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With the increase of extreme weather events such as cold waves, power
transmission line icing has become more and more severe, affecting the safe
and stable operation of power systems. Thus, icing prediction has become crucial
for power grids. In this study, we collect multi-source data including the historical
observations of meteorological elements and transmission line icing in Sichuan
during 2017–2019, and develop an artificial intelligence (artificial intelligence)-
based integrated model to achieve icing thickness prediction according to
meteorological elements. Using the Weather Research and Forecasting model
and the three-dimensional variational data assimilation method, we analyze the
weather conditions in Sichuan of China during the 2020 winter, and obtain the
high-precision meteorological element fields that are related to icing prediction.
The forecasted meteorological elements are then combined with the AI-based
integrated model to predict icing conditions, assisting in the warning of
transmission line icing. The results indicate that the AI-based integrated model
displays superior performance on the accurate prediction of icing thickness in the
test set, with only two samples having prediction errors of more than 3 mm. Data
assimilation can effectively improve the forecast accuracy of meteorological
elements near icing observation stations and thus enhance the accuracy of icing
thickness prediction. In particular, icing thickness prediction is remarkably
improved at Gaoqiao, Laolinkou and Erlangshan stations.
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1 Introduction

In the context of global warming, extreme events such as low temperature and cold waves
have becomemore frequent, leading to an increase in the probability of transmission line icing
in recent years (Li, 2023). Power transmission line icing can increase the load on transmission
line conductors and towers, expand windward area and induce unstable oscillations of wires.
These phenomena could lead to tower collapse and the breakage, torsion and flashover of
transmission lines, and may further cause power accidents, posing a serious threat to the safe
and stable operation of power grids (Wang et al., 2021) and resulting in severe socio-economic
losses (Huo et al., 2021; Niu et al., 2021). China, one of the countries with the most frequent
transmission line icing disasters, has always been concerned with icing disasters (Li et al.,
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2008). In 2008, a widespread freezing rain and snow disaster in
southern China caused serious icing accidents on power grids,
resulting in more than 8,000 damaged towers, over
20,000 disconnected power lines, and the shutdown of more than
1,000 substations. The direct economic losses reached 15 billion RMB,
and the indirect socio-economic losses were incalculable (Li et al.,
2008). Only accurate prediction and effective early warnings of
transmission line icing conditions can realize the transition of icing
prevention from “passive defense” to “active mitigation” (Zeng et al.,
2022). Therefore, scholars have begun to extensively investigate the
prediction of transmission line icing (Xiong et al., 2022).

Previous research on transmission line icingmainly includes two
aspects. One is the theoretical analysis and numerical simulation of

icing formation mechanisms and evolution laws (Xie, 2005; Jiang
et al., 2010; Liu and Liu, 2011). The other is the analysis of the
relationships between icing formation and different meteorological
factors, which can be used to develop icing prediction models (Jones,
1998; Fu et al., 1998; Makkonen, 2000; Liao and Duan, 2010; Wu
et al., 2012). Previous studies indicate the close relationships of
transmission line icing to micro-meteorology, micro-topography
and the transmission line itself. Various meteorological elements,
such as temperature, humidity, wind speed and precipitation, have a
certain correlation with the growth of wire icing thickness (Li, 2012).
They found that icing forms when the environmental temperature is
below the freezing temperature. Specifically, glaze occurs
between −5°C and 0°C, rime forms between −15°C and −10°C,

FIGURE 2
Topographic height (shade, m) and observation stations (red dots denote alpine icing observation stations; blue dots denote ground-based
meteorological stations) in the simulation area.

FIGURE 1
Technical flowchart of icing prediction based on the integrated model and assimilation forecast.
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and mixed rime appears between −9°C and −3°C (He, 2022).
Ambient humidity is also essential for icing formation. Only
when atmospheric relative humidity exceeds 80%, transmission
line icing is possible. The magnitude of relative humidity can
affect the type of icing. Additionally, Hou et al. (2014) found
that the growth of transmission line icing and ambient wind
speed are not completely positive correlated. When the wind
speed exceeds 6 m/s, it displays a hindering effect on icing growth.

The prediction models for transmission line icing can be mainly
categorized into two types: physical mechanism-based prediction

models and data-driven prediction models. Physical mechanism-
based prediction models include the Imai model (Imai, 1953),
Lenhard model (Lenhard, 1955), Goodwin model (Goodwin
et al., 1983), Jones model (Jones, 1998) and Makkonen model
(Makkonen, 1985). For instance, the Makkonen model, a
combination of thermodynamics, fluid dynamics and
meteorology, is able to provide a relatively accurate icing
prediction. The Jones model is often used to predict glaze-type
icing, focusing on the effects of precipitation and wind speed on wire
icing. However, the microphysical processes of icing formation are

FIGURE 4
Flowchart of the prediction system for transmission line icing. There are three parts, namely, historical dataset processing, DA forecasting and
stacking ensemble models.

FIGURE 3
Framework for transmission line icing prediction based on assimilation and forecast model. There are four modules, namely, preprocessing for
observation, preprocessing for model data, assimilation and forecast, and icing diagnosis.
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determined by various factors. These physical models simplify the
formation mechanisms of icing to some extent and are limited to
specific types of icing. Hence, there are distinct shortcomings in the
practical applications of these physical prediction models.

Data-driven prediction models predict icing thickness primarily
by the correlation between various meteorological factors and icing
formation. Based on the Markov chain model, Liu (2014) applied
meteorological elements such as temperature, pressure, wind speed
and relative humidity to predict future icing conditions of
transmission lines, and the accuracy reached 80%. Historical
observations from icing observation stations and Invariant Risk
Minimization signals were employed to develop linear icing
prediction models, yielding satisfactory results (Farzaneh and
Savadjiev, 2005). Huang et al. (2017) applied a genetic algorithm
for hyper-parameter optimization in the icing prediction model, in
order to improve model accuracy. However, these basic statistical
methods typically use linear models for icing prediction, without

considering nonlinear conditions (Hao et al., 2019). With the advent
of the era of big data and artificial intelligence (AI), more and more
machine learning methods have been applied to various fields.
Machine learning has certain advantages in dealing with model
(Li, 2023). This hybrid model approach can dramatically improve
the accuracy of transmission line icing prediction. Based on the
historical observations of icing thickness and meteorological
elements, Chen et al. (2020) predicted future icing thickness
using a Long Short-Term Memory (LSTM) neural network
model, and their prediction results were better than several
other models.

Most of the studies mentioned above analyzed the performance
of these models on icing prediction through historical data, and few
focused on improving the forecast of meteorological elements that
are related to wire icing. Accurate meteorological forecast data can
provide better inputs to models, which is crucial for icing prediction.
Yang (2021) optimized the forecasts of meteorological elements

FIGURE 5
Correlation coefficients between observed icing thickness and different meteorological elements.

FIGURE 6
Schematic diagram of the multi-model integration framework. The left column shows the input features; the middle column shows the model
stacking; the right column shows the model output.
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such as temperature, wind speed and precipitation based on
numerical simulation and data assimilation techniques, aiming to
provide accurate input fields for icing prediction. Some studies
achieved certain results in icing thickness prediction by
combining the Weather Research and Forecasting (WRF)
numerical model with statistical forecasting models. Nevertheless,
there has been limited research on combining numerical simulation
methods and assimilation techniques to improve the performance of
meteorological forecast models, and on integrating machine
learning methods to build an icing prediction system.

Consequently, to address the limitations of previous research, we
propose a method for simulating and forecasting transmission line

icing based on data assimilation and an integrated model in this
study. This method fully uses the long-term continuous observation
data to conduct Frontier research on multi-source meteorological
data assimilation methods, in order to output refined meteorological
forecast fields. On this basis, an AI-based integrated model is
employed to capture the relationships between historical
meteorological forecast data and transmission line icing
observations, which can obtain the real-time spatial distribution
of power line icing and output the prediction results of icing
thickness (Figure 1). These predictions of icing thickness can
assist in solving the problem of power line icing warnings. The
remainder of this paper is organized as follows. The data and
methods are introduced in Section 2, including a stacking
integrated model constructed by using historical observations of
meteorological elements and power line icing in the Sichuan region
during 2017–2019. In Section 3, based on a selected icing process in
Sichuan during 2020, the WRF numerical model coupled with the
Gridpoint Statistical Interpolation (GSI) system is used in this study
to conduct an assimilation and simulation analysis for
meteorological elements associated with icing. In section 4, the
forecasted meteorological elements from the data assimilation are
input into the integrated model for icing prediction. The main
conclusions are summarized in section 5.

2 Materials and methods

2.1 Data

The data used in this study mainly include the model driving
data, meteorological observations and icing observation data. The
model driving data are the forecast data from the National Centers

FIGURE 7
The special integration processes of the stacking model.

FIGURE 8
Icing thickness predictions from the stackingmodel (line) and the
icing thickness observations (dots).
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for Environmental Prediction Global Forecast System (GFS), with a
horizontal resolution of 0.25° × 0.25° and a temporal resolution of
3 h. Additionally, the Moderate-Resolution Imaging
Spectroradiometer digital elevation model dataset with a spatial
resolution of 1 km is used for model initialization. The historical
meteorological data and the icing observation data are employed to
establish the nonlinear relationships between meteorological
elements and icing thickness in the multi-model integration
framework. The data used for data assimilation are derived from
ground-based meteorological stations and alpine icing observation
stations in the Sichuan region (Figure 2). The primary
meteorological elements at these stations include air temperature,
air pressure, wind speed, wind direction and moisture-related
variables, with a temporal resolution of 1 h. The meteorological
data and icing thickness observation data from these stations are also
used for later verification and evaluation of the model forecast
performance.

2.2 Numerical model and data
assimilation method

In this study, based on the regional numerical weather forecasting
model (i.e., Advanced ResearchWRF (ARW) version 4.2.1) and theGSI
version 3.5 assimilation system (Xu et al., 2016; Shen et al., 2018; Shen
et al., 2019; Shen et al., 2020; Xu et al., 2021; Shen et al., 2024), we
develop amulti-source data assimilation and forecasting system suitable
for icing simulation in southwestern China. The overall framework
consists of four modules (Figure 3), i.e., preprocessing modules for
observations and model data, assimilation and model forecasting
module, and icing calculation module. In this system, driven by the
GFS global forecast field, the model performs data assimilation
according to the data from ground-based meteorological stations
and alpine icing observation stations, aiming to achieve fine-scale
forecasts of meteorological elements within the simulation area and
providing reliable inputs for icing thickness calculation.

In the WRF model, the model domain covers the region of
27°N–31°N, 101°E−105°E (Figure 2), the horizontal resolution of the

single-layer grid is 3 km, and the grid size is 352 × 302. The vertical
layers in the WRF model are set to 41, and the model top is at 50 hPa.
The parameterization scheme configuration of theWRFmodel refers to
multiple classic schemes (Liu et al., 2019; Shen et al., 2021; Shen et al.,
2022; Wang et al., 2023; Xu et al., 2023), i.e., the Thompson
microphysics scheme (Thompson et al., 2008), the Rapid Radiative
Transfer Model longwave radiation scheme (Mlawer et al., 1997), the
Dudhia shortwave radiation scheme (Dudhia, 1989), the Mesoscale
Model 5 Monin-Obukhov near-surface layer scheme (Chen and
Dudhia, 2001), the Noah Land Surface Model scheme (Ek et al.,
2003) and the Yonsei University boundary layer scheme (Hong
et al., 2006).

2.3 The prediction system

The flowchart of the transmission line icing forecast system is shown
in Figure 4. There are mainly three modules, namely, historical dataset
processing module, meteorological data assimilation and forecasting
module, and the training and prediction module of the AI-based
integrated model. The integrated model is primarily constructed and
trained by historical meteorological and icing observations. Accurate
meteorological forecast field data are obtained from theWRFmodel and
the GSI assimilation system, and then they serve as the inputs of the
trained integrated model, ultimately realizing icing thickness predictions.

3 Results and discussion

3.1 Icing thickness prediction based on the
integrated model

3.1.1 Effects of meteorological elements on
icing thickness

In this research, 360 pieces of icing data from 2017 to 2019 are
collected to analyze the correlations of historical icing observations to
meteorological elements, as shown in Figure 5. It can be found that air
temperature, wind speed and relative humidity play essential roles in the

TABLE 1 Accumulated icing thickness observations (mm) from several icing observation stations during December 12–20, 2020.

Station name 12/12 12/13 12/14 12/15 12/16 12/17 12/18 12/19 12/20

Erlangshan 39 59 43 64

Dawanyakou 25 38.1 44.7

Xibeishan 7.4 18.1 18.4

Huangmaogeng 14.9 28.8 29.1

300-point 16.6 34.2

285-point 31.3 36.0

Maluoyakou 1.6 1.6 1.3 1.1 2.5 1.6 7.1 9.9

Wukeshan 3.4 7.4 5.8

Feitucun 4.7

Laolinkou 38.5 56.9 64.6

Gaoqiao 53.9
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growth of icing thickness, consistent with previous studies (Li, 2012).
Particularly, air temperature and dew point temperature have
considerable influences, with correlation coefficients of 0.54 and
0.56, respectively. The correlation coefficients of relative humidity
and specific humidity with the icing observations are 0.38 and 0.51,

respectively. Ambient temperature and relative humidity affect icing
types. Therefore, despite the presence of lower temperature in many
northern regions, transmission line icingmay not appear due to the lack
of relative humidity. In contrast, southern regions are relatively humid
and are more prone to icing in low-temperature environment. In

FIGURE 9
Distributions of maximum (left column), minimum (central column), and average (right column) analysis increments (VAR-CTL) for meteorological
variables in the vertical direction.
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addition, ambient wind may increase the probability of collision
between super-cooled water vapor and transmission lines, thus
making icing phenomena more likely to occur.

3.1.2 Construction of the icing prediction model
Among the 360 pieces of icing observation data from 2017 to

2019, the first 240 samples are selected for model training, while the
remaining 120 samples are used for testing.

To construct the relationship between primary influencing factors
and icing thickness, an integrated nestedmodel is trained by using the
historical feature data. This model adopts a stacking framework
(Figure 6) and uses basic models such as Random Forest (RF),
Extreme Gradient Boosting (XGBoost) and LSTM. The RF
algorithm consists of multiple individual decision trees, and utilizes
the voting mechanism to make decision classification and regression
prediction. The number of nodes in each decision tree is randomly

FIGURE 10
Distributions of maximum (left column), minimum (central column), and average (right column) analysis increments (VAR-CTL) for meteorological
variables in the zonal direction.
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determined based on the number of sample features, which makes
ensemble decision trees can have better prediction performance (Li
and Zhou, 2020; Shi et al., 2020; Guan et al., 2021; Yu et al., 2021). The
RF algorithm is widely applied due to its strong generalization ability
and classification prediction performance (Lu et al., 2020). The
XGBoost is a tree-based Boosting serial ensemble learning
algorithm, which is an improved algorithm based on the Gradient
Boosting Decision Tree. By optimizing objective functions, the
XGBoost reduces the complexity of the model and improves the
computational accuracy (Zhuang et al., 2021). Since the XGBoost
performs well for low-dimensional data and can process nonlinear
data, it is often used to analyze power-related data (Lu et al., 2023).
The LSTM neural network is a deep learning algorithm optimized
based on temporal recurrent neural networks. This algorithm was
proposed to solve the spanning of long time series, which primarily
addresses the gradient vanishing problem that exists in traditional
recurrent neural networks in carrying out information memory
(Huang and Luo, 2011). Icing variations exhibit obvious periodic
patterns, and thus the features of time series should be considered
when predicting transmission line icing (He, 2022). Through the
stacking method, the integrated model comprehensively utilizes the
advantages of individual models, which can obtain more accurate
outputs of icing thickness based on the monitoring data.

Combining multiple processors, the framework works as a
pipeline. From the input of basic feature to the final output of

model prediction, all data can be transmitted through this pipeline.
Each processor is responsible for processing data in certain way and
transmitting the results to the next processor for the final
prediction results.

The first part of this framework is the data preprocessing
module, whose function is to separately normalize and
standardize various input data with different features according
to Eqs 1, 2.

x1 � x0 − xmin

xmax − xmin
, (1)

where x0 represents the original values, xmin the minimum value,
and xmax the maximum value.

x2 � x0 − μ( )/σ, (2)
where x0, xmin and xmax represent the original, minimum and
maximum values of input data, respectively. x1 denotes the
normalized value, μ the mean value, σ the standard deviation of
the input data, and x2 the standardized value. Through the data
preprocessing module, the computational speed of subsequent
model training can be improved.

The second part is a model stack of two model layers. The first
model layer is named the base model layer, including three different
models. Diverse meteorological element fields serve as input data for
training labels in this layer. The second model layer is named the

FIGURE 11
Time series of ME for TMP2M, RH2M, SPD10M and Q2M calculated from CTL (blue) and VAR (red).
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stacking layer, which is an embedded model built based on the
base models.

The final part is the prediction output of the entire model. Model
integration contributes crucially to the prediction results of the
entire model. In this part, the base model layer consists of different
basic model types, which can be selected from various modeling
approaches. The predictions of these three base models are
organized and merged to form a new feature set, which serves as
an input to the next model layer. The stacking layer is trained based
on the newly generated feature set. To ensure that the feature set
adequately represents the features of the original training data, we
consider the fitting ability of models when selecting training models
in the base model layer. The primary objective of the base model
layer is to automatically and effectively extract the characteristics of
nonlinear variations from the original data. To avoid overfitting, we
set relatively simple parameters in the stacking layer to enhance the
generalization capability and accuracy.

The specific processes of stacking are as follows. First, the
training dataset is randomly divided into five parts. Then, the
XGBoost, RF and LSTM models are selected and trained by the
five-fold cross-validation method in the base model layer. Actually,
referred to previous studies (Ma et al., 2024), 5-fold cross validation
(CV) is also used to adjust the model and to avoid the over-fitting
problem in this study. The five sets of predictions are vertically
stacked and concatenated to form a new feature dataset (Figure 7).

Subsequently, in the base model layer, the three basic models
generate three new feature sets, denoted as A1, A2 and A3. The

gradient boosting model then predicts the test set using these new
feature sets and the original input feature set.

In the process of model stacking, the predictions in the base
model layer and the original features are merged and incorporated
into the training of the stacking-layer model to achieve nesting. This
approach enhances the prediction accuracy of the model and
simultaneously avoids overfitting.

Through model integration, it can be found that the predicted
icing thickness is close to the actual values in the test set, as shown in
Figure 8. There are 42 samples with errors smaller than 0.5 mm, and
only two samples with errors exceeding 3 mm. The stacking model
results are better than the three single models due to the integration.
These relatively small errors between the predictions and actual
values indicate a good agreement between them.

3.2 Fined forecasts of
meteorological elements

3.2.1 Numerical simulation of icing process
Through the numerical assimilation framework of the WRF +

GSI system, the icing process during December 12–20, 2020 is
simulated. Table 1 presents the daily accumulated icing thickness
observations from several icing observation stations in Southwest
China during this period. It can be observed that the icing thickness
at multiple icing observation stations exceeded 30 mm and persisted
for a considerable duration.

FIGURE 12
Time series of RMSE for TMP2M, RH2M, SPD10M and Q2M calculated from CTL (blue) and VAR (red).
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To analyze the impact of assimilating observation data on model
simulations, we conduct a comparison experiment, namely, the
control (CTL) experiment without assimilation and the
comparative (VAR) experiment with data assimilation. Except for
the differences in assimilation, all parameterization schemes of the
model remain identical. Both experiments use the GFS forecast data
as the model initial and boundary conditions. The “cold-start”
assimilation is performed every 12 h, and the forecasts are
conducted at the leading time of 72 h. Subsequently, the impact
of data assimilation on the analysis and forecast fields is discussed
according to the model results.

3.2.2 Forecast results of the model
Figure 9 illustrates the spatial distributions of the maximum,

minimum and average increments of horizontal wind,

temperature and specific humidity in the VAR experiment
relative to the CTL experiment across the domain. The
results indicate that assimilating conventional observation
data increases the wind speed in the southern-central parts
of Yunnan and Guizhou, adjusts the temperature distribution in
southern Qinghai and northern Sichuan, and has a certain
weakening effect on the specific humidity in the central part
of the study area. Figure 10 shows the variation of the zonal
mean of these four meteorological elements with model levels
and longitude. It can be observed that the influence of
assimilating surface observation data is concentrated in the
lower layers. The vertical affected areas for temperature and
moisture are considerably lower than those for wind speed,
which is determined by the scale factor of the variational
assimilation.

FIGURE 13
Distributions of ice thickness (mm) forecast calculated from CTL (left column), VAR (middle column) and their differences (VAR-CTL, right column)
initiated from 0000 UTC on 14 December 2020. Black dots denote alpine icing observation stations.
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3.2.3 Evaluation of the meteorological
element forecasts

Due to the remarkable correlations of meteorological elements
with icing thickness, the improvement of their forecast accuracy is
crucial for icing thickness prediction. The region of 27°N–31°N,
101°E−105°E is selected as the focus area, and the mean error (ME,
Eq. 3) and the root mean square errors (RMSE, Eq. 4) would been
calculated based on formulas as follows,

ME � 1
n
∑n
i�1

Fi − Oi( ), (3)

RMSE �
������������
1
n
∑n
i�1

Fi − Oi( )2
√

, (4)

where Fi and Oi denote the forecast and observation for station
i(i ∈ [1, n], n≥ 1), respectively.

Figure 11 depicts the variations in the MEs from ground-based
meteorological stations of the four meteorological elements
(horizontal wind speed, temperature, relative humidity and
specific humidity) near the icing observation stations with
forecast leading time. Both the CTL and VAR experiments
exhibit certain diurnal variations in the MEs of the four
elements. Specifically, the error of temperature and wind speed
shows notable peaks before 1000 UTC and after 2000 UTC each day,
while the maximumMEs of relative humidity and specific humidity
appear before 1000 UTC and around 2000 UTC. In terms of the
magnitude of errors, the MEs of the temperature and wind speed
forecasts remain less than 2°C and 2 m·s−1, respectively, whereas the
moisture-related elements show negative MEs. Overall, the forecasts
tend to be warmer and drier than the observations, and they tend to
overestimate wind speed. Furthermore, comparing the results of the
two experiments, the VAR experiment (with the assimilation of

FIGURE 14
Distributions of ice level forecast calculated from OBS (left column), CTL (middle column) and VAR (right column) initiated from 0000 UTC on
14 December 2020.
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observation data) shows advantages in simulating the moisture-
related elements, such as specific humidity, especially in the first 24 h
of forecasts. Similar results can be found in the statistical results of
the RMSE presented in Figure 12. However, the effects of
assimilation on the 2-m temperature forecasts and 10-m wind
speed forecasts are not obvious. It can be concluded that data
assimilation improves the forecast accuracy of meteorological
elements and can enhance the accuracy of the subsequent
calculations of the icing thickness model.

3.3 Icing prediction system

The forecast results from theWRF + GSI assimilation system are
input into the trained integrated icing thickness forecast model
based on meteorological elements, which finally outputs the icing
thickness and warning levels in the study region.

Figure 13 presents the icing thickness predictions from the CTL
and VAR experiments initiated from 0000 UTC on December
14 with different forecast leading times, as well as the difference
between the two experiments (VAR−CTL). The results suggest that
the icing during the simulation period is mainly distributed along
the mountain ranges in Sichuan Province, roughly located between
the mountain ranges and the basin, extending southward to the
Yunnan-Guizhou Plateau, which is consistent with the spatial
distribution of historical icing observations. Furthermore,
regarding the variations in the icing thickness distribution with
different forecast leading times, icing during the study period mainly
appears around Erlangshan, Huangmaogeng, and Laolinkou
stations, whereas icing is not observed near Feitu Village and
Zheduo Mountain. This result is consistent with the station
observations (the icing thickness has diurnal variations starting
on December 14 shown in Table 1.

Overall, the CTL experiment successfully forecasts the general
distribution of icing observations during the simulation period, but
the icing thickness is underestimated. The assimilation of
conventional observation data adjusts the meteorological element
fields near the icing observation stations to a certain extent, thereby
improving the predictions of icing thickness. Positive adjustment is
particularly notable at Gaoqiao, Laolinkou and Erlangshan stations.

According to the icing thickness forecasts, icing warning can be
divided into four levels: no-icing level (icing thickness < 0.1 mm), light-
icing level (0.1 mm ≤ icing thickness < 10 mm), moderate-icing level
(10 mm ≤ icing thickness < 20 mm), and heavy-icing level (icing
thickness ≥ 20 mm). From the observations of accumulated icing
thickness from December 14 to 17 (Table 1), it can be seen that the
accumulated icing thickness at all stations shows an increasing trend,
except for Erlangshan station (increasing and then decreasing). Since
icing is an accumulation process over time, for the stations withmissing
data on December 14 listed in Table 1, the average of the accumulated
observation values within 24, 48 and 72 h is used to replace the value for
that day. The observations indicate that within the 72-h period, the icing
thickness increments at Dawanyakou, Gaoqiao and Laolinkou stations
are close to or more than 20 mm, while the other stations with icing
observations also show thickness increments of less than 10 mm.

Figure 14 illustrates the warning distribution of the 24-h, 48-h
and 72-h icing forecasts initiated from 0000 UTC on December 14.
Apparently, with the increase of forecast leading time, the

predominant icing warning levels of the forecasts near
Huangmaogeng, Erlangshan and Gaoqiao stations tend to be the
light-icing level, while Laolinkou station exhibits the moderate-icing
level. The forecasted icing warning levels are relatively weaker than
the actual observations. In terms of the forecasted icing warning
levels at each observation station, the results from the two
experiments are close, with relatively small differences, which
may be determined by the characteristics of this icing process.

4 Conclusion

Meteorological elements may effect the formation of
transmission line icing. Particularly, temperature, wind speed and
relative humidity contribute considerably to icing thickness growth.
Based on the historical observations during 2017–2019, we employ
an integrated nested framework with Random Forest, XGBoost and
LSTM methods, and combine the advantages of different models to
establish the nonlinear relationships between different
meteorological elements and icing thickness. The predicted data
from the integrated model can be well fitted to the actual icing
thickness in the test set, with 42 samples exhibiting small errors (less
than 0.5 mm) and only two samples exhibiting the errors more
than 3 mm.

The numerical forecast and assimilation framework based on the
WRF + GSI system is used to simulate and analyze the weather
conditions in the Sichuan region during an icing event in 2020. The
numerical forecasts slightly overestimate the temperature and wind
speed while underestimate the humidity. After the assimilation of
observation data, the numerical model exhibits clear advantages in
simulating moisture-related variables such as specific humidity,
particularly within the first 24-h. Although the model can predict
the general distribution of icing area, the icing thickness is notably
underestimated. The assimilation of conventional observation data
can adjust the meteorological element fields near icing observation
stations to a certain extent, thus improving the icing thickness
prediction, especially at Gaoqiao, Laolinkou and Erlangshan
stations. With the increase of forecast leading time, the
forecasted icing warning at Huangmaogeng, Erlangshan and
Gaoqiao stations is primarily the light-icing level, while the
moderate-icing level at Laolinkou station and its vicinity. The
forecasted icing warning levels are relatively weaker than the
actual observations. In addition, the forecasted icing levels from
both experiments at all observation stations tend to be close, with
relatively small differences, which is likely attributed to the specific
characteristics of this icing process.

In summary, the assimilation experiment improves the icing
thickness prediction by adjusting the forecasts of meteorological
elements near the icing observation stations. The predicted icing
warning levels are similar at all icing observation stations, and their
differences are smaller between the two experiments with and
without data assimilation, which may be determined by the
specific characteristics of this icing event. However, the results
from the numerical simulations with data assimilation and the
stacking model for long-term icing thickness forecasts differ from
the actual observation to some extent, and the icing thickness
prediction still needs to be further optimized. One reason for this
result is the errors in the forecasted meteorological factors by
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numerical simulations with data assimilation, and the other reason
is the errors in the forecasts from the integrated model.
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