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Introduction: Highly clustered color steel buildings (CSB) have become new
impervious surfaces and heat island areas in cities due to their materials,
especially in the Northwest. However, the extent of the influence of CSB on
land surface temperature (LST) and how they are quantitatively related to each
other have not been explored.

Methods: Therefore, this paper takes Urumqi city, which is densely populated
with CSB and has a unique topography, as an example. We obtained LST data and
CSB data based on Landsat and Google Earth images, and quantitatively analyzed
thewarming effect of the CSB on the urban LST and the characteristics of regional
variability.

Results and discussion: The results of the study showed that from 2005 to 2020,
the scale of CSB in Urumqi City has been expanding, with high-density
aggregation shifting from urban areas to the suburbs. The urban area of
Urumqi city shows a “cool island effect”, with higher temperatures in CSB. The
high-density distribution of CSB roughly coincides with the high temperature
areas of the city. The density of CSB is highly positively correlated with LST, with
the correlation coefficient reaching 0.973 in 2010. For every 0.2 increase in
cluster density, the corresponding temperature can rise by 0.4°C. At the same
density of aggregation, the average temperature of urbanCSB is lower than that in
the suburbs. The contribution index of suburban CSB to LST reaches 0.512,
significantly higher than the surrounding other buildings, marked it one of the
main contributors to the thermal environment in the suburbs.The research results
can provide a reference and data support for the sustainable development and
planning of cities.
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1 Introduction

The increasing areas of impervious surfaces in cities accelerate the rise of localized land
surface temperature (LST) in cities (Liu et al., 2023), which negatively affects the comfort
and health of urban residents and significantly impacts energy demand, air quality, and
overall environmental sustainability (Guo et al., 2020; Fuladlu and Altan, 2021; Chen Y.
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et al., 2023; Tabatabaei and Fayaz, 2023). Color-coated steel sheets
are steel sheets with organic coatings, consisting of a filler material
sandwiched between two color-coated steel layers. The substrates of
color-coated steel sheets include cold-rolled substrate, hot-dip
galvanized substrate, and electro-galvanized substrate. Color steel
buildings (CSB) have been used on a large scale in urban villages and
industrial parks because of their low cost and fast construction
(Yang S. et al., 2018; Wang et al., 2019). The highly aggregated CSB
have become the new impervious surfaces and heat sources in cities.
Among commonly used building materials, asphalt has a specific
heat capacity of 1.55 kJ/(kg·K) and a thermal conductivity of
0.093 W/(m·K), while structural steel has a specific heat capacity
of 0.48 kJ/(kg·K) and a thermal conductivity of 58.2 W/(m·K), and
cement mortar has a specific heat capacity of 1.05 kJ/(kg·K) and a
thermal conductivity of 0.93 W/(m·K). A higher specific heat
capacity and lower thermal conductivity result in slower
temperature increases. Therefore, in hot summers under sunlight,
CSB heat up faster compared to cement buildings and asphalt roads,
leading to prolonged high temperatures and contributing to the
“heat island effect”. It is essential to study the influence of the CSB on
the LST to improve the urban thermal environment and the
development planning of industrial parks.

The surface temperatures reflected by different media of urban
impervious surfaces vary (Yuan et al., 2018), different land cover types
exhibit varying thermal responses to LST (Fuladlu, 2022; Patle and
Ghuge, 2024). The area changes of impervious surface can reflect the
spatial and temporal processes of urban heat islands (Hua et al., 2020)
and can be used as an indicator to quantify the urban surface heat
island (Coseo and Larsen, 2019; Shi et al., 2023). Among the various
types of impervious surfaces that contribute to urban heat islands,
urban buildings are one of the most significant influencing factors
(Yang J. et al., 2018), and many studies focus on the relationship
between LST and buildings (Hasan et al., 2023). The orientation and
height-to-distance ratio of buildings were used to assess the suitability
of the living environment (Salehi andNasrollahi, 2024). Differences in
building geometry and surface materials produce different thermal
patterns (Nichol, 1996). For example, the absorption of solar radiant
energy by roofs leads to a higher urban LST than that of ambient air
(Rani et al., 2018). In contrast, using reflective (cold) surfaces on roofs
with increased surface albedo can significantly reduce LST (Tahooni
et al., 2023). Moreover, the effects of building height and density on
the thermal environment are also a research hotspot (Yang and Li,
2015; Li et al., 2022; Wang Z. et al., 2023). Studies have shown that
lower building densities improve ground-level heat dissipation,
whereas higher building densities improve roof-side heat
dissipation. In comparison, a higher building density improved the
heat dissipation on the roof surface (Yang et al., 2021a). Due to the
materials, CSB have a more pronounced impact on environmental
temperatures than other buildings.

Existing studies on the relationship between urban buildings and
heat islands are mostly carried out from the aspects of building
materials, geometric shapes, building density, and building height
(Song et al., 2020; Yang et al., 2021b; Wang and Xu, 2021; Zhu et al.,
2021; Luo et al., 2023). All of them are based on the overall urban
buildings as the research object. Minimal studies are focusing on the
influence of a typical functional building on the urban heat island
effect. At the same time, most of the current research on CSB
revolves around CSB extraction, fire accident analysis, coating

materials and other aspects (Sun et al., 2020; Hou et al., 2021;
Samat et al., 2022; Wang W. et al., 2023). While the research on the
impact of CSB in shaping the urban microclimate environment is
very limited. Zhang et al. (2022) initially explored the response of the
CSB to the urban heat island. Analyzing the entire study area at the
urban scale tends to underestimate the variations in local
temperature differences (Wang and Ouyang, 2017). Therefore,
existing research lacks fine-scale, small-scale studies, leading to
insufficient exploration of local temperature heterogeneity.

In summary, this paper aims to study the correlation between
CSB and LST, and further analyze the differences in the influence of
CSB on LST at a regional scale. The impact of the density of CSB on
the LST is investigated with Pearson’s correlation coefficient,
regression analysis, the contribution index, and other methods.
The LST was extracted by Landsat image, combined with the
data of CSB. We explored the degree of temperature increase of
CSB in different regions and the heterogeneity of the contribution of
CSB, and other landscape types to the LST at a fine scale. The results
can provide a reference basis for the development of urbanization
and urban planning.

2 Study area and data

2.1 Study area

Urumqi (86°37′33″E−88°58′24″, 42°45′32″N-45°00′00″N) is
located in the hinterland of the Asian-European continent (Chen
B. et al., 2023). The city is surrounded by mountains on three sides,
with a high relief in the southeast and a low relief in the northwest. It
is with a temperate continental arid climate with long winter and
summer seasons. The temperature difference between day and night
is significant (Xing et al., 2022). The topography of the urban area
slopes from southeast to northwest, with an average elevation of
800 m and a drop of 300–400 m (Ayitikan et al., 2023). In order to
study the impact of CSB on urban LST, we chose areas with high
CSB coverage, including Midong District, Toutunhe District, New
Downtown District, Shayibak District, Tianshan District and
Shuimogou District. The location of the study area is shown in
Figure 1. It can be seen that the CSB are concentrated in the city’s
suburbs, and the city center is sporadically distributed with fewer
CSB. The CSB occupy a certain proportion of the city and are a
representative type of buildings in Urumqi.

2.2 Data

2.2.1 Land surface temperature data
The LST data was acquired from the Google Earth Engine (GEE)

platform through the integration code provided by Ermida (Ermida
et al., 2020). LST is computed with the Statistical Mono-Window
(SMW) algorithm. The SMW algorithm calculates LST by
representing the empirical relationship between the apparent bright
temperature of the atmosphere and the LST obtained from a single
thermal infrared band by means of a simple linear relationship. The
algorithm is derived using the same calibration database for each
Landsat coefficient, thus ensuring consistency between satellites.
Validation based on in situ LST obtained at 12 stations shows th
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at the overall accuracy is 0.5 K. Esearch Fuladlu et al. (2021) indicates
that scenes in summermonths have the least cloud coverage, the most
stable meteorological conditions, and can better distinguish between
forested, agricultural, and urban areas. Additionally, due to the unique
material of CSB, they heat up quickly andmaintain high temperatures
for a long-time during summer, causing localized temperature

increases in the city. Table 1 shows the resolution of all images as
well as specific information on transit times.

We used station data to validate LST. Two stations in Urumqi,
numbered 51463 (D1) and 51369 (D2), were selected for daily
temperature data collection during the summer months of June
to August. This data included daily average temperature, daily
maximum temperature, and daily minimum temperature. Since
LST are derived by averaging summer image temperatures, we
calculated the daily average values from the station observations
for June to August. We invert the Land Surface Temperature (LST)
data for June-August of each biennial period from 2005 to 2020,
obtaining the maximum, minimum, and average temperatures for
each year. These inversion results are then fitted to the observational
station data to ensure the accuracy of the research findings.

From the trend lines (Figure 2), although there are differences in
spatial distribution and numerical values between the LST inversion
results and the monitored temperature data, the trend lines of the
inverted temperatures for minimum, maximum, and average values
closely approximate the observed temperature trends. This indicates
that the algorithm’s temperature inversion results are stable,
suggesting a high reliability of the LST inversion results in this
study, which can be used for subsequent analyses.

2.2.2 Color steel buildings data
In this paper, the improved U-net model improved by deep

learning based on Google Earth images can effectively extract the
information of CSB. This model is an enhanced version of the U-net

FIGURE 1
Location map of the study area.

TABLE 1 Image transit time.

Collection Cell size (m) year month day

L4-5 TM 30 2005 June 3/12/19/28

July 5/21/30

Aug 15

L4-5 TM 30 2010 June 10/26

July 3/19/28

Aug 4/13/19/20

L8 OLI/TIRS 30 2015 June 8/15/24

July 1/10/17/26

Aug 2/18/27

L8 OLI/TIRS 30 2020 June 1/12/21/28

July 7/14/23/30

Aug 7/15/24
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model, incorporating scSE (spatial squeeze and channel excitation)
and SPP (spatial pyramid pooling) pooling techniques. The network
still adheres to the fundamental U-net framework, with the inclusion
of scSE attention modules after each convolutional layer to
emphasize CSB building features. Moreover, by utilizing pooling
layers with strides of 2, 4, and 8, it’s possible to mitigate high-
frequency information interference andmaintain change invariance.
This approach involves pooling the input feature map to derive
multi-scale features of the CSB. Subsequently, these features are
connected to features of the same size in the coding path via skip
connections, facilitating the integration of deep semantic and

shallow information from remote sensing images. This
integration improves the transfer of target features and detail
information along the coding path, reducing losses due to
convolution and pooling operations, thereby enhancing the CSB
extraction efficiency. Specific realization process with reference to
Shen (2022). The extraction results for CSB were 25,273 in 2020,
26,678 in 2015, 18,906 in 2010, and 2,087 in 2005. The local
extraction effect of CSB is shown in Table 2.

Three areas in Urumqi City are selected as test areas. Mean
Intersection over Union (MIoU), Precision, Recall and Mean Pixel
Accuracy (MPA) are applied to evaluate the precision of extraction

FIGURE 2
LST fitting with Station Temperatures.

TABLE 2 Local extraction effect of CSB.

Google earth images

CSB extraction results
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results. The evaluation indexes are mIou = 87.58, mpA = 92.22,
mPercision = 94.96, mRecall = 92.22, respectively, indicating that
the application of improved U-net neural network can extract the
CSB accurately and retain the detail features of the CSB better, and
its extraction accuracy rate is more than 92%. Then we conducted
field surveys in Urumqi, Xinjiang, and other cities in Northwest
China. We measured and statistically analyzed the number and area
of CSB in the extraction areas, which were found to be largely
consistent with the extraction results.

3 Methods

In this paper, Landsat images were retrieved and inverted for
LST with GEE during 2005–2020. Google Earth images were used
to extract CSB data. The density of the CSB and the Mean-
standard deviation were adopted to analyze the evolution of the
CSB and the spatial trends of the LST. The correlation between
LST and density of CSB was investigated by Pearson correlation
analysis and regression analysis. The differences in the warming
effect of CSB in urban and suburban areas were analyzed by

comparing the statistical data. At the same time, the contribution
index was used to estimate the contribution of various feature
types to LST in the suburbs. The flowchart of the study is shown
in Figure 3.

3.1 LST class classification

In order to accurately present the number and distribution
characteristics of LST values in the study area, it is necessary to
select a suitable method to classify the temperature data obtained
from the inversion. In particular, the mean-standard deviation
method shows the difference between the values of elemental
attributes and the mean. The use of equivalent ranges
proportional to the standard deviation to create classification
intervals shows the different temperature classes and spatial
distribution patterns, which better reflect the differences in LST
in different impervious surface. In this paper, the LST distribution
range is set to be between 0 and 1 with the goal to reflect the LST
distribution in the study area more systematically (Liu et al., 2020).
The calculation formula is as follows:

FIGURE 3
Research flowchart.
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NLSTi � Ti − Tmin

Tmax − Tmin
(1)

where NLSTi is the value of the normalized image element i, Ti is the
LST inversion value of the image element i, Tmin and Tmax are the
minimum and maximum values of LST within the map width,
respectively.

Based on the actual LST inversion result values, a 1x standard
deviation equivalent classification interval was created to classify the
LST into five different classes (Shi et al., 2015; Liu et al., 2020), and
the specific classification method is shown in Table 3 (Tmean is the
normalized LST mean value and std is the standard deviation).

3.2 Distance-weighted

Densely populated building areas have higher thermal intensity
(Chen et al., 2024), and the contiguous distribution of buildings can
lead to an increase in local LST (Morabito et al., 2017), and it is
found that the aggregation density of buildings significantly affects
the LST. Density (R) of aggregation of CSB is the degree and density
of distribution of CSB in the area around the pixel within a specific
radius. The distance-weighted approach substitutes the value of the
average aggregated density of CSB within the radius for the value of
the region, which was weighted by the distance and reduced from the
center pixel point to the surrounding (Meng et al., 2018). This
method can measure the density of the distribution of CSB within
the radius. The calculation formula is as follow:

D R( ) �
∑m
i�1
Pi · 1 − di/2R( )

∑m
i�1

1 − di/2R( )
(2)

where Pi and di are the value (0 or 1) of the i th image element within
radius R and the Euclidean distance between its centroid image
elements, respectively; m is the total number of image elements
within radius R.

3.3 Impact of CSB with LST

For the purpose of study, the contribution of Urumqi’s CSB to
the urban LST and to compare and analyze the difference between
the Contribution of the CSB and other typical land use types to the
LST. We adopts the Contribution Index (CI) constructed by

YuanBin C (Chen et al., 2020; Cai et al., 2021). The formula is
as follows:

CI � LSTi − LST( ) × Si
S

( ) (3)

Where LSTi and LST refer to the mean LST of the region i and
the mean LST of the whole area, respectively; i refer to different
surface landscape types, respectively. Si and S refer to the area of the
region i and the area of the whole study area. Suppose CI > 0, it
means that the region i positively contributes to the LST elevation of
the whole study area, which is a warming effect. In contrast, CI < 0 it
means that the region i negatively contributes to the LST elevation of
the whole study area, which is a cooling effect.

4 Results

4.1 Spatial and temporal evolution of CSB

4.1.1 Overall changes in the CSB
The study summarized the overall evolution of color steel

buildings (CSB) in Urumqi city from 2005 to 2020, presenting
statistical data on the number and area of CSB (Figure 4).
During the period of 2005–2015, the number of CSB increased
from 2087 to 26,678, representing a 12.7-fold increase. While the
CSB area exhibited a year-on-year growth trend, there was a slight
decrease in the number from 2015 to 2020. The new urban area had
the highest CSB count annually, averaging 30%. Midong District
showed the most significant growth in CSB area, followed by
Toutunhe, attributed to active industrial development since 2010.
Industrial parks emerged, utilizing color steel plate materials
extensively.

Since 2015, there has been a slight decrease in the number of
CSB. The combination of high-resolution imagery and field research
indicates that many small-scale CSB have been removed from
certain urban areas since 2015, while the number of large-scale
CSB used for industrial and other purposes in suburban areas has
increased. As a result, the total number of CSB in 2020 was fewer
than in 2015.

4.1.2 Changes in the density of CSB
This study utilizes the distance weighting method to determine

the gathering density of the CSB for the purpose of examining the
gathering area and spatial distribution condition of the CSB. The
paper had employed the binarization process on the CSB vector
map. In this binarized map, a specific image element point had been
the center, with distance as the weight. Using the radius R as the
calculation window, the average value of CSB image element values
had been identified, representing the aggregation density D(R) of CSB
within the radius R. In the study, to ensure that the extraction scale of
the CSB is close to the scale of the surface temperature map, the pixel
value size and the search radius r of the binary image output are both
set to the size of the image resolution. The results of the aggregation
density calculation of the CSB were shown in Figure 5. According to
the proportion of the density value, the aggregation areas were divided
into three levels,D(R)> 0.5 is high-density (hd), 0.25<D(R)≤ 0.5 is
medium-density (md), 0.02<D(R)≤ 0.25 is low-density (ld).

TABLE 3 LST class classification.

Temperature level Temperature interval

Low temperature (LT) Ts ≤Tmean − 1.5std

Sub-low temperature (SLT) Tmean − 1.5std<Ts ≤Tmean − 0.5std

Medium temperature (MT) Tmean − 0.5std<Ts ≤Tmean + 0.5std

Sub-high temperature (SHT) Tmean + 0.5std<Ts ≤Tmean + 1.5std

High temperature (HT) Tmean + 1.5std<Ts
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Figure 5 showed that in 2005, CSB were mainly gathered in the
urban area, especially near the international airport in the new
downtown area and the Tutunhe Industrial Park as the main high-
density gathering area. After 2005, CSB gradually expanded to the
suburbs, and by 2010, there was a noticeable increase in the
medium-low-density and high-density gathering areas, and the
urban area is dotted with CSB. Among them, the newly
identified high-density gathering areas were in the northern
suburb and along the S104 and S107 roads. Google map shows
these two areas have many industrial parks, logistics parks, and
entrepreneurial parks, so the CSB in the above areas have been
widely used.

High-density CSB in urban areas decreased significantly in 2015,
while in suburban areas still increased. Meanwhile, medium-density
and low-density agglomerations increased throughout the study
area, indicating a more comprehensive range of CSB uses. Due to
the temporary nature of CSB and their tendency to cause fires and

affect the cityscape, they were removed in large amounts in urban
areas, so the main high-density aggregation areas of CSB in
2020 were in the suburbs. High-density, medium-density, and
low-density aggregation areas in urban regions were all
significantly reduced. Overall, from 2005 to 2020, the cluster of
CSB has shifted from an urban aggregation state to a suburban
dispersal expansion, with high-density aggregation areas moved
from the city to the suburbs.

4.2 Temporal and spatial evolution of LST

The LST in Urumqi city was high in summer. Based on the GEE
platform, the paper selected the summer June-July images of 4 years,
2005, 2010, 2015, and 2020, respectively, for the inversion of the LST
mean. Mean value calculation is also utilized to eliminate the chance
effect of cloudy and rainy weather. The temperature range of each

FIGURE 4
Statistics on the number of color steel plate complexes (A); statistics on the area of color steel plate complexes (B).

FIGURE 5
Aggregation density of CSB.
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year was further counted and classified into temperature classes
according to the mean, standard deviation method (Table 4). The
results showed that the average temperature from 2005 to
2020 decreased first and then increased. The maximum and
mean of the LST in 2005 were the highest, and the temperature
in 2010 was generally lower than in other years. There was not much
difference between the LST in 2015 and 2020, however, the average
temperature in 2020 was higher than that in 2015. The temperature
difference value of the CSB was around 20°C, and the maximum
value reached 47.29°C. Influenced by the local weather, building
shading, and other factors, there was an extensive range of
temperature differences in the CSB, most of which were high
temperatures.

The results of the spatial distribution of heat islands in Urumqi
City from remote sensing inversion from 2005 to 2020 were shown
in Figure 6. Further analysis revealed that the heat island grades
showed an irregular ring-shaped distribution. LST grades can be
roughly divided into three levels: the first level is the mountainous
terrain, which is dominated by high-temperature zones; the second
level is the mountainous basins and hills, which is dominated by low
and medium temperatures; and the third level is the plains, which is
dominated by low-temperature zones. The highest temperatures
were all found in rocky mountainous areas with large areas of bare
land and in areas with dense industrial buildings, such as Steamed
Bun Mountain, Yamalik Mountain, and Midong Industrial Park.
Some waters and the northwestern and northern agricultural
growing areas have the lowest temperatures. According to the
three-phase time-series map comparison, it was found that from
2005 to 2020, the sub-high-temperature areas and high-temperature

areas alternated in their patterns of change, and the built-up areas
exhibited a “cold-island effect”.

In 2005, the urban heat island in Urumqi City covered a small
area; the average summer LST in the urban heat island area was
38.17°C. The LST grading map showed that the high LST area was
concentrated in mines in the northeastern part of Midong District
and Xishan Katsuwa Stone Factory in Tutunhe District. The
maximum LST reached 49.53°C, which contrasted with the “cold
source” in the urban area, with a difference of 20.3°C in LST.
2010 high-temperature zone coverage in the built-up area was
expanded in an irregular ring compared with 2005. Although the
average LST was 9.08°C lower than that of 2005, most of the urban
center area is covered by heat islands, with high-temperature, sub-
high-temperature, and medium-temperature zones accounting for
the significant part. The economic and technological development
zone, the Toutunhe Industrial Park, and the business district of the
railway station in the city are apparent high-temperature
agglomeration zones, with the highest LST of 41.7°C. In 2015, the
heat island effect was more evident in the form of a circle; the area of
the cold island is increased, and the heat island effect in the city is
weakened, with some of the densely built-up areas being low-
temperature zones. By 2020, the low-temperature zone in the
urban area of Urumqi had further expand, with the lowest
temperature close to 20°C, while the southern mountain range
still dominated the high-temperature zone.

Overall, the central city of Urumqi was characterized by low and
sub-low temperature zones, and most suburban mountains were
characterized by high or sub-high temperature zones. In addition,
green areas and water bodies in the urban area also showed lower

TABLE 4 LST statistics.

Year LSTmax/°C LSTmin/°C LSTmean/°C Temperature range of CSB/°C

2005 49.53 17.76 38.17 27.61–46.20

2010 41.70 10.15 29.09 19.86–39.09

2015 47.91 20.06 35.75 29.10–46.79

2020 47.44 20.20 35.64 21.23–47.29

FIGURE 6
Results of LST classification.
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temperatures. This indicated that the temperature in the central
urban area of Urumqi was significantly affected by factors such as
altitude and geographic location, and the central urban area
presented a cold island effect.

4.3 The response of LST to CSB

4.3.1 Correlation between CSB and LST
By analyzing the temporal and spatial variation rules of CSB and

LST, it can be found that the LST grade is high in the area with a high
density of CSB. However, it can only be seen from the space that the
distribution of high-density and high-temperature areas has a sure
consistency. However, it is not possible to determine the specific
correlation between the two. In order to explore the influence of the
aggregation density of CSB on LST, this paper further determines
the correlation between the two through the calculation of the
Pearson correlation coefficient. The correlation coefficients were
0.832, 0.937, 0.970, and 0.969 for the years 2005–2020 at p < 0.01.
Pearson’s correlation coefficients of all 4 years reached a high
positive correlation, in which the correlation increased
significantly from 2005 to 2010, and the correlation decreased
slightly from 2010 to 2020, which was related to the change in
the number and area of the CSB.

In order to more accurately quantify the influence of the CSB on
the LST, the density of the CSB aggregation is divided into 20 grades,
with an interval of 0.05, and the average density value of each grade
and the corresponding average temperature value of the interval are

found respectively. The regression analysis is utilized to further
explore the degree of correlation between the two, and the results are
shown in Figure 7.

Analysis of Figure 7 shows that between 2005 and 2020, the
density of aggregation of CSB and the LST shows a high positive
correlation, indicating that the higher the degree of aggregation of
CSB, the stronger the warming effect on the surface. The warming
effect of the CSB in different stages shows that the temperature rises
0.21°C, 0.4°C, 0.38°C, and 0.33°C for every 0.2 of the aggregation
densities of the CSB.

From the fitting results, the point of 2005 is more discrete, and
R2 is 0.6925, indicating that the influence of the CSB on the LST in
this period is negligible. The reason is that in 2005, the number of
CSB was small and primarily distributed in the city center; its high
gathering density does not coincide with the distribution of high-
temperature areas in the city, so it has less influence on the LST.
2010, the CSB gradually developed to the suburbs, but the overall
center of gravity was still in the urban area. During the same period,
the LST in the urban area was dominated by medium and high
temperatures. Hence, the density of CSB has the highest degree of
influence on LST in this period—the highest degree of influence.
From 2015 to 2020, the center of gravity of the CSB shifted to the
suburbs, which coincides with the high-temperature region more, so
the degree of influence is slightly reduced compared with 2010.
Overall, R2 increases and decreases, which is consistent with the
change in density of CSB and Pearson’s correlation coefficient,
which further indicates that the warming effect of CSB is very
significant.

FIGURE 7
Relationship between aggregation density and LST of CSB.
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4.3.2 Regional variability of the warming effect
of CSB

Some studies indicate significant differences in land surface
temperature between urban and rural areas (Badugu et al., 2023;
Ramsay et al., 2023), while the heat island effect varies across the
urban-rural gradient (Xie et al., 2024). Urban areas generally exhibit
higher temperatures compared to suburban areas (Raj et al., 2020).
The differences in land surface temperature between urban and rural
areas arise from variations in land cover types (Yang et al., 2020).
However, the urban area of Urumqi exhibits a “cool island effect,”
suggesting that there may be differences in the warming effect of
CSB between the urban and suburban areas of Urumqi. Suburbs
refer to areas within urban regions, outside the boundaries of major
central cities, with lower land use density (De Vidovich,
2019).Research on the division between suburbs and urban areas
involves various aspects, such as built-up area, population density,
block density, and more (Airgood-Obrycki et al., 2021). Some
studies determine their own criteria based on their research
focus. Ding (Ding et al., 2024) use the ratio of undeveloped land
in buffer zones to total area to distinguish suburban and urban
attributes. However, traditional suburban definitions do not apply to
the scope of this study. Therefore, we have classified the main urban
area and urban outskirts of Urumqi in 2020 based on PD
(population density) data, where PD ≥ 10000 km2 are considered
the main urban area, and areas with PD < 10000 km2 are considered
suburbs. The boundaries of the urban and suburban divisions are
visible in Figure 1.

In order to explore the heat island effect of CSB in different
regions in a refined way, we take 2020 as an example. Three high-
density aggregations (D(R) > 0.5) samples were selected in each of
the urban and suburban, respectively, with the sample image value of
749, and the proportion of the heat island intensity within the
sample area was statistically shown in Figure 8.

As can be seen from Figure 8, under the same aggregation
density, the temperature corresponding to the CSB of the urban

sample is mainly concentrated in the sub-low temperature and
medium temperature, of which the sub-low temperature accounts
for 34.9%, the medium temperature accounts for 44.4%. The sub-
high temperature accounts for 20.7%. The temperatures of the
suburban sample are concentrated in sub-high and medium
temperatures, with the proportion of sub-high temperatures as
high as 71.8%, which is almost three times as high as the sum of
medium and high temperatures. By comparing the temperatures of
the urban and suburban samples, it was found that the warming
effect of the urban CSB was significantly lower than that of the
suburban CSB, indicating that the warming effect of the suburban
CSB on the surface was more significant. This result is consistent
with the overall temperature distribution in Urumqi city.

4.3.3 Differences in the contribution of
localized CSB

There are temperature differences between different built-up
areas and regions of other land cover types (Khamchiangta and
Dhakal, 2019). In order to deeply understand the warming effect of
the CSB on the LST, different types of areas in the suburbs are
selected to compare with the CSB. The suburban landscape is
divided into areas with and without CSB, and typical landscape
types are selected. Four samples were selected for each of the four
landscape categories: CSB, other buildings, bare soil, and vegetation.
In order to minimize the errors caused by elevation and other
natural factors, we try to select similarly numbered samples close to
the sample areas of the CSB to make comparisons. The locations of
these sample zones in the original image, LST, and aggregated
density maps are shown in Figure 9.

The sample zone statistics are shown in Table 5. From the
average and maximum and minimum values of the sample
temperatures, the temperatures are in descending order: bare soil,
CSB, other buildings, and vegetation. The maximum value of the
sample temperature of CSB reaches 47°C, and the range of
temperature values belongs to the sub-high and high-temperature

FIGURE 8
Percentage of sample temperature levels.
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zones. By comparison, it is found that all the samples in the CSB
samples have a positive Contribution, and the contribution index is
around 0.1. Other buildings have three negative contributions and
one positive Contribution; all four samples of bare soil have positive
contributions, and the opposite is true for the vegetation.

Due to the random nature of the sample selection, there is no
guarantee that the sample area is uniform in size. Table 5 shows that
the contribution value of sample CSB is relatively uniform, while
there are significant differences in the contribution value of other

landscape types. In order to effectively compare the difference in
Contribution to LST between the CSB and other landscape types, we
assumed that the sample area is of uniform size, the total area of the
color plate sample is used as a reference, and the other types of
samples are multiplied by a scale factor. We obtained a contribution
index of 0.512 for the CSB area, −0.407 for the other buildings,
1.470 for the bare soil, and −1.707 for the vegetation area. The
contribution of bare rock areas is the greatest, and existing studies
have shown that LST increases with the expansion of bare land and

FIGURE 9
Schematic diagram of the suburban sample area.

TABLE 5 Suburban sample contribution index.

Sample Area/km2 Area proportion (%) LST mean/°C LST max/°C LST min/°C CI

csb1 5.79 6.83 38.25 44 34 0.150

csb2 4.96 5.86 38.06 42 34 0.117

csb3 7.22 8.53 37.12 44 32 0.105

csb4 7.77 9.17 37.66 47 30 0.147

bare soil 1 7.57 8.93 40.82 45 35 0.425

bare soil 2 6.20 7.32 40.74 44 35 0.342

bare soil 3 3.43 4.05 41.2 43 37 0.208

bare soil 4 3.11 3.67 40.25 45 34 0.154

vegetation 1 3.76 4.44 31.25 37 27 −0.213

vegetation 2 6.09 7.19 29.87 39 22 −0.445

vegetation 3 3.13 3.69 31.23 38 28 −0.178

vegetation 4 2.53 2.99 30.09 37 27 −0.179

Other buildings 1 4.07 4.81 35.26 39 29 −0.038

Other buildings 2 5.26 6.21 36.36 41 30 0.019

Other buildings 3 7.92 9.35 33.25 39 29 −0.263

Other buildings 4 5.89 6.95 34.17 39 30 −0.131
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human settlements, and there is a significant positive correlation
between LST and bare land (Tabassum et al., 2023).

Under the same coverage area, the positive Contribution of bare
soil is much higher than that of other areas. At the same time,
vegetation plays a noticeable cooling effect on the LST. The index of
the Contribution of other buildings to the temperature is negative,
and this result is inconsistent with that in other studies, i.e., urban
buildings can increase the LST to varying degrees (Hao et al., 2016;
Morabito et al., 2017; Zheng et al., 2023). The reason for this
phenomenon is that the overall high temperature in the suburbs
of Urumqi, surrounded by mountains on three sides and covered by
large areas of bare soil and rock, is the main factor for the increase in
LST in the suburbs. In contrast, the temperature of other buildings is
much lower than that of bare earth and rocks, so the other buildings
area shows a negative contribution. Overall, except for the bare soil
sample, the warming effect of the CSB zone on LST is much higher
than that of other surrounding factors, which further indicates that
the CSB has a significant degree of influence on surface warming and
is a factor that cannot be ignored for the healthy development
of the city.

5 Discussions

This paper takes CSB as an entry point to quantitatively study
their impact on LST through their aggregation density and evolution
pattern, and comparatively analyzes the difference between the
temperature increasing effect of CSB in urban and suburban
areas. The article strongly proved that the CSB is related to the
LST increase. CSB are made of special materials, and the steel
absorbs heat quickly and dissipates it quickly. Chiu mentioned in
their study that steel plate buildings, such as science and technology
factories and large construction companies, have high indoor
temperatures in the middle of the day during the summer due to
solar radiation (Chiu and Cheng, 2012). In terms of material, the
argument that CSB contribute to the increase in LST is feasible.

The conclusion that the higher the density of aggregation of
CSB, the higher the LST, is related to the search radius R. We set the
search radius to 10 m, 30 m, 60 m and 90 m. By comparison, we
found that the correlation R2 between the aggregated density of CSB
and LST reaches the maximum when R = 30 m. When R > 30m, the
correlation decreases significantly with the increase of radius,
indicated that the greater the density of the coverage of CSB, the
stronger the warming effect is within R = 30 m. The correlation
between the density of the aggregated density of CSB and LST
reaches the maximum. This may be related to the resolution of the
LST image. Since the extraction of the CSB is based on Google Earth
images, and the temperature inversion is based on the conventional
Landsat series images, the spatial resolution of the two is quite
different. Therefore, we used resampling to unify the color steel plate
data at the same scale, which may also result in the best results at the
30-m scale for the correlation between the two.

Furthermore, we know that the urban heat island effect is the
result of a combination of multiple influences (Hao et al., 2016; He
et al., 2020). Airborne particulate matter (Biswas et al., 2020), urban
form, building density and street configuration have a decisive
influence on the local urban climate, especially during heat waves
(Stache et al., 2022). The temperatures of the CSB in the suburbs of

Urumqi are all higher than those in the urban area. Considering the
suburban differences, we found through our research as well as press
materials that the urban area’s CSB are more fine-grained,
dominated by temporary factories or residential areas, and the
area of individual CSB is smaller. The gathering area of CSB in
the suburbs is dominated by large factory parks. Color steel plate is
mainly used to build warehouses, large-scale factory buildings and
so on, and the area of single-color steel room is large. Therefore, the
size and compactness of the CSB itself will make a difference in the
warming effect.

In addition to differences in the area size of the CSB themselves,
building heights in the suburbs may also contribute to suburban
differences. Taller monolithic buildings create larger shadow areas
(Han et al., 2023). Considering the lower LST in the shaded area, all
the CSB in urban areas are lower than other surrounding buildings.
Therefore, CSB in urban areas may have low temperatures. In
suburban areas, which are relatively empty and do not have a
large number of other buildings around the CSB, the shadow
coverage is small, and the contribution of the CSB to the
temperature is more pronounced. The research indicates a
significant relationship between landscape indices and land
surface temperature (Ding et al., 2024). Therefore, studying the
relationship between landscape indices of CSB and LST is also a part
that needs to be considered in subsequent research.

One of the most important and dominant reasons may be the
differences caused by differences in elevation. Altitude is usually
taken into account as a factor affecting the urban heat island
(Mathew et al., 2016).Mathew’s study showed that the LST in the
study area tended to increase with increasing altitude (Mathew et al.,
2017). Urumqi is surrounded by mountains on three sides, and the
elevation of the suburbs is higher than that of the urban area, so the
temperature of CSB in the suburbs is higher than that of the urban
area. The article only superficially discusses the influence of CSB on
LST, and in the future, the building height, building layout and
environment of CSB can be taken into account to more
comprehensively and accurately analyze the influence of
CSB on LST.

Although the aggregation density of CSB and LST as a whole
shows a positive relationship, but in the local area there is a non-
correlation of special cases, the reason may be related to a certain
range of building layout or vegetation coverage (Mohajerani et al.,
2017; Yao et al., 2018). The results of the article show that the
contribution index of the samples in the vegetation coverage area is
negative, and we know that water bodies and vegetation usually can
mitigate the urban heat island when they are used as blue-green
space in cities (Pan et al., 2023; Zhou et al., 2023). Suburban CSB are
less affected by blue-green covered areas. In addition, some studies
have shown that the temperature in urban areas is higher than that
in non-urban areas, while the opposite is true for Urumqi, which
may also explain the localized non-positive correlation between the
two. Further exploration of the more complex inner-city structure is
needed to achieve a more refined study of the CSB.

6 Conclusion

Taking the stage buildings that appeared in the development
process of Urumqi City as the research object, this study focuses
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on analyzing the influence of the spatial pattern and spatial and
temporal changes of the CSB, which are the typical building
clusters, on the LST of the city. The study qualitatively analyzes
the spatial distribution of CSB and LST using the distance-
weighted method and the mean-standard deviation method.
The results show that during the period of 2005–2020, the
scale of the CSB is enlarged, and the spatial distribution is
gradually dispersed from the center to the surrounding area,
and the high-density gathering area is gradually shifted from the
urban area to the suburban area. The high-density gathering area
of CSB and the high LST area of Urumqi city show the
consistency of spatial distribution, which qualitatively
indicates that there is a certain correlation between the CSB
and the increase of urban LST.

It was further observed that the density of CSB was highly
positively correlated with LST, indicating that their dense
distribution would exacerbate LST. Notably, at equivalent
densities, temperatures of CSB in urban areas were lower than
those in suburban areas. Consequently, urban planners may need
to focus on planning and distributing large industrial areas,
reasonably controlling the density of CSB, and mitigating the
concentrated distribution of CSB to enhance the local thermal
environment. Furthermore, the contribution index to LST from
CSB samples in suburban areas reached 0.512, significantly higher
than in other building areas, suggesting that these clusters are a key
factor driving LST increases in suburban regions. Therefore,
reducing the thermal impact of CSB emerges as a crucial
strategy in mitigating the urban heat island effect. This
necessitates improving the influence of CSB on LST through
initiatives such as energy-efficient building design, utilization of
green building technologies, and enhancement of building
materials and colors.
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