At the same time, NDVI was used to study the response of
vegetation dynamics in the upper Shiyang River to temperature and
precipitation (Tang et al., 2017). NDVI is the most commonly used

FIGURE 1
The spatial distribution of different vegetation coverage types (A);
the spatial distribution of the main topographical areas in the study
area (B); the division of the eight climate zones and the spatial
distribution of weather stations (C). Climate zone boundaries are
indicated by dark solid lines.
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vegetation index globally for monitoring vegetation conditions.
Therefore, it can also assess the impacts of P and PET on various
vegetation types.

Many researchers have used the standardized precipitation-
evapotranspiration index (SPEI, the ratio of P to PET) to study
the NDVI response of different vegetation types to drought (Zhang
and Zhang, 2019; Li et al., 2020; Shi et al., 2021) and the time scale of
the response (Vicente-Serrano et al., 2013; Zhang et al., 2017; Jiang
et al., 2020). Although SPEI considers the effects of precipitation and
evapotranspiration, there are significant differences between
precipitation (Tian et al., 2018) and evapotranspiration (Müller
Schmied et al., 2014) during the hydrological cycle. Therefore, it
is indispensable to study the response of different vegetation types to
PET and P. The main purpose of this research was to: (1) study the
impacts of PET and P on different vegetation types, and (2) study the
time scale of the response of different vegetation types to PET and P.
This research contributed to assess ecosystem health, climate change
impacts, and water resource management.

2 Materials and methods

2.1 Study area

China is located in the eastern part of the Eurasian continent,
spanning 3°51′N–53°34′N in latitude and 73°29′E–135°04′E in
longitude, with a total land area of about 9.6 million square
kilometers (Figure 1A). From east to west, elevations rise from
the plain in the east to the plateau in the west, showing a three-step
distribution (Wang et al., 2017). China contains a wide variety of
terrain types, including mountains, plains, basins and plateaus
(Figure 1B); there is also a variety of climate types from tropical
to frigid zones. Due to China’s clear geographical and regional
differences and the influence of climate types, there are significant
monthly, annual and interannual changes in temperature and
precipitation. In general, there is more precipitation in the east
and less in the west; temperatures are high in the south and low in
the north, respectively. China’s rich climate diversity also leads to
diversified vegetation communities and land use types. The main
land use types include cropland vegetation, forest vegetation,
grassland vegetation, desert and water bodies (Figure 1A).
Cropland vegetation is primarily found in the northeast and
central regions, while forest vegetation is predominantly located
in the northeast and southeast regions. Grasslands are mainly
distributed across the Inner Mongolia Plateau and Qinghai-Tibet
Plateau, while deserts are primarily situated in the northwest. The
vegetation types in this study were mainly grassland, forest and
cropland. The land in northeastern China is mainly dominated by
black soil, while the mountainous and plain areas in tropical and
subtropical China are mainly characterized by yellow soil. In areas
with high temperatures and abundant rainfall in China, the land is
primarily red soil.

To explore the response of different vegetation system types
to PET and P, this study referred to the research method of Ding
et al. (2021) and roughly divided the study area into eight climate
zones (Figure 1C): (I) Cold temperate coniferous forest,
temperate monsoon climate; (II) Temperate coniferous forest
and deciduous broad-leaved mixed forest, temperate monsoon

climate; (III) Warm temperate deciduous broad-leaved forest,
temperate monsoon climate; (IV) Subtropical evergreen broad-
leaved forest, subtropical monsoon climate; (V) Tropical
monsoon forest and tropical rain forest, tropical monsoon
climate; (VI) Temperate grassland, temperate monsoon
climate and temperate continental climate; (VII) Temperate
desert, temperate continental climate; and (VIII) Vegetation in
the cold areas of the Qinghai-Tibet Plateau, alpine plateau
climate. Climate zone I is located in the northern part of the
Greater Khingan Mountains, climate zone II includes the
Northeast Plain and Changbai Mountain, climate zone III
includes the North China Plain and the Loess Plateau, and the
geographical types of climate zone IV are the lower reaches of the
Yangtze River Plain, the Yunnan-Guizhou Plateau, the Sichuan
Basin and the southeast hilly area. Climate zone VI includes the
Inner Mongolia Plateau, climate zone VII includes the Junggar
Basin and Tarim Basin, and climate zone VIII is almost entirely
located on the Qinghai-Tibet Plateau (Figures 1B, C). Average
annual potential evapotranspiration and annual average
cumulative precipitation for each climate zones, as shown in
Table 1 (Hao et al., 2019).

2.2 Data sources

This study used NDVI as an indicator to characterize the
dynamic changes of vegetation system types. The selected NDVI
data set is the third-generation NDVI (NDVI 3 g) data developed
from the Advanced Ultra High Resolution Radiation Sensor
(AVHRR) by the Global Inventory Modeling and Mapping
Research (GIMMS) group (http://ecocast.arc.nasa.gov/). Beck
et al. (2011) and Tian et al. (2015) found that this was the best
comprehensive NDVI product for monitoring long-term land
vegetation dynamics. The spatial resolution of the data set is
about 8km, and the temporal resolution is 1 month. The time
series selected in this study was the latest data version from
1982 to 2015. Cihlar et al. (2004) and Zeng et al. (2013)
corrected NDVI for orbital drift, viewing geometry, snow cover,
volcanic aerosols, ozone cover, atmospheric water vapor, cloud
cover, and other errors not related to vegetation change. Pinzon
and Tucker (2014) calibrated parameters for AVHRR. We adopted
the Maximum Value Composite (MVC) technique (Holben, 1986)
to aggregate the time steps of the original NDVI sequence into a
monthly scale to further reduce the impacts of clouds and
airborne particles.

The monthly-scale meteorological data (1982–2015) used in this
study came from 699 meteorological sites (Figure 1C) (http://data.
cma.cn/site/index.html) and were downloaded from the China
Meteorological Data Sharing Website. These include maximum
temperature, minimum temperature, precipitation, wind speed,
relative humidity and solar radiation. We eliminated outliers and
impute missing records to ensure the quality of the data. A Digital
ElevationModel (DEM) dataset with a spatial resolution of 1 kmwas
downloaded from the NASA Space Shuttle Radar Topographic
Mission (SRTM) website (http://www.glcf.umd.edu/). We
supported spatial climate interpolation by providing terrain
information. The thin-plate smoothing spline method (Hancock
and Hutchinson, 2006) was used to evaluate the influence of
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elevation and atmospheric level on spatial climate interpolation, so
all meteorological data were processed into a monthly scale grid cells
layer with a spatial resolution of 8 km.

The vegetation ecosystem type data with a spatial resolution of
1 km were developed by the China Resource and Environment Data
Cloud Platform (http://www.resdc.cn/Default.aspx) (Wei et al.,
2018) (Figure 1A). Grid cells contain vegetation ecosystem type
attributes in the area. We usedmost of the functions in the Resample
Tool of ArcGIS 10.2 (ESRI, Redlands, California, USA) to resample
it to match the spatial resolution of 8 km (Xu et al., 2018). This study
considered three vegetation types: cropland, forest, and grassland.

2.3 Data analysis

2.3.1 Calculating potential evapotranspiration
PET is not only a key factor for estimating ecological water demand

and agricultural irrigation, but also controls the vegetation coverage
system (Hao et al., 2019). The revised Penman–Monteith equation
introduced by the World Food and Agriculture Organization (FAO) in
1998 is one of the most commonly used methods for estimating PET
(Allen et al., 1998). Yang et al. (2021) evaluated 18models for calculating
potential evapotranspiration in different climatic zones of China, and
found that the Penman–Monteith equation is the optimal choice in all
climatic zones. In this study, the FAO-56 Penman–Monteith method
was selected to estimate PET, and the formula is as follows:

PET � 0.408Δ Rn–G( ) + γ 900
T+273u2 es–ea( )

γ 1 + 0.34u2( ) + Δ
(1)

whereRn is the net radiation (due to limited observation conditions, it is
calculated by sunshine hours), MJ/m2/day; G is the soil heat flux,
MJ/m2/day; (es–ea) is the saturated vapor pressure difference, kPa; Δ is
the slope of the vapor pressure curve, kPa/℃; γ is a dry hygrometer
constant, kPa/℃; T is the monthly average temperature, ℃; u2 is the
wind speed at 2m, m/s. All parameters were calculated according to the
method suggested by (Allen et al., 1998).

2.3.2 Correlation analysis
Geographical systems are complex and multi-factor, where one

kind of change will inevitably affect another kind of change. Partial
correlation analysis is the most widely used correlation analysis

method (Liu et al., 2014). When two variables are simultaneously
related to a third variable, the influence of the third variable is not
considered, and only the correlation of the other two variables is
estimated. The formula is as follows:

rxy.z � rxy − rxzryz���������������
1 − r2xz( ) 1 − r2yz( )√ (2)

where rxy.z is the partial correlation coefficient between x and y
after the fixed variable z; rxy、 rxz、 ryz are the partial
correlation coefficients between x and y, x and z, and y and z,
respectively.

rxy � ∑n
i�1∑12

j�1 xij − �x( ) yij − �y( )���������������∑n
i�1∑12

j�1 xi − �x( )2
√ ���������������∑n

i�1∑12
j�1 yi − �y( )2√ (3)

where rxy is the partial correlation coefficient between variables x
and y, ranging from −1 to 1; xij is NDVI on the jth month of the ith
year; �x and �y re monthly average NDVI and monthly average PET
or precipitation, respectively.

In this study, for each grid point, partial correlation coefficients
of different scales were calculated. Statistically significant maximum
partial correlation coefficients were recorded, along with the
maximum partial correlation coefficient time scale of NDVI-PET
andNDVI-P (months). Themaximum partial correlation coefficient
shows the strongest response of vegetation to PET and precipitation,
indicating the sensitivity of each grid point to PET and precipitation
at different time scales. Zhang et al. (2013) and Zhou et al. (2018)
employed the maximum partial correlation coefficients method to
analyze the relationship of different variables in each grid cells
in the map.

3 Results

3.1 Vegetation change trends in different
climate zones

The NDVI tendency rate represents the vegetation trends and
change rate in each climate zone. A positive value reflects an increase
in NDVI and a negative value reflects the opposite. In this study, the
variation of average NDVI in eight climate regions showed a small

TABLE 1 Annual average potential evapotranspiration and annual average cumulative precipitation in the eight climate zones (1982-2015).

Climate zone Annual average potential evapotranspiration (mm) Annual average cumulative precipitation (mm)

I 269–398 464–497

II 484–555 587–735

III 820–948 557–800

IV 727–998 1,061–1,590

V 805–1,320 1,567–2052

VI 677–862 340–464

VII 862–1,034 104–205

VIII 655–941 340–723

aThe data were provided by the China meteorological data service center at (http://data.cma.cn/site/index.html).
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fluctuation, and all showed a decreasing trend (Figure 2). The overall
average change trend of each climate zone showed that climate zone
IV had the lowest absolute value, with a median value of −0.003.
Both climate zones I and II were in Northeast China and had mainly

forest vegetation. From 1982 to 2015, rapid expansion of arable land
and urbanization led to a reduction in forest area, resulting in a
significant deterioration in the region’s vegetation status. This was
evidenced by a notable decrease in NDVI and median NDVI

FIGURE 2
Interannual dynamic change of average NDVI in each climate zone from 1982 to 2015 (A); box plot of monthly average NDVI tendency rate in each
climate zone from 1982 to 2015 (B).

FIGURE 3
Spatial distribution of maximum partial correlation coefficients between NDVI and PET of grassland vegetation (A); spatial distribution of maximum
partial correlation coefficients between NDVI and P of grassland vegetation (B); time scale of the maximum partial correlation coefficients of grassland
vegetation NDVI and PET (C); the time scale of the largest partial correlation coefficients between NDVI and P of grassland vegetation (D).
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tendency rates. The median and tendency rates of NDVI was
0.059 and −0.116, respectively. Although the main land cover
type of climate zone VII was desert, NDVI continuously
decreased with a median change tendency rate of −0.012.
Climatic zone VIII was located in the Qinghai-Tibet Plateau and
was mainly composed of grassland vegetation in the cold plateau.
There was little NDVI change and the median change tendency rate
was only −0.007. Vegetation in other climatic regions (III, V, VI)
also decreased to varying degrees, with median NDVI tendency rates
of −0.034, −0.026 and −0.024, respectively (Figure 2B). There were
significant regional differences in NDVI change trends in climate
zones I, II, IV and V, and the regional differences in NDVI change
trends in climate zone VII were the lowest among all climate zones.

3.2 The effects of PET and P on NDVI of
grassland vegetation

The grassland vegetation in the study area was mainly distributed
in climate zones VI and VIII and the Dzungarian Basin located in
climate zone VII. Grassland vegetation coverage in other climate
zones was relatively low (Figures 1A, B). Almost all grassland
vegetation NDVI and PET values in the study area were positive
correlation (Figure 3A). Correlations between NDVI and PET in the
northern Inner Mongolia Plateau, the eastern Qinghai-Tibet Plateau
and the Dzungarian Basin in climate zone VII were very high, and the
maximum partial correlation coefficients ranged from 0.597-0.968. At
the same time, the partial correlation coefficients between NDVI and
PET of sparse grassland vegetation in climate zone I are greater than
0.734. The correlations between NDVI and PET of grassland
vegetation in the southern Inner Mongolia Plateau in climate zone
VI were lower than in the northern area. However, partial correlation
coefficient in the western the Qinghai-Tibet Plateau were lower than
eastern. Moreover, the range of correlation coefficients was
0.394–0.597. The Tarim Basin in climate zone VII was mostly
desert. Correlations between NDVI and PET in the western and
southern margins were low, with coefficients from 0.394–0.597. We
found that the grassland and climate factors (P and PET) had positive
relationship. Similarly, NDVI and p values in almost all climate zones
were positively correlated (Figure 3B). Correlations between NDVI
and P in the northern part of the Inner Mongolia Plateau and the
eastern part of the Qinghai-Tibet Plateau were the highest, ranging
between 0.670 and 0.897 inmost regions. However, correlations in the
western part of the Qinghai-Tibet Plateau were significantly lower
than in the east, with negative correlations in some areas and
coefficients ranging from–0.240–0.162. At the same time,
correlations in the southern Inner Mongolia Plateau were lower
than that in the northern Inner Mongolia Plateau and the eastern
Qinghai-Tibet Plateau, where the maximum coefficient was 0.670.
Correlations between NDVI and P in the Loess Plateau were
significantly less than those for PET (Figures 2A, B). NDVI and P
correlations for sparsely distributed grassland vegetation in climate
zone I were less than those for PET, all less than 0.670. Correlations in
the central part of the Dzungarian Basin were greater than those for
PET, ranging from 0.349–0.523. Correlations in other regions of the
Dzungarian Basin were less than 0.349. Correlations in the Tarim
Basin were less than 0.349, and the NDVI and P of grassland
vegetation in some areas were negatively correlated.

The temporal and spatial variability of NDVI for grassland
vegetation in the study area to PET and P were relatively large
(Figures 3C, D). The time scale in the Inner Mongolia Plateau and
the eastern Qinghai-Tibet Plateau affected by PET was significantly
longer than the time scale of the response to P. The response time
scales were 5–6 months and 1–2 months, respectively. The response
time scale of NDVI in the southwestern corner of the Qinghai-Tibet
Plateau to PET was shorter than that of the eastern region, around
3–4 months; however, the time scale of the response of grassland
vegetation NDVI to P in the southwestern corner of the Qinghai-
Tibet Plateau was longer than in the eastern region, around
7–8 months. The time scale of the response of grassland
vegetation NDVI to PET in the Loess Plateau was also longer
than the time scale of its response to P. Response time scales
were 3–4 months and 1–2 months, respectively. The time scales
for NDVI response in the Dzungarian Basin to PET and P were
almost the same, around 1–2 months. The response time scale of
NDVI of grassland vegetation to PET in most areas of the Tarim
Basin was longer than the time scale of its response to P. The time
scale of the NDVI response to PET for sparse grassland vegetation in
climate zone I was longer than the time scale of its response to P. The
NDVI of grassland vegetation on the Yunnan-Guizhou Plateau in
climate zone IV responded to PET with a longer time scale, all of
which were longer than 7 months, andmore than 11months in parts
of the western region. However, the time scale of the NDVI response
in the Yunnan-Guizhou Plateau to P was significantly shorter than
the time scale of the response to PET, and the response time scale of
the eastern region was around 1–2 months.

The effects of PET and P on NDVI for grassland vegetation in
different climate zones in the study area was very different
(Figure 4). The median partial correlation coefficients of NDVI
and PET in climate zones VI and VIII where grassland vegetation
was concentrated were 0.734 and 0.727, respectively. However,
correlations between NDVI and P in climate zones VI and VIII
were less than those for PET, and median partial correlation
coefficients were 0.690 and 0.671, respectively. The distribution
of grassland vegetation in climate zones I, II and III was very
sparse. However, the correlations between NDVI and climate
factors in different climate zones were relatively high, and the
median partial correlation coefficients with PET were 0.860,
0.845 and 0.793 respectively. However, the partial correlation
coefficients between NDVI and P for grassland vegetation in
zones I, II and III were smaller, and median values were 0.634,
0.598 and 0.600, respectively. The spatial variability of NDVI in
climate zones IV and VII to PET and P was significantly greater than
in other climate zones (Figures 3A, B). The median partial
correlation coefficients of NDVI and PET for grassland
vegetation in climate zones IV and VII were 0.635 and 0.601,
respectively. The grassland NDVI had higher correlation with P
than PET, with median values of 0.463 and 0.323, respectively.
Grassland vegetation in climate zone V had the lowest correlations
between NDVI and PET, with a median value of 0.462, whereas
correlations between grassland vegetation NDVI and P in this
climate zone were the highest, with a median value of 0.690. The
time scale of the response of grassland vegetation NDVI to PET and
P in each climate zone was also very characteristic (Figures 4C, D).
The response time scale of NDVI for grassland vegetation in climate
zone VI to PET was slightly shorter than in climate zone VIII, and
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the median response time scales were 4 months and 5 months,
respectively. Climate zones VI and VIII had the same time scale in
response to P, with a median value of 2 months, and the time scale
and spatial variability of the two climate zones were very small. The
median time scales of grassland vegetation NDVI response to PET in
climate zones I, II, and III were 3, 3, and 4 months, respectively,
which were longer than the time scales of these climate zones to P
response, and the median values were 1, 1 and 2 months. The time
scales of the response of grassland vegetation NDVI to PET and P in
climate zones IV and VII were clearly different (Figures 3A, B). The
median time scales of grassland vegetation NDVI response to PET in
climate zones IV and VII were 5 and 4 months, respectively, which
were longer than the time scales of response to P, and median values
were both 2 months. The response time scales of NDVI of grassland
vegetation in climate zone V to PET and P were the longest, with
median values 10 and 6 months, respectively.

3.3 The effects of PET and P on NDVI of
forest vegetation

The forest vegetation in the study area was mainly distributed in
the Greater Xing’an Mountains, the Changbai Mountains, the Yun-
Gui Plateau, the Changjiang Downstream Plain, and climate zone V.
The forest vegetation in other areas was less distributed (Figures 1A,
B). NDVI for forest vegetation in the entire study area was positively
correlated with PET and P (Figures 5A, B). NDVI and PET of forest
vegetation in the northern Greater Xing’an Mountains and
Changbai Mountains were significantly positively correlated, with

coefficients of 0.768–0.961. However, the correlations between
NDVI and P in the northern Greater Xing’an Mountains and
Changbai Mountains were significantly lower than correlations
with PET, with coefficients from 0.517–0.638 and 0.389–0.638,
respectively. The coefficients between NDVI and PET in the
Loess Plateau were 0.768–0.961, significantly greater than those
between NDVI and P (less than 0.517). Correlations between
NDVI and PET in the entire Yun-Gui Plateau were significantly
less than those with P. The coefficients between NDVI and PET in
most regions were only 0.097-0.362. The response of NDVI in the
Sichuan Basin to PET was stronger than its response to P.
Coefficients between NDVI and P of forest vegetation in the
Yun-Gui Plateau and western Sichuan Basin were only
0.097–0.251, which were significantly less than those with PET
(0.362–0.639). However, the partial correlation coefficients
between NDVI and PET in most areas of the Changjiang
Downstream Plain were greater than 0.639, and greater than
those for NDVI and P in this area (lower than 0.638). The
response of forest vegetation NDVI to PET in southeast climate
zone IV was significantly stronger than its response to P. Coefficients
for NDVI and PET in this area were 0.511–0.639, whereas those for
NDVI and P in this area were less than 0.389. Correlations between
NDVI and PET and P in the Brahmaputra River Valley of climate
zone V were almost the same, ranging from 0.362–0.639 and
0.389–0.638, respectively.

The time scale of the response of forest vegetation NDVI to PET
and P in the study area also had large spatial variability (Figures 5C,
D). The response time scale of NDVI to PET in the northern Greater
Xing’an Mountains and Changbai Mountains was relatively short,

FIGURE 4
Partial correlation coefficients of NDVI and PET for grassland vegetation in different climate zones (A); Partial correlation coefficients of NDVI and P
for grassland vegetation in different climate zones (B); Time scale of response of grassland vegetation NDVI to PET in different climate zones (C); the time
scale of the response of grassland vegetation NDVI to P in different climate zones (D). Box chart elements: the box contains 25%–75% of the values; the
horizontal line is the median line value, the error bars represent ±1 standard deviation (SD), and the thick black points are the outliers.
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around 3–4 months; the time scale of NDVI response to P in this
area was only 1–2 months. The response time scale of the Loess
Plateau to P was 1–2 months, which was less than the time scale of
NDVI response to PET in this area (3–4 months). The time scale of
the response of NDVI to PET in the Yun-Gui Plateau varied. The
time scales NDVI response to PET in the central, western and
eastern regions of the Yun-Gui Plateau were 11–12, 9–10 and
7–8 months, respectively. At the same time, the time scales of
NDVI response to P in the central, western and eastern regions
of the Yun-Gui Plateau were 5–6, 7–8, and 3–4 months, respectively.
The time scale of NDVI response in the Sichuan Basin to P was
around 1–2 months, while the time scale of the response to PET in
this area ranged from 1 to 2 to 5–6 months. The time scale of NDVI
response to PET in the Changjiang Downstream Plain was only
1–2 months, significantly shorter than the time scale of NDVI
response to P in this area (5–8 months). The time scale
associated with NDVI and P in the southeast of climate zone IV
was greater than 7 months, significantly longer than the time scale
associated with PET (3–4 months). The response time scale of NDVI
to PET in the Brahmaputra River Valley in climate zone V was
9–12 months, while the time scale of NDVI to P in this area was
only 5–6 months.

Correlations between NDVI of forest vegetation and climate
factors were analyzed in different climatic regions (Figures 6A, B).
NDVI values in climatic areas with dense forest vegetation
distribution were very sensitive to PET, and the median partial
correlation coefficients were 0.863 and 0.839, respectively; The
partial correlation coefficients were significantly higher than those

observed between NDVI and PET in climatic areas with the same
dense forest vegetation (median values of 0.591 and 0.463,
respectively). However, partial correlation coefficients between
NDVI and P in climate zones I and II were 0.612 and 0.554,
significantly less than coefficients with PET. Correlations between
NDVI and P in climate zones IV and V were even lower, with
coefficients of only 0.368 and 0.468. PET had strong impacts on
forest vegetation NDVI in climate zones III and VI where forest was
less distributed. Themedian partial correlation coefficients for NDVI
and PET in the two regions were 0.817 and 0.813, respectively.
Compared with the impact of PET on forest vegetation in climate
zones III and VI, the influence of P is slightly lower. Coefficients for
NDVI and P in climate zones III and VI were 0.569 and 0.676,
respectively. Although the forest vegetation in climate zones VII and
VIII was very scarce, correlations between NDVI and PET were high
and median values were 0.751 and 0.786, respectively. The median
value of the partial correlation coefficient between NDVI and P of
forest vegetation in climate zone VIII is 0.714, significantly higher
than that of NDVI and P (median value 0.400). The time scales of
forest vegetation NDVI response to PET and P in the study area were
mostly short-term and medium-term (Figures 6C, D). The median
time scale of NDVI response to PET in climate zones I and II was
3 months, which was longer than the time scales of response to P
(median values were 1 and 2 months, respectively). The time scale of
NDVI response to PET in climate zone IV was very different from
the time scale of NDVI response to PET in climate zone V, with
median values of 3 and 10 months, respectively. However, the time
scales of NDVI response to P in climate zones IV and V were the

FIGURE 5
Spatial distribution of the maximum partial correlation coefficients of forest vegetation NDVI and PET (A); spatial distribution of the maximum partial
correlation coefficients of forest vegetation NDVI and P (B); the time scale of the maximum partial correlation coefficients of forest vegetation NDVI and
PET Scale (C); the time scale of the maximum partial correlation coefficients between NDVI and P of forest vegetation (D).
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same, with a median value of 6 months. The median time scales of
NDVI response to PET in climate zones III and VI were both
3 months, which were slightly longer than the time scales of NDVI
response to P (median value was 2months). The time scales of NDVI
response to P in climate zones VII and VIII were relatively short (the
median value was 2 months), whereas the time scales for PET
response were mid-term with median time scales of 4 and
5 months, respectively.

3.4 The effects of PET and P on NDVI of
cropland vegetation

The cropland vegetation in the study area wasmainly distributed
in the Northeast Plain, North China Plain, Loess Plateau, Sichuan
Basin, Changjiang Downstream Plain and Yun-Gui Plateau (Figures
1A, B). Of the cropland in the study area, only a small portion of the
NDVI results were negatively correlated with PET and P (Figures
7A, B). The areas with negative correlations between NDVI and PET
were mainly distributed in the Yun-Gui Plateau and parts of the
southern North China Plain. Negative correlations between NDVI
and P were less common and included the Sichuan Basin and a small
part of the southern North China Plain area. The response of NDVI
in the Northeast Plain to PET was similar to its response to P, with
partial correlation coefficients of 0.662–0.766 and 0.628–0.885,
respectively. There were clear spatial differences in correlations
between NDVI and PET and P of cropland vegetation in North
China Plain. The spatial distribution of correlations between NDVI
and PET and P in the northern and southern parts was small. The

partial correlation coefficients between NDVI and P in the Loess
Plateau were mostly 0.454–0.628, whereas those between NDVI and
PET were 0.549–0.766. The response of NDVI in the Sichuan Basin
to P was slightly weaker than its response to PET. Correlations
between NDVI and PET in the central area of the Changjiang
Downstream Plain were higher than those with P, with coefficients
from 0.766–0.965 and 0.454–0.628, respectively.

In general, the time scale of the response of cropland vegetation
NDVI to P in the northern part of the study area was significantly
shorter than that in the south, whereas the time scale and spatial
distribution of the response of NDVI to PETwere different (Figures 7C,
D). The response time scale of NDVI to P in the Northeast Plain and
Loess Plateau was very short (1–2 months), but the time scale of
response of NDVI to PET in these two regions was longer than
3 months. The time scale of the NDVI response to PET in the
northern part of the North China Plain was 5–6 months, and the
time scale of the response of NDVI to PET in the southern part of the
region was shorter (1–2 months). The time scale of the NDVI response
to P in the northern part of the North China Plain was shorter than in
the southern part. The response time scale of the Sichuan Basin to PET
and P was 1–2 months, and only some of the NDVI response time scale
to PET was around 5–6 months. The response time scale of NDVI in
the Changjiang Downstream Plain to P was greater than 5 months,
longer than the time scale of response of NDVI to PET in this area (less
than 4 months). The response time scale of NDVI on the Yun-Gui
Plateau to PET was longer than the response to P.

The correlations between NDVI of cropland vegetation and PET
were higher than P in different climatic regions (Figures 8A, B).
Although cropland vegetation in climate zones I and VIII was

FIGURE 6
Partial correlation coefficients of NDVI and PET of forest vegetation in different climatic regions (A); Partial correlation coefficients of NDVI and P of
forest vegetation in different climatic regions (B); Time scale of response of forest vegetation NDVI to PET in different climatic regions (C); the time scale
of forest vegetation NDVI response to P in different climate zones (D). Box plot elements: the box contains 25%–75% of values; the horizontal line is the
median line value, the error bars represent ±1 standard deviation (SD), and the thick black points are the outliers.
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sparsely distributed, the NDVI values in these two climate zones had
strong correlations with PET, with median values of 0.852 and 0.750,
respectively. In contrast, the median partial correlation coefficients for
NDVI and P in climate zones I and VIII were 0.679 and 0.722,
respectively. The partial correlation coefficients of NDVI and P in
climate zones II andVI were similar, whereasmedian partial correlation
coefficients of the two climate zones and PET are 0.805 and
0.742 respectively. The same was true for correlations between
NDVI and P in climate zones II and VI, with median values of
0.665 and 0.723, respectively. The median value of the partial
correlation coefficient between NDVI and PET in the climate zone
with the most densely distributed cropland vegetation was 0.689, which
was significantly higher than the coefficient for NDVI and P (the
median value is 0.469) in this area. The response of NDVI to PET in
climate zone IV was stronger than its response to P. The median values
of partial correlation coefficients for NDVI, PET and P in this area were
0.651 and 0.367, respectively. Of all the climate zones, correlations
between NDVI, PET and P in climate zone V were the lowest, with
median values of 0.467 and 0.308, respectively. P in climate zone VII
had little effect on NDVI in this area, with a median correlation of only
0.330. However, the partial correlation coefficients between NDVI and
PETwere relatively large (median value is 0.779). Themedian time scale
of the response of NDVI to PET and P in different climate zones was

less than 6 months (Figures 8C, D). The median time scales of the
response of NDVI to PET in climate zones I and VIII were 3 and
5 months, respectively, and the spatial heterogeneity was the lowest.
Climate zone IV had the shortest response time scale to PET (median
2months), whereas climate zone V had the longest (median 6months).
The median time scales of response to PET in climate zones II, III, and
VI with densely distributed cropland vegetation were 4, 3, and
5 months, respectively. The median time scale of response to PET in
climate zone VII was 3 months. Except for the two climatic regions (IV
and V) with the largest spatial heterogeneity in NDVI to P response
time scale, the median time scale of the response to P in all other
climatic regions was 2 months. The median time scales for climate
zones IV and V were 5 and 6 months, respectively.

4 Discussion

4.1 Spatio-temporal NDVI response of
different vegetation types and climate zones
to PET

The grassland vegetation in the study area was mainly
distributed in the temperate grassland area (VI), the cold

FIGURE 7
Spatial distribution of the maximum partial correlation coefficients between NDVI and PET in cropland vegetation (A); spatial distribution of the
maximum partial correlation coefficients between NDVI and P in cropland vegetation (B); time scale of the maximum partial correlation coefficients
between NDVI and PET in cropland vegetation (C); time scale of the largest partial correlation coefficients between NDVI and P of cropland
vegetation (D).
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vegetation area of the Qinghai-Tibet Plateau (VIII) and the
Dzungarian Basin located in the temperate desert area (VII)
(Figures 1A, B). There were positive correlations between NDVI
and PET for grassland vegetation in almost all climate zones
(Figure 3A). Higher cover level of grassland in Climate zone VI
had higher partial correlation coefficient with PET than P (Table 1).
The reduction of aerodynamic terms was significant (Han et al.,
2012) and strongly impacted the change in PET (Wang et al., 2019),
which was reduced due to the decrease of wind speed (Zhao andMa,
2021). The reduction of PET was conducive to moisture and the
growth of grassland. Dai (2013) indicated that, in the context of
global warming, the semi-arid or arid area of the Qinghai-Tibet
Plateau would be more severe droughts than the semi-humid or
humid area. This was also the reason why the correlations between
NDVI and PET for grassland vegetation in the western part of
climate zone VIII and its time scale were lower than those in the
eastern part (Figure 3A). The time scale of the NDVI response of
grassland vegetation to PET in the Dzungarian Basin in climate zone
VII was short-term, whereas the same responses in climate zones VI
and VIII were medium-term (Figure 3C). Snow melt in the
Dzungarian Basin may have offset the impact of high potential
evaporation on vegetation in areas that have experienced climate
changes (Duan et al., 2016). Forest vegetation in the study area was
mainly distributed in the temperate monsoon climate zone (climate
zone I and II), subtropical monsoon climate zone (climate zone IV)
and tropical monsoon climate zone (V) (Figures 1A, B).
Precipitation in climate zones IV and V was much higher than
PET (Table 1), so the NDVI response of forest vegetation in the two
climate zones to PET was lower than the same response in climate

zones I and II, which was similar to Xu et al. (2018)’s findings. The
Atlantic Ocean multi-decadal oscillation influences the Northern
Hemisphere’s drought by regulating the ocean-atmosphere-land
surface interaction processes and other large-scale circulations
(Zhu et al., 2021). In climate zone I over the study time interval,
the northern part of the Greater Xing’an Mountains was in the cold
period of the multi-decadal oscillation, so drought in this area was
effectively alleviated (Zhu et al., 2021). The growth of cropland
vegetation in the northern part of climate zones VI, II and III mostly
depended on irrigation (Yin et al., 2020), while large-scale irrigation
and human activities have significantly changed PET (Han et al.,
2009). The response time scale of NDVI for cropland vegetation to
PET was longer than in other parts of the study area (Figure 7C).

4.2 Spatio-temporal NDVI response of
different vegetation types and climate zones
to P

P is a key factor leading to changes in NDVI, and the response of
NDVI to P varies with vegetation type (Wang et al., 2001). There was
a positive correlation between NDVI and P of grassland vegetation
in almost all climatic regions (Figure 3B), which was consistent with
the response relationship obtained by Nanzad et al. (2019). The
Dzungarian Basin in climate zone VII was surrounded bymountains
(Figure 1B), and this area had an arid and rainless temperate
continental climate (Table 1). The grassland vegetation in this
region was mostly fed by ice and snow melt water. Therefore, P
had a relatively low impact on the NDVI of grassland vegetation in

FIGURE 8
Partial correlation coefficients of NDVI and PET of cropland vegetation in different climatic regions (A); Partial correlation coefficients of NDVI and P
of cropland vegetation in different climatic regions (B); Time scale of the response of NDVI of cropland vegetation in different climatic regions to PET (C);
the time scale of the response of cropland vegetation NDVI to P in different climate zones (D). Box plot elements: the box contains 25%–75% of values;
the horizontal line is the median line value, the error bars represent ±1 standard deviation (SD), and the thick black points are the outliers.
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this area (Duan et al., 2016). Climate zone VI was at the junction of
temperate continental and temperate monsoon climates (Wang
et al., 2019), and the NDVI of grassland vegetation near the
temperate monsoon climate with more precipitation showed a
strong response to P. Climate zone VIII had an alpine plateau
climate, which was located on the side of the moist airflow with less
rainfall, resulting in a greater correlation between the NDVI and P
for grassland vegetation in the region (Yang et al., 2017). The time
scale of grassland vegetation NDVI response to P in densely
distributed grassland areas in the study area was 1–2 months
(Figure 3D). Because the densely distributed grassland areas were
all in semi-arid areas, the water availability in semi-arid areas was
strong, and precipitation was absorbed by the soil and used by plants
quickly. Water availability is a decisive factor affecting the function
of semi-arid ecosystems (He et al., 2021). According to Table 1,
climate zones I and II were semi-humid regions, whereas climate
zones IV and V were humid regions with abundant precipitation.
The NDVI response of forest vegetation in climate zones I and II to P
was stronger than the same response in climate zones IV and V
(Figure 6B), which was consistent with the NDVI and P in temperate
regions calculated by Schultz and Halpert (1993). This result was
consistent with the greatest correlation. Studies have shown that the
embolism resistance of forest vegetation during continuous dry
periods determines its viability (McDowell et al., 2008), whereas
the embolism resistance in areas with less rainfall is low, and
precipitation is used rapidly. For this reason, the median time
scale of forest vegetation NDVI response to P in climate zones I
and II was only 2 months, much shorter than the same result in
climate zones IV and V (6 months). We found that the median time
scale of NDVI response of cropland vegetation to P in the north

(climate zones II, III and VI) was only 2 months, whereas the same
result in climate zone IV in the south was 5 months (Figure 8D).
This showed that the response of cropland vegetation NDVI to P
may be affected by human activities. For example, humans have used
crop improvements and water-saving irrigation technologies to
reduce the dependence of northern cropland vegetation on P
(Deng et al., 2006). Due to the large distribution of water at the
junction of the Sichuan Basin, the North China Plain and the
Changjiang Downstream Plain (Figure 1B), the correlations
between NDVI and P for cropland vegetation in these areas were
generally less than 0.283 (Figure 8B).

4.3 Responses of different vegetation types
to P and PET

With climate change, the increase in surface roughness in
semi-arid areas has led to a decrease in wind speed, which in turn
has caused a decrease in PET and promoted vegetation growth
(Vautard et al., 2010). In the study area, the dense grassland
vegetation in the semi-arid area (Figures 1A, B) had annual
precipitation of 200 mm–400 mm (Table 1). This may be one
of the reasons why NDVI for grassland vegetation was more
dependent on PET than the other vegetation types (Figure 9A).
The influence of P on the three types of vegetation studied in the
study area was dominant (Figure 9B), which was consistent with
the relationship between vegetation and precipitation described
by Wang et al. (2003). The impacts of irrigation on cropland
increases cropland PET (Qiu et al., 2008), which also produced
the short-term time scale of NDVI and PET related to cropland

FIGURE 9
Correlation ratios of NDVI and PET for each vegetation type in the entire study area (A); Correlation ratios of NDVI and P for each vegetation type in
the entire study area (B); NDVI response of each vegetation type in the entire study area to PET time scale (C); the time scale of the NDVI response to PET
for each vegetation type in the entire study area (D).
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vegetation that accounted for the largest proportion of the three
types of vegetation in this study. The proportion of short-term
time scales related to forest vegetation NDVI and P was the
lowest among the three types of vegetation in this study (Figures
9C, D). Studies have shown that forest vegetation benefits from
longer root systems that can absorb moisture from deep soils
(Anderegg et al., 2015).

5 Conclusion

This study used NDVI as an indicator and meteorological data was
used to calculate drought index. This study combined partial correlation
analysis to reveal the response of different vegetation types to
precipitation (P) and potential evapotranspiration (PET).
Additionally, it retained the time scale of the largest partial
correlation coefficient to reflect the time scale of vegetation affected
by P and PET. Almost all grassland vegetation, forest vegetation and
cropland vegetation NDVI are positively correlated with P and PET.
The specific research results are as follows:

(1) NDVI of grassland vegetation in high cover level grassland
areas was very sensitive to both P and PET. Correlations
between NDVI and PET in most areas with dense grassland
were greater than 0.597. Correlations with P were greater than
0.670. The response time scale of NDVI to PET was mostly
around 5–6 months, while the same result for P was
only 1–2 months.

(2) The response characteristics of forest vegetation NDVI to
PET and P in the study area were from northern to southern
China. Correlations between northern semi-humid forest
vegetation and PET were about 0.840, while those with P
were slightly lower (about 0.603). Correlations between forest
vegetation in the southern part of the study area and PET and
P in the humid area were significantly less than that in the
northern part, with median coefficients of 0.591 and 0.368.
Time scales for the correlation between forest vegetation and
PET and P in the northern part of the study area were about
3 and 2 months with low spatial variability.

(3) Both the response of cropland vegetation NDVI to PET and P
and the time scale of the response of NDVI to PET had clear
spatial heterogeneity. Correlations for NDVI, PET and P were
highest in the Northeast Plain and were more than 0.662 and
0.628, respectively. The time scale of the NDVI response to P
in the northern part of the study area had good spatial
consistency, around 2 months.

This study used the remote sensing vegetation index (NDVI) data
for analysis. There may have been noise and splicing traces in the
imagery, as well as the influence of theNDVI data itself (soil background
effects and other factors). Therefore, this may have introduced some
errors in the research results. In addition, few meteorological stations
were used and they did accurately reflect the actual situation of the entire
study area, especially thewestern region.More detailed and accurate data
are needed to analyze the effects of P and PET on vegetation. Therefore,
further efforts are needed to accurately quantify the above-mentioned

factors, combinedwith long-term field research to reduce the uncertainty
of the research results.
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