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Introduction: Fast and accurate estimation and spatial mapping of soil total
nitrogen (TN) content is important for the development of modern precision
agriculture, such as soil fertility monitoring and land reclamation decision-
making. Hyperspectral remote sensing has been demonstrated to be an
accurate real-time technique for rapid estimation and mapping of soil
TN content.

Methods: To solve the problem of poor accuracy and generalization of
estimation models caused by soil environmental heterogeneity in estimating
and mapping soil TN content using hyperspectral images, 502 soil samples were
collected from a typical black soil area in YushuCity, Jilin Province, China, as a test
area, and three sample grouping strategies were established by soil
environmental variables (soil type, thickness of the black soil layer, and
topographic factors), and Pearson correlation coefficient and competitive
adaptive reweighted sampling algorithm were used to determine the TN
characteristic bands of each sample set under different strategies. Based on
the data characteristics of the sub-sample set, the local regression estimation
model based on sample grouping was constructed using the CatBoost algorithm,
and the estimation and distribution mapping of soil TN content was carried out.

Results and Discussion: The results showed that after dividing the samples
according to the differences in soil environmental factors, the characteristic
information of the samples is more targeted, with more abundant numbers and
distribution ranges of TN characteristic bands. Compared to the global regression
estimation with all samples, the local regression based on the grouping of soil
environment differences showed improved accuracy, with the local regression
estimation model constructed with the ST-G strategy exhibiting the highest
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estimation accuracy (R2
p = 0.839). The results can provide a reference for large-area

soil properties mapping, and technical support for soil quality digitization and
precision fertilization.
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1 Introduction

Soil is an indispensable part of the Earth’s ecosystem, with a
complex structure and multiple functions (Du and Zhou, 2009). It
provides water, minerals, and nutrients such as organic matter,
nitrogen, phosphorus, and potassium to plants and soil organisms,
playing a key role in climate regulation, vegetation growth, and
maintenance of ecological balance (Wilding and Lin, 2006). Soil
nitrogen is closely related to soil aggregate formation, microbial
metabolism, and changes in soil texture (Li et al., 2022). It is an
important nutrient element affecting and limiting plant growth and
development and a key element in regulating soil fertility, quality,
and agricultural productivity (Lori et al., 2018). Therefore,
determining total nitrogen (TN) content in soil and its spatial
distribution is important for soil fertility monitoring, land
resource management, and sustainable agricultural development
(Peng et al., 2021). The traditional soil chemical analysis method
can obtain accurate information on soil TN content. However, it
requires much time, effort and cost, and detailed information on TN
content is not possible on a large scale (Sinfield et al., 2010). The field
spectrum measurement using proximal sensors can invert the
chemical composition of the soil according to its reflection
characteristics and physical and chemical properties, enabling
rapid and accurate estimation of the content of various soil
components such as organic matter and TN (Yang et al., 2012;
Kawamura et al., 2017; Jiang et al., 2023a). However, this method is
dependent on point locations, making it difficult to obtain dynamic
and continuous spatial distribution information of soil TN content
through ground spectral data. Therefore, a fast and accurate method
needs to be developed to dynamically obtain the spatial distribution
of TN content on a large scale.

Since the stretching and cornering vibrations of many functional
groups (N-H, N-C, and N≡N bonds) in soils induce specific spectral
response and absorption radiance in the soil reflectance curves, a
certain correlation can be identified between TN content and soil
spectrum (Stenberg and Rossel, 2010; Zhang and He, 2016). This
correlation provides a study basis for the estimation and mapping of
soil TN content. With wide coverage, fast information acquisition,
and strong timeliness, hyperspectral satellite remote sensing has
been largely applied to large-scale soil nutrient estimation, soil
characteristic evaluation, and digital soil mapping (Grunwald
et al., 2015; Chatterjee et al., 2021; Xu et al., 2023). Currently,
soil TN content estimation and mapping by hyperspectral images
mainly focuses on hyperspectral data preprocessing, feature variable
selection, and estimationmodel construction, etc. Many studies have
demonstrated that imagery preprocessing, such as radiation and
atmospheric correction, can effectively reduce or eliminate noise in
spectral data acquisition (Minu et al., 2017; Minu et al., 2018; Wang
J. et al., 2022). By mathematically converting spectral reflectance,

spectral information related to soil nutrients can be enhanced, and
the effects of interference factors can be suppressed or eliminated
(Hong et al., 2019; Zhang et al., 2020). By selecting appropriate
spectral feature bands by feature selection algorithms (e.g., the
LASSO algorithm, the successive projections algorithm, the
uninformative variable elimination, and the genetic algorithm),
the data redundancy can be effectively reduced, the training
speed can be accelerated, and the interpretability and
generalization ability of the model can be improved (Li HY.
et al., 2019; Li XY. et al., 2019; Peng et al., 2019). The
competitive adaptive reweighted sampling (CARS) algorithm is a
feature variable selection algorithm that selects the optimal set of
variables by dynamically adjusting the window width and threshold
(Cheng et al., 2021; Guo et al., 2021). It involves two stages of feature
fast elimination and feature fine selection, which can effectively
reduce feature inputs and improve the performance of the
estimation model (Zhao et al., 2022). In addition, machine
learning algorithms such as support vector machine (SVM), back
propagation neural network (BPNN), and random forest (RF) have
excellent feature mining, adaptability, and data fitting capabilities,
which are widely applied in soil TN content estimation (Deng et al.,
2020; Liu et al., 2022; Jiang et al., 2023b). The Categorical Boosting
(CatBoost) model is a serial integrated machine learning algorithm
using oblivious trees as base learners, providing better stability and
generalization in quantitative estimation (Hancock and
Khoshgoftaar, 2020; Wang WC. et al., 2022). Compared to most
machine learning algorithms, it can efficiently process categorical
features, reduce overfitting, and have high accuracy (Yu et al., 2022).

In order to achieve the requirements of precision and digital
agriculture and to improve the estimation and mapping accuracy of
TN content, studies on the selection of soil nitrogen characteristic
variables and the optimization of estimation models have gradually
increased (Mendes et al., 2022; Zhang LY. et al., 2023; Zhang RR.
et al., 2023). However, most studies only considered the response
relationship between spectral reflectance of image pixels and
nitrogen content. The influence of spatial differences in soil
environment on the estimation results of nitrogen distribution
and TN content was only reported by few studies. Topographic
factors can affect moisture flow, soil erosion, and material
redistribution, significantly contributing to the export, transfer,
and distribution of nitrogen in the soil (Wu et al., 2018; Wang
et al., 2023). For example, differences in elevation and topography
can change meteorological conditions such as precipitation,
temperature, and relative humidity, affecting soil microbial
activity, soil respiration, and photosynthetic rate and ultimately
altering the spatial distribution of soil TN (Tesfaye et al., 2016).
Slope can change soil TN content through various mechanisms such
as soil moisture redistribution, soil erosion, and vegetation growth
(Pennock, 2005). The black soil layer contains large amounts of
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plant residues and humic substances, providing abundant nutrient
elements such as nitrogen, phosphorus, and potassium to the soil
(Gu et al., 2018). Different thicknesses of the black soil layer lead to
differences in soil physical properties, chemical composition, and
biological activity (Niu et al., 2022). These differences influence soil
microbial metabolism, water retention, and nutrient cycling ability,
which in turn affects nitrogen content. Moreover, soils of different
types have varying physicochemical properties, including soil
texture, organic matter content, pH, and soil aeration (Ge et al.,
2019). All these properties can affect nitrogen input and output. Due
to the heterogeneity of the natural environments (e.g., topography,
the thickness of the black soil layer, and soil type), the degree of soil
erosion and nitrogen cycling varies in different spatial regions. As a
result, the soil TN content in different regions varies, which affect
the accuracy of the soil TN estimation model to some extent (Zhang
et al., 2013; Marty et al., 2017). Therefore, the effect of soil
environmental heterogeneity needs to be reduced. Van Waes
et al. (Van Waes et al., 2005) found that establishing local
regressions after categorizing soil samples based on their
characteristics can reduce the interference of influencing factors
on the estimation accuracy. After dividing the study area according
to topographic differences, Pan et al. (Pan et al., 2022) conducted
local regression estimation of soil SOM. The results showed that the
estimation accuracy of local regression was improved compared to
that of the global regression. However, due to limited sample size,
distribution density, and other factors, incorporating environmental
factors (e.g., soil black soil layer thickness, soil type, and topography)
to divide the samples remains uncommon. Moreover, the estimation
of soil TN content through local regression by selecting the optimal
wavelength variable based on sample characteristics has rarely been
used. The improvement in the accuracy of TN content by the local
regression model after grouping soil samples by different
environmental factors needs to be further explored.

A method was proposed for the estimation of the soil TN content
by local regression based on hyperspectral images in this study. This

method aimed to reduce the possibility of local optimization of
estimation results due to the heterogeneity of soil environments and
to enhance the accuracy of soil TN content estimation andmapping.On
this basis, 502 soil samples were collected in the typical black soil area of
Yushu City, Jilin Province, China, and the spectral characteristics of soil
TN were analyzed using the ZY1-02D hyperspectral image as the data
source. Three sample grouped local regression strategies were
established based on differences in soil environmental factors (soil
type, topography, and thickness of the black soil layer), and local
regression estimation models were developed using the CatBoost
algorithm to estimate TN content. The objectives of this study are
as follows: (1) to clarify the distribution range of TN characteristic bands
and to analyze the effect of soil environmental heterogeneity on the
distribution of TN characteristic bands; (2) Based on the sample
characteristics, the optimal wavelength variable is selected for local
regression to estimate the soil TN content, to evaluate the influence of
different strategy groupingmodeling on the estimation accuracy, and to
determine the optimal grouping strategy; (3) to establish a local
regression estimation model using the optimal TN content
estimation scheme and map the spatial distribution of soil TN content.

2 Materials and methods

2.1 Study area

The study area is in Yushu City, Jilin Province, China, and has a
temperate continental monsoon climate, with an average annual
temperature of 5.3°C and precipitation of 536.4 mm. The study
area (126°46′-126°54′E, 44°52′-45°03′N) is located in the
northeastern part of Yushu City within the concentrated
distribution area of black soils (Figure 1), which is rich in natural
resources, fertile soils, and rich in nutrients (such as nitrogen,
phosphorus, potassium, and organic matter) to sustain and
nourish crops, with a total cropland area of about 17,000 ha. The

FIGURE 1
Map of the study area. The study area in Yushu City, Jilin Province, Northeast China and the soil types and sampling points distribution.
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soil types in the study area are diverse, mainly including black soil
(BS), albic soil (AS), and meadow soil (MS). Among them, BS and AS
account for more than 60% of the soil in the area. The study area is
mainly planted with corn and rice, which is an important commodity
grain production base in Northeast China.

2.2 Datasets

2.2.1 Soil sample collection and analysis
The soil samples were collected in late April 2022. At this time, the

area was in the ‘bare soil phase’without weeds and straw on the surface.
The soil sampling points were set up referencing Chinese soil
classification standards and combined with high-resolution remote
sensing imagery of the study area. Through field investigation, the
preset positions and collection route of sampling points were adjusted
according to the soil surface heterogeneity in the area, thus ensuring that
the sampling points were evenly distributed in the study area, and
502 soil samples were collected according to the sampling plan. To
eliminate the influence of mixed pixels at sampling points on
subsequent research, the spacing between sampling points with
surrounding objects exceeded 100 m. The locations of the sampling
points are shown in Figure 1. Soil samples were collected using the five-
point sampling method to avoid accidental factors affecting the soil
nutrient test results and to ensure the accuracy of the test. Firstly, a
square area (30 × 30 m) was established at the sampling points, then
200 g of soil with a depth of 20 cm was collected at five points (four
corner points and the center point), and the larger stones and debris
were removed from the samples, which were finally mixed
homogeneously and packed into sample bag. After sampling was
completed, the serial number of sample points was set according to
location and sampling sequence, and the global positioning system
(GPS) was used to record the spatial coordinates, acquisition time and
altitude of the center point. While soil samples were collected, the
thickness of the black soil layer at each of the five sample points was
measured and recorded by drilling and sampling method.

After sample collection, the soil samples were air-dried indoors,
and non-soil bodies such as stones, weed roots, and straw were
removed. Then, each soil sample was crushed with ceramic tools

and sieved using a 100-mesh sieve with a particle size of 0.15 mm. The
processed soil samples were divided into two parts for chemical
analysis and spectral reflectance measurement (Figure 2). In this
study, the spectral reflectance of soil samples was measured by an
ASD FieldSpec 4 spectrometer. In order to avoid the influence of light
sources and improve the measurement accuracy, sample
measurement was performed in the darkroom, and the average of
ten spectral reflectances was used as the measured spectral data of the
soil samples. The content of TN in soil samples was determined by the
semi-micro Kjeldahl method. The measuring process strictly follows
the specification of land quality geochemical assessment in China.

2.2.2 Remote sensing data acquisition
This study considers the synchronization of remote sensing

imagery generation time with ground testing. According to the
sampling time, the ZY1-02D satellite hyperspectral image generated
on 26 April 2022 was selected as the spectral data source. The data were
provided by the China Center for Resources Satellite Data and
Applications. The ZY1-02D satellite is the first civilian hyperspectral
operational satellite launched by the Ministry of Natural Resources of
China. It is equipped with a visible near-infrared camera for
simultaneous acquisition of panchromatic and multispectral data,
and a hyperspectral camera with hyperspectral data in 166 bands
(Yu et al., 2021). The visible and near-infrared (VNIR) has a
spectral resolution of 10 nm and 76 bands in the spectral range. The

FIGURE 2
Soil Sample Pretreatment. Indoor spectral measurement of soil samples and determination of TN content in soil samples.

TABLE 1 Parameters of the ZY1-02D AHSI sensor.

Specification Parameters

Spectral range (nm) 400–2,500

Channels 76 (VNIR), 90 (SWIR)

Spectral resolution (nm) 10 (VNIR), 20 (SWIR)

Swath width (km) 60

Spatial resolution (m) 30

Revisit cycle (d) 3

Lateral swing capacity (°) ±26
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short-wave infrared (SWIR) has a spectral resolution of 20 nm and
90 bands in the spectral range. In addition, the satellite can acquire high-
precision geometric and radiometric information while receiving
spectral information. It firstly achieves in-orbit yaw calibration of
hyperspectral loads, facilitating applications such as quantitative
inversion of crop nutrient content (Lu et al., 2021). Table 1 shows
the parameter information of the ZY1-02D AHSI sensor. The
topographic data used in this study are Digital Elevation Model
(DEM) data from the United States Geological Survey (https://glovis.
usgs.gov/) with a spatial resolution of 30 m.

2.3 Methods

To effectively estimate soil TN content in a wide range, three
different grouping strategies were proposed for local regression
estimation according to the differences in soil types, black soil layer
thickness, and slope gradient in the study area. Afterward, the optimal
grouping strategy was selected for estimating soil TN content. The
following steps are mainly involved in estimation: data acquisition and
processing, sample grouping and feature selection, TN content
estimation model construction, and spatial distribution mapping
(Figure 3). Firstly, the TN content in the soil samples was measured,
and the soil type and black soil layer thickness at sampling points were
statistically analyzed. Spectral curves and terrain parameters for each

sample were extracted by preprocessing hyperspectral images and
topographic data. Then, the spectral data were mathematically
transformed, and the sensitive bands of each transformed spectrum
for soil TN were screened based on the Pearson correlation coefficient
threshold. In this way, the optimal spectral transformation method was
determined. Furthermore, the local regression strategy for grouping soil
samples was determined, and CARS was employed to extract the
characteristic spectral bands of TN content for each group in
different grouping strategies. Finally, the soil TN content estimation
model was developed using the CatBoost algorithm, and the optimal
grouping strategy was selected to estimate the soil TN content and plot
the soil TN content distribution map.

2.3.1 Image data processing
Aiming at the fringe phenomenon is obvious in the SWIR band

data of the ZY1-02D hyperspectral camera, the “global de-stripe”
method was used to repair the fringe, and the bands with serious water
vapor interference and overlapping bands were eliminated. Finally,
400–1,341 nm, 1,459–1795 nm and 1963–2,470 nm were selected as
the spectral bands for this experiment, with a total of 145 spectral
channels. Based on the ENVI software platform, The ZY1-02D
hyperspectral image of the investigated area was subjected to
geometric correction, radiometric calibration and atmospheric
correction to reduce or eliminate image quality degradation due to
radiance distortion, atmospheric extinction and geometric distortion,

FIGURE 3
Workflow for soil TN content estimation.
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and to obtain original reflectance data (Li et al., 2022). Then, eight
different transformations were performed on the processed
hyperspectral images to reduce the errors caused by noise,
environment and other factors, and to enhance the spectral feature
information, to extract the sensitive spectral bands of soil TN more
accurately (Yumiti and Wang, 2022). These transformation methods
include First Derivative Reflectance (FDR), Continuum Removal
(CR), Logarithm Reflectance (log R), Recipro-cal logarithmic
Reflectance [log(1/R)], Second Derivative Reflectance (SDR),
Multiplicative Scatter Correction Reflectance (MSC-R), Standard
Normal Variable Reflectance (SNV-R) and Detrend Reflectance
(DT-R) (Gao et al., 2014; Chen et al., 2017).

After obtaining the DEM data from USGS, the DEM data of the
test area were processed to fill in missing data, remove noise points
and data smoothing, and the model was evaluated and calibrated
according to the measured elevation values of each sample point, to
ensure that the quality and accuracy of the DEM data meet the
experimental requirements. Then, six topographic parameters
including elevation, slope, aspect, longitudinal curvature (LC),
cross-sectional curvature (CC) and surface roughness (SR) were
extracted from the DEM data (Taghizadeh-Mehrjardi et al., 2014).

2.3.2 Competitive adaptive reweighted sampling
Hyperspectral data have many spectral bands and high

dimensions, and the obvious multicollinearity between adjacent
bands, which will affect the stability of the estimation model to
some extent. Therefore, extracting appropriate spectral feature
bands as input variables for model construction can effectively
reduce or eliminate problems such as low model accuracy and
slow speed caused by redundant bands. CARS is a feature
variable selection algorithm based on iterative statistical
information proposed by drawing on the “survival of the fittest”
rule of Darwin’s evolutionary theory (Li et al., 2009). The algorithm
selects the optimal set of variables by dynamically adjusting the
window width and threshold, ensuring continuity of effective
information. It has two stages of feature fast elimination and
feature selection, which can effectively reduce the computation
time and improve the prediction performance of the model
(Zhao et al., 2022). It works on the following principle: (1)
Monte Carlo iteration and competition are used to select
multiple subsets from multicomponent spectral data. (2) The key
wavelengths are selected by the key wavelengths are selected by
exponential attenuation function and adaptive reweighted sampling
(ARS). (3) Multiple rounds of cross-validation (CV) are used to
select the variable subset with the minimum root mean square error
validation (RMSEV) result (Zheng et al., 2012).

2.3.3 Categorical boosting
The CatBoost algorithm is an integrated learning predictive

model with few parameters, high accuracy and support for
categorical features that extensions and improvements on the
Gradient Boosting Decision Tree (GBDT) algorithm (Hancock
and Khoshgoftaar, 2020). Unlike the traditional GBDT algorithm,
the algorithm randomly sorts all samples and then calculates the
average labeled value for that sample, and the same category value
placed before the given category value (Wang WC. et al., 2022). In
addition, the algorithm improves Greedy Target-based Statistics by
adding prior distribution terms, which can effectively reduce the

noise caused by low-frequency categorical data. Suppose a
permutation is σ � (σ1, σ2,/, σn), it is substituted with:

Xσp,k �
∑p−1

j�1 Xσj,k � Xσp,k[ ] · Yσj + γ · p∑p−1
j�1 Xσj,k � Xσp,k[ ] + γ

where p is the added prior value and γ is the weight coefficient. The
mean of the data set labels is usually used as the a priori term for
regression tasks.

Compared with other ensemble learning algorithms, CatBoost
has the following characteristics: (1) It uses a combination of
category features, which enriches the feature dimensions by
exploiting the linkage between the features. (2) It uses sort
boosting to counteract the noisy points in the training set, thus
avoiding the bias of gradient estimation, and then solving the
problem of prediction bias, which leads to a significant increase
in the speed of model training speed and accuracy. (3) It uses
oblivious trees as the base model, which makes the model better able
to deal with the high-dimensional sparse data (Huang et al., 2019).
Table 2 shows the main parameters of the CatBoost algorithm and
the search range of Bayesian optimization.

2.4 Estimation accuracy indexes

To assess the stability and estimation performance of the model,
three statistical parameters are calculated as the accuracy evaluation
index of the model: coefficient of determination (R2), RMSE, and
residual predictive deviation (RPD). R2 represents the stability and
estimation ability of the estimation model, the value closer to 1, the
model is more stable and better fitting effect. The range of RPD
values can be categorized into three levels from small to large. When
the RPD <1.4, the model was unreliable; when the 1.4 < RPD <2, the
model was suitable for estimating soil TN content from
hyperspectral data; and when the RPD >2, the model provided
good quantitative estimation capability. The three parameter
equations are as follows:

R2 � 1 −∑n
i�1

Fi − Ai( )2/∑n
i�1

Fi − �F( )2
RMSE �

													∑n
i�1

Fi − Ai( )2/n√
RPD � Std/RMSE

where n represent the number of soil samples, and Fi is the observed
value of the samples, and Ai is the predicted value of the samples,
and �F is the mean of the observed values, and Std represent the
standard deviation.

3 Results

3.1 Soil TN content analysis and
sample grouping

This study statistically analyzed the TN content of the collected
soil samples, as shown in Table 3. The TN content of the sample set
in the experimental area ranged from 0.55 g/kg to 2.34 g/kg, with a
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mean value (Mean) of 1.31 g/kg and a coefficient of variation (CV)
of 20.61%. Among the different soil types in the study area, the
meadow soil had the highest TN content (mean = 1.42 g/kg), and the
albic soil had the lowest TN content (mean = 1.21 g/kg) and the
highest CV (CV = 24.79%). In addition, the CVs for all three soil
types were higher than those for the entire sample, indicating that
dividing the sample set by soil type increased the spatial variability of
sample TN content.

In order to explore the influence of terrain heterogeneity on the
estimation accuracy of TN content, the correlation between soil TN
content and several topographic factors (e.g., elevation, slope, and
aspect) was analyzed in this study. The topographic factor exhibiting
the highest correlation was selected as the partitioned data for local

regression. The Pearson correlation coefficients between soil TN
content and topographic factors are shown in Table 4. Because the
slope had the highest correlation with soil TN content among
different topographic factors, it was selected as the segmentation
data for local regression estimation. To clarify the variation in the
TN content distribution with different slopes and thicknesses of the
black soil layer, the soil samples were divided according to the slope
grade and the thickness of the soil black soil layer. The distribution
of the soil TN content was plotted, as shown in Figure 4. Most of the
study area has a slope of 0–3°. With increasing slope, the proportion
of samples with soil TN content of 0–1 g/kg increases, and the
proportion of samples with TN content of >1.5 g/kg decreases. In
Figure 4, 83.66% of the samples have a black soil layer thickness
between 0 cm and 60 cm. As the thickness of the black soil layer
increases, the proportion of samples with soil TN content
of >1.5 g/kg increases, and that of samples with soil TN content
between 0 and 1 g/kg and one–1.5 g/kg decreases to varying degrees.

To determine the optimal local regression strategy for estimating
soil TN content, all soil samples were grouped according to different
strategies. The grouping results of the three strategies are shown in
Table 5: (1) grouping by soil type (ST-G): All samples were classified
into three groups according to the soil subtypes of albic soil (AS),
meadow soil (MS), and black soil (BS); (2) grouping by the thickness
of black soil layer (BLT-G): According to the thickness of the black
soil layer, the number of sample sets, and the distribution range of
TN content, all soil samples were divided into three groups, namely,
BLT1 (0–30 cm), BLT2 (30–60 cm), and BLT3 (>60 cm); (3)
Grouping by slope grade (Slp-G): Based on the slope values of
the soil samples, the number of subsample sets, and the distribution
range of soil TN content, all samples were divided into three groups,
namely, Slp1 (0°–2°), Slp2 (2°–3°), and Slp3 (>3°).

TABLE 2 The main training parameters and range of the CatBoost
algorithm.

Parameters Search
range

Iterations (maximum number of trees) 100–600

learning_rate (learning rate) 0.01–1

depth (tree depth) 6–10

l2_leaf_reg (Coefficient at the L2 regularization term of the cost
function)

1–3

TABLE 3 Descriptive statistics of TN content in soil samples (Unit: g/kg).

Dataset Max Min Mean Std CV Samples

Whole 2.34 0.55 1.31 0.27 20.61 502

BS 2.03 0.58 1.32 0.3 22.73 168

AS 2.34 0.55 1.21 0.3 24.79 173

MS 2.3 0.57 1.42 0.33 23.24 161

TABLE 4 Pearson correlation between TN and topographic factors.

Elevation Slope Aspect LC CC SR

TN −0.405 −0.601 −0.142 −0.027 0.034 −0.018

FIGURE 4
Spatial distribution of TN content.
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3.2 Soil spectral characteristics analysis

To verify the feasibility of soil TN content estimation after
ZY1-02D hyperspectral image correction, the measured spectra
of 502 samples were resampled following the spectral resolution
of the hyperspectral image. The spectral curves of the resampled
spectra were compared with those of the image pixels (Figure 5).
It can be seen that the spectral reflectances of the image pixels are
lower than the measured soil spectral reflectances, which can be
attributed to factors such as soil water content and soil surface
roughness. However, the spectral curves of the image pixels and

the measured spectral curves have similar characteristic
absorption positions, and the shapes and trends of the two
curves are highly consistent, validating the reliability of
preprocessing, such as radiometric calibration and
atmospheric correction. A high correlation can be observed
with the correlation coefficients ranging from 0.6 to 0.84 for
the entire band, indicating that most of the soil spectral features
are retained in the image pixels. These features can be used to
estimate soil components and physicochemical information. In
addition, the measured spectra and image pixel spectra of all
samples were classified into five groups according to the TN

TABLE 5 Analysis of grouping results.

Factors Group 1 Group 3 Group 3

Soil type Group BS AS MS

Sampling points 168 173 161

Thickness of the black soil layer Group (cm) 0–30 30–60 >60

Sampling points 212 208 82

Slope Group (°) 0–2 2–3 >3

Sampling points 228 197 77

FIGURE 5
Image and measured soil spectrum, and correlation coefficients.
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content from low to high. The spectral data and the
corresponding content data of each group were averaged for
comparison and analysis, as shown in Figure 5. In the wavelength
range of 400–2,500 nm, the spectral reflectance decreases with
increasing soil TN content, and the patterns of the image pixel
spectra and the measured spectra with the soil TN content are
generally consistent, further proving the feasibility of using the
ZY1-02D hyperspectral image for soil TN content estimation.

With the aim of reducing the interference of other factors
(e.g., noise and environment) and enhancing the spectral feature
information for more accurate identification of the sensitive
bands of soil TN, eight different transformations were applied
to the raw reflectance data, including FDR, CR, log R, log(1/R),
SDR, MSC-R, SNV-R, and DT-R transformations. As shown in
Figure 6, the reflectance and absorption characteristics of the
spectral curves are substantially increased with more peak and

FIGURE 6
Transformation spectral reflectance curves.

FIGURE 7
Correlation between soil TN content and the spectral reflectance of each band.
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trough information after spectral transformation, and more
sensitive spectral bands can be identified.

3.3 Correlation analysis and spectral
feature selection

To determine the optimal spectral transformation method for
estimating TN content, this study was based on three sample
grouping strategies, and the original spectral reflectance and
eight transformed spectral reflectances of each soil sample
group were correlated with their TN content. Figure 7 reveals
a negative correlation between OR and soil TN content in the
wavelength range of 400–2,500 nm. In most wavelength ranges,
the soil TN content exhibits a markedly higher correlation
coefficient with the transformed spectral reflectance than with
the original reflectance. The bands with an absolute correlation
coefficient greater than 0.5 were selected as the sensitive bands,
and the number of sensitive bands of each group of soil samples
under different transformation methods was counted. As shown
in Table 6, there are significant differences in the number of TN
sensitive bands in each sample group under different
transformation methods, and the number of sensitive bands
after FDR and CR transformation increases significantly.
Among them, the number of sensitive bands in the FDR
spectra is the highest, except for the “BLT1 (0–30 cm)”
group. Based on the above results, the first derivative method
was selected to transform the soil spectral characteristics.

To obtain the set of spectral feature variables with minimum
redundancy information and to improve the efficiency and
accuracy of the estimation model, the CARS algorithm was
applied to choose the best spectrum variables of the sample
set. In the CARS feature selection process, the number of
Monte Carlo iterations was set to 50. After multiple iterations,
the cross-validation RMSE (RMSECV) values of each band
combination scheme were compared, and the variable set
corresponding to the minimum RMSECV value was selected
as the optimal variable set for the model. Figure 8 shows the
optimal variable set plots for each sample set divided according to
different factors. By analyzing the optimal number of variables in
all sample sets, the number of bands selected accounts for 11%–

15% of the total number of bands, significantly reducing
redundant information. Furthermore, most of the
characteristic wavelengths selected using the whole sample as
input data are concentrated in the range of 550–850 nm. After
grouping the samples according to different factors, each
grouping strategy corresponded to a wider distribution of
characteristic wavelengths, with the ST-G strategy
corresponding to the widest distribution of characteristic
wavelengths. Combining the optimal results of the whole
sample and each sub-sample, the characteristic wavelengths
were mainly concentrated in the ranges of 450–850 nm,
1950–2,150 nm, and 2,400–2,450 nm, with a relative
concentration in the range of 550–850 nm. Figure 9 shows the
CARS variable selection process with the ST-G strategy (BS, AS,
and MS), and the variable set with the lowest RMSECV value is
marked by a vertical line. The 1st-22nd iterations are the rough
selection phase of the CARS selection feature, and the
wavelengths containing noise and useless information are
quickly eliminated. As the number of iterations increases, the
number of variables decreases exponentially. The 23rd to 50th
iterations are the accurate selection stage of the CARS selection
features. Starting from the 22nd iteration, the RMSECV of the
three sample sets gradually reaches the lowest value and then
increases, which can be attributed to the elimination of key bands
sensitive to TN, resulting in lower model accuracy. After the 44th
iteration, the RMSECV values gradually stabilized. The RMSECV
values for BS, AS, and MS reach their minimum at the 22nd, 23rd,
and 25th iterations, with 21, 19, and 17 retained wavelengths,
respectively.

3.4 Accuracy of TN content estimation
based on different soil grouping strategies

To clarify the influence of local regression according to different
grouping strategies on the accuracy of TN content estimation, the
CatBoost algorithm was used to perform local regression estimation
on ST-G, BLT-G, and Slp-G strategies. The global regression
estimation was also conducted based on the full sample (U-G
strategy). The FDR data selected by CARS were used as the
independent variable Xi, and the corresponding soil TN content

TABLE 6 Number of sensitive bands of different spectral transformation methods.

Groups BS As MS BLT1 BLT2 BLT3 Slp1 Slp2 Slp3

OR 27 13 10 0 9 4 0 0 0

FDR 43 53 46 28 49 36 44 38 31

CR 41 6 29 29 11 25 26 26 26

LogR 38 13 1 21 23 19 10 1 2

Log (1/R) 38 20 1 21 23 19 10 1 2

SDR 2 0 0 0 0 0 0 0 3

MSC-R 18 21 14 1 6 17 15 10 5

SNV-R 13 12 16 9 11 16 17 14 7

DT-R 9 5 7 0 0 6 5 12 0
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data were used as the dependent variable Yi. The number of samples
was randomly divided into the training group (for model
establishment and parameter optimization) and the verification
group (for accuracy evaluation) in a ratio of 3:1. Table 7 shows

the accuracy of regression estimation with different grouping
strategies, the local regression model constructed according to the
ST-G strategy shows the highest estimation accuracy (R2

p = 0.839,
RMSEp = 0.238), the BLT-G strategy shows the second highest (R2

p =

FIGURE 8
Optimal variable set graph (Horizontal coordinates indicate wavelengths from 400–2,500 nm, and vertical coordinates indicate different groups
based on the ST-G, Slp-G, and BLT-G strategies).

FIGURE 9
Variable selecting process with CARS (taking BS, AS, and MS as examples).
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0.821, RMSEp = 0.270), and the U-G strategy shows the lowest
estimation accuracy (R2

p = 0.748, RMSEp = 0.402). The estimation
accuracy of local regression according to the grouping strategy is
higher than that of the global regression, indicating a better
performance of the local regression in estimating TN content.

To verify the effectiveness of local regression in improving the
estimation accuracy, this study further analyzed the estimation
accuracy of each subgroup based on the CatBoost algorithm, as
shown in Figure 10. Estimation accuracies for samples divided
according to soil environment differences are higher than those
for the whole sample. When adopting the BLT-G and Slp-G
strategies for regression estimation, a large difference in
estimation accuracy between groups can be observed, and the
estimation results easily fall into the local optimum. The
difference in estimation accuracy between groups classified with
the ST-G strategy is the smallest, and the R2

p of each group is greater
than 0.8, indicating a higher stability of the local regression
estimation model established using soil type as segmentation data.

3.5 Optimal local regression strategy for TN
content mapping

To improve the accuracy of TN content estimation andmapping
in the study area, the ZY1-02D satellite remote sensing image was
used as the data source, the training samples were determined by the
region of interest, and the SVM algorithm was used to supervise the
classification of hyperspectral images and extract farmland pixels.
Figure 11A shows the selection results of the farmland pixels, with
approximately 83% of the study area being farmland, the selected
farmland soil ranges have clear boundaries with non-farmland
pixels (e.g., roads and construction land) and relatively intact
patches. It can be seen from Table 7 and Figure 10 that the local
regression estimation model constructed according to the ST-G
strategy has high estimation accuracy and stability. Therefore, we
divided the farmland pixels in the experimental area into three sub-
regions according to different soil types, and the TN content of the
three sub-regions was mapped using the CatBoost algorithm, and
the spatial distribution map of soil TN content in the whole study
area was obtained by mosaic and merging. As shown in Figure 11B,
the TN content of the cultivated soils in the study area is generally
high, mainly concentrated in the range of 1.0–2.0 g/kg. The soil area
in the range of 1.0–1.5 g/kg accounts for 37.49% of the farmland area
(Figure 11C). The soil area in the range of 1.5–2.0 g/kg accounts for
the largest proportion (57.75% of the farmland area) and is evenly
distributed throughout the study area (Figure 11D). The spatial
distribution of soil TN content was characterized by obvious
clustering, with the distribution of high- and low-value areas

TABLE 7 Estimation accuracy index of different grouping strategies.

Strategies R2
c RMSEc R2

p RMSEp RPD

U-G 0.825 0.279 0.748 0.402 1.998

ST-G 0.921 0.126 0.839 0.238 2.500

BLT-G 0.903 0.157 0.821 0.270 2.372

Slp-G 0.898 0.168 0.814 0.283 2.326

FIGURE 10
Accuracy of TN content estimation for each subgroup under different grouping strategies.
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relatively concentrated. The high-value areas are zonally distributed
in the eastern part of the study area (Figure 11E), which is due to the
paddy field in this part, where the long-term application of nitrogen
fertilizer and irrigation results in high humus content, allowing for
the transformation and accumulation of nitrogen in the soil. The
low-value areas are mainly distributed in the southern part of the
study area (Figure 11B), where the undulating topography leads to
soil erosion and lower nitrogen retention. Compared with the high
spatial resolution image maps for the study area, we can observe that
the estimation result of soil TN content has a high coincidence with
the current status of farmland cultivation in the study area,
demonstrating the reliability of the local regression estimation
model based on the ST-G strategy and Cat Boost algorithm.

4 Discussion

4.1 Estimation accuracy of different soil
grouping strategies and advantage of
CatBoost algorithm in local regression
estimation

To clarify the degree of accuracy improvement in the TN content
estimation by local regression according to different grouping strategies

and to verify the superiority of the CatBoost algorithm for local
regression estimation, a comparative analysis was conducted using
different algorithms and grouping strategies. The scatter plots of
estimated and measured TN content with different grouping
strategies and estimation algorithms are shown in Figure 12. For the
CatBoost algorithm, the ST-G strategy has the best fitting effect and the
highest estimation accuracy, followed by the BLT-G strategy. The R2

p of
the ST-G strategy is 0.091 higher than that of the U-G strategy. For the
RF algorithm, the ST-G strategy also has the highest estimation
accuracy, with R2

p being 0.083 higher than that of the U-G strategy.
However, when using the GBRT algorithm, the estimation accuracy of
the ST-G strategy is lower than that of the BLT-G strategy. This
difference is due to the large bias of the GBRT algorithm in
estimating high and low TN content and the large overestimation
ratio of the ST-G strategy. Nevertheless, the R2

p of the ST-G strategy is
still 0.061 higher than that of the U-G strategy. The comparison of the
regression estimation performances shows that the CatBoost algorithm
outperforms the RF and GBRT algorithms in fitting effect and
estimation accuracy. This result is consistent with the study on the
estimation of TN content in farmland soils by Wang WC. et al. (2022).
In addition, when performing local regression estimation with different
grouping strategies, the local regression estimation model constructed
by the CatBoost algorithm shows higher accuracy improvement than
that developed with the RF and GBRT algorithms. The possible reason

FIGURE 11
Mapping of soil TN content for the study area. (A) Farmland pixel extraction results, (B–E) Spatial distribution of TN content.
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is that the CatBoost algorithm replaces the gradient estimation method
in the traditional algorithm by sorting and lifting, sequentially
optimizing the loss function and providing strong robustness and
generalization ability (Hancock and Khoshgoftaar, 2020). In
summary, local regression according to the grouping strategies has

improved estimation accuracy when adopting three different estimation
algorithms, indicating that dividing the sample set according to the
differences in soil environment can improve the accuracy of large-scale
global regression. This finding is similar to the conclusions of previous
studies (Zhang et al., 2010; Jia et al., 2017).

FIGURE 12
Scatter plots of the estimated and measured TN content with different grouping strategies and estimation models.
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4.2 Distribution of TN characteristic bands

In this study, eight transformation methods (e.g., FDR, CR,
and SNV-R) were used to spectrally transform the original
spectrum, and the distribution of TN characteristic bands was
determined by the correlation between each transformed
spectrum and soil TN content (Figure 7). The characteristic
bands of the CR transform are mainly distributed around
700–850 nm, 1700 nm, and 2,400 nm, and those of the FDR
transform are mainly distributed in ranges of 450–850 nm,
1,650–1750 nm, and 1950–2,150 nm. Furthermore, the MSC-R
transform and SNV-R transform show a similar distribution of
the characteristic bands near 500 nm. The above results are
consistent with previous findings (Shen et al., 2020; Vibhute
et al., 2020; Liu et al., 2023; Zhang RR. et al., 2023). However, not
all spectral transformations produce results superior to the
original reflectance (Xie et al., 2022). The SDR transform has
few characteristic band distributions over the full band range. In
this study, the subset of samples for local regression estimation
was divided according to differences in soil type, slope, and
thickness of the black soil layer. The TN content data and
FDR spectral reflectance data of different sample sets were
used as input data, and the characteristic bands of each
sample set were selected by CARS. According to the results of
CARS feature selection (Figure 8), the TN characteristic bands
selected using the whole sample as input data were mainly
distributed in the rages of 550–650 nm and 750–850 nm, and
some selected wavelengths are consistent with the previous
studies (Kawamura et al., 2017; Shen et al., 2020).

When the samples were divided based on different
environmental factors for local regression estimation, some
differences appeared in the characteristic bands corresponding
to the sample sets with different data characteristics. Therefore,
to clarify the distribution of TN characteristic bands
corresponding to the sample subset, the correlation between
the soil TN content and the FDR data was examined in this
study, and the spectral bands with the absolute Pearson
correlation coefficient greater than 0.5 were used as the
characteristic bands. The TN characteristic bands of different
sample sets are shown in Figure 13. It can be seen that
characteristic bands based on the whole sample are mainly
distributed in the range of 450–850 nm. After dividing samples
according to different grouping strategies, the number and
distribution range of the characteristic bands are more
abundant. When using the ST-G strategy, characteristic bands
show wider distribution ranges, mainly in 450–850 nm,
1,600–1750 nm, and 1950–2,150 nm. When using the Slp-G
strategy, the number of characteristic bands of three sample
sets increases (the added characteristic bands are mainly
distributed in the range of 1950–2,150 nm and
2,300–2,450 nm). After grouping with the BLT-G strategy, the
variation of the soil TN characteristic bands is more significant,
with increasing characteristic spectral bands in the ranges of
1,600–1750 nm and 1950–2,450 nm as the thickness increases.
Therefore, more abundant spectral information can be obtained
for the data characteristics of various sample sets after dividing
samples with different strategies. It is the key reason for the
improved accuracy of local regression estimation.

4.3 Uncertainty analysis of soil TN content
estimation and mapping using
hyperspectral images

When mapping the distribution of soil TN content based on
hyperspectral images, the accuracy of estimation and mapping is
influenced by potential factors such as the imaging endmember
spectra, the laboratory measurement process, and geographic
environmental differences. During hyperspectral image acquisition,
differences in radiation intensity and meteorological conditions can
result in different endmember spectral reflections, thus affecting the
accuracy of estimation and mapping (Li XP. et al., 2019). In this study,
we ensure that the sampling time of the soil samples is consistent with
the satellite detection time, the sampling points are within the pure bare
soil pixels, and strict image preprocessing is performed to reduce the
influence of spectral information. In addition, the soil samples used in
this study were measured under the same environments, and the
influence of the laboratory measurement process can be ignored. The
difference in geographical environment will alter the soil nitrogen
content and its distribution to different degrees, thus affecting the
accuracy of TN content estimation (Zhong et al., 2019; Wang et al.,
2021; Dai et al., 2022). Aiming at the influence of soil environmental
factors on the estimation accuracy, a local regression estimation model
based on sample grouping was established, which weakens the
differences in soil TN content among regions, thus reducing the
influence of soil environmental heterogeneity on model training and
estimation, and effectively improving the estimation accuracy of soil
TN content.

Because soils exist in relatively complex environments over long
periods, the distribution of soil nitrogen is influenced by the coupling
of various soil environmental factors such as slope, elevation, and the
thickness of the black soil layer. Restricted by the number of sampling
points and the sample distribution density, this study establishes a
local regression model to estimate soil TN content based on the
difference of a single environmental factor, which has the problems of
low inversion accuracy and poor transferability. Sample splitting by
considering multiple factors at the same time can result in an
insufficient number of samples, abruptly increasing the modeling
difficulty and even reducing the estimation accuracy of soil TN
content. Therefore, future research will attempt to increase the
sampling density, supplement sample sets, introduce more soil
environmental information, and thoroughly analyze the
relationship between multiple soil environmental factors and soil
nitrogen distribution, and establish a soil TN content estimation
model that considers the heterogeneity of multiple environmental
factors. Through these attempts, the accuracy and transferability of
the estimation model will be strengthened, thus facilitating the rapid
and large-scale estimation of soil TN content.

5 Conclusion

When hyperspectral remote sensing images are used to construct a
model for estimating soil TN content, the accuracy of the model is
influenced by image quality and sample characteristics. In this study,
based on ZY1-02D hyperspectral remote sensing image and soil
environmental data, we constructed a local regression estimation
model of nitrogen content taking into account the heterogeneity of
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soil environment, which effectively improved the accuracy and stability
of the soil TN content estimationmodel. After analyzing the correlation
between soil TN content and environmental parameters, three strategies
for grouping soil samples were established by dividing the samples
according to differences in soil types, thicknesses of the black soil layer,
and slope grade, which effectively highlight the characteristic
information of each sample subset, weaken the influence of soil TN
content difference between regions on the accuracy of the estimation
model, and reduce the possibility that the accuracy of the estimation
model falling into the local optimum due to soil environmental
heterogeneity. In the study, the optimal wavelength variables for
local regression according to the data characteristics of each sample
subset, which enrich the spectral feature information of the modeled
samples, and effectively solve the problems of poor generalization ability
and poor robustness faced by the traditional global regression
estimation model. By comparing the accuracy indices of each
estimation model, the estimation performance of the local regression
model constructed according to the ST-G strategy and the CatBoost
algorithm is better than that of the global regression model and other
local regression models, with a validation set RMSE of 0.238 and R2 of
0.839. Based on the model estimation results, the distribution of the TN
content in the study area has been successfully plotted. This work
provides a new research paradigm for the accurate estimation and
mapping of soil component content in large regions.
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