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Net ecosystem productivity (NEP) is a crucial parameter for assessing the carbon
cycle dynamics in terrestrial ecosystems. This study analyzed the spatial and
temporal evolution characteristics and future trends of NEP in Henan Province
over the past 20 years based on MOD17A3HGF, meteorological, and land-use
data, employing the frequency counting method, trend test, Hurst index, and the
center of gravity model. Various areas of changes in vegetation carbon
sequestration were explored, and the driving factors were quantitatively
assessed through correlation analysis, Sankey diagrams, and Geodetector. The
results demonstrate that: 1) Continuous temporal changes in NEP in Henan, with
annual average values fluctuating between 272.84 and 451.39 gC·m-2·a1,
exhibiting an overall upward trend. 2) Spatially, there is a distinct distribution
of NEP, concentrating more in the south and less in the north. While the study
area generally experiences a dominant gradual enhancement of vegetation
carbon sequestration capacity, the middle and north of Zhengzhou City
exhibit a significant decline, which is expected to persist in the future. The
migration of the centers of gravity of NEP over the past 20 years is
characterized by stage-specific differentiation. 3) Among the various land
cover types, forests have the strongest carbon sequestration capacity;
however, cropland emerges as the province’s main source of NEP due to its
extensive size. 4) The driving factors for spatial differentiation in NEP exhibit some
temporal variability. Overall, climate factors and atmospheric pollution exert
stronger influences, with the interactive explanatory power of the two-factor
interaction being higher than that of the single factor. The results of this study can
serve as a scientific theoretical basis for ecological policy-making and sustainable
development in Henan Province.
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1 Introduction

Vegetation is a vital component of terrestrial ecosystems and
plays a crucial role inmitigating climate warming (Arora, 2002; Peng
J. et al., 2023; Ma et al., 2023). Net ecosystem productivity (NEP)
refers to the net accumulation of organic matter by vegetation
through photosynthesis, subtracting the portion consumed by
autotrophic and heterotrophic respiration. NEP can directly
reflect the carbon sequestration capacity of vegetation (Malhi
et al., 2021; Wang et al., 2021). Terrestrial ecosystems function as
carbon sinks when NEP is positive, transforming into carbon
sources when NEP is negative (Cao et al., 2022). Exploring the
spatial and temporal evolution of NEP and its driving mechanisms is
essential for effective natural resource management, environmental
protection, ecological restoration initiatives, and the
implementation of the “dual-carbon” strategic goal. In recent
years, this field of study has emerged as an important focal point
for both domestic and international research on the terrestrial
carbon cycle.

Scholars globally have carried out numerous studies on the NEP,
mainly focusing on the NEP estimation models (Loescher et al.,
2003), spatial and temporal distributions (Aubinet et al., 2018),
predictions of future changes (Lue et al., 2023), analysis of
influencing factors (Harenda et al., 2021; Liu K. et al., 2023), and
carbon sequestration capacities of individual terrestrial ecosystems
(Peng R. et al., 2023; Zhu et al., 2023). The scope of these studies
focuses on cross-boundary (Zhang et al., 2021), national (Nayak
et al., 2015; Zhang et al., 2020), provincial (municipal/county)
administrative units (Zhang et al., 2015), ecological functional
subregions, and watersheds (Zhou et al., 2023). The early NEP
estimation methods, relying heavily on the survey method, were
unsuitable for long-term, large-scale studies due to high sampling
costs, discontinuous observation data, and limited coverage (Liu D.
et al., 2023). Currently, simulations to estimate NEP mainly utilize
statistical models, light energy utilization models, and ecological
process models (Piao et al., 2022).

In terms of the distribution of carbon sinks/sources, the spatial
pattern of NEP exhibits significant regional variability. In China,
areas where vegetation acts as a carbon source are mainly
concentrated in regions facing ecological challenges such as
sandification, salinization, and rocky desertification, exemplified
by Tibet (Wu D. et al., 2022), Qinghai (Liu et al., 2021), western
Jilin, and the northern part of the Shiyang River Basin. In terms of
influencing factors, the current research focuses mainly on exploring
the influence of climate and topographic factors on NEP. These
studies have found distinct regional variability in the response
factors affecting spatial and temporal changes in NEP. For
example, precipitation emerges as the dominant factor in Jiangsu
Province, Loess Plateau, and Yellow River Basin (Cao et al., 2022). In
Anhui Province, precipitation shows a weak correlation, with leaf
area index and CO2 being the main influencing factors (Hua et al.,
2023). In the Bailongjiang Basin of Gansu Province, topographic
factors exert a substantial influence, with shady slopes exhibiting a
stronger carbon sink capacity than sunny slopes (Gong et al., 2017).
Across various terrestrial ecosystems, forests have been found to
demonstrate a more pronounced carbon sequestration capacity of
forests (Yang et al., 2022). Spatial and temporal distribution patterns
of NEP are diverse, influenced by the distinct geographic and

climatic conditions of each study area. The dominant factors
driving these changes vary, highlighting the importance of
considering regional characteristics to accurately assess carbon
sequestration capacity. This is crucial for crafting effective
ecological policies and environmental protection initiatives
tailored to local conditions, emphasizing the need for further in-
depth research.

Located in the middle and lower reaches of the Yellow River,
Henan Province is an important food production base, an ecological
security barrier, and a densely populated province. It ranks second in
carbon emissions among the central and eastern regions of China
(Wang C. et al., 2022; Wei et al., 2023). Dominated by cropland and
possessing limited forest resources, Henan Province faces significant
ecological and environmental pressures with climate change and
accelerated urbanization (Fan et al., 2023; Yang et al., 2023).
Mapping the vegetation carbon sequestration capacity in Henan
Province is pivotal for ecosystem balance, regional resource
planning, food production security, and the high-quality
development of the Yellow River Basin. The few existing studies
on vegetation carbon sequestration in Henan Province have mostly
focused on vegetation cover (Li et al., 2015) and vegetation primary
productivity analysis (Liu et al., 2021), with limited exploration of
the change in net ecosystem productivity of vegetation. These
studies largely overlook the influence of atmospheric pollution on
vegetation carbon sequestration.

Given these research gaps, this study employs NEP as an
indicator and adopts the center of gravity model, Hurst index,
and Geodetector to comprehensively assess the spatial and
temporal evolution characteristics of vegetation carbon
sequestration capacity in Henan Province from 2001 to 2020.
The primary objectives of this study include identifying various
influencing factors, exploring key areas of change, and predicting
future trends. The findings can provide scientific data supporting the
formulation of resource utilization policies, ecosystem protection
measures, and the implementation of the “dual-carbon” policy in
the region.

2 Study area and data

2.1 Study area

Henan Province (31°23′-36°22′E, 110°21′-116°39′N) spans four
major river basins: the Yellow River, the Hai River, the Huai River,
and the Yangtze River. Covering a total area of 1,65,700 square
kilometers, the province comprises 18 prefectural-level
municipalities, including Zhengzhou, Kaifeng, and
Luoyang (Figure 1).

Henan Province is situated in the transitional zone from the
second ladder to the third ladder in China. The province is
surrounded by mountains in the north, west, and south, with
plains in the central and eastern regions, forming a distinct
geomorphological pattern known as “three mountains and one
plain,” where the west is elevated while the east is relatively low.
The temperature increases from the west to the southeast, ranging
between 5.8°C and 16.9°C. Annual precipitation follows a pattern of
increasing values from the northeast to the southwest, varying from
around 559 to 1,479 mm. Henan experiences a transition from a
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northern subtropical to a warm temperate continental monsoon
climate, featuring four distinct seasons, simultaneous rain and
warmth, and susceptibility to complex, varied, and frequent
meteorological disasters (Liu and Zeng, 2021).

2.2 Data sources and preprocessing

2.2.1 Net primary productivity
The NPP employed in this study is derived from the

MOD17A3HGF dataset, estimated using the light energy
utilization model (https://ladsweb.modaps.eosdis.nasa.gov/).
Compared to the previous version of the MOD17 product, this
dataset clears the 8-day synthetic LAI/FPRA quality difference,
offers higher accuracy, and has a spatial resolution of 500 m ×
500 m. To generate the NPP data of Henan Province for 2001–2020,
the dataset underwent preprocessing operations, including splicing,
projection, and cropping, which were executed using the Modis
Reprojection Tool (MRT) and ArcGIS.

2.2.2 Meteorological
Meteorological data were obtained from the National Earth

System Science Data Center (http://www.geodata.cn),
encompassing month-by-month mean temperature and month-
by-month mean precipitation at a spatial resolution of 1 km ×
1 km. This dataset was utilized in the analysis of soil heterotrophic

respiration, NEP estimation, and the exploration of driving factors
within the study area.

2.2.3 Land use/cover
The land use/cover data used in this study were obtained from

the annual China Land Cover Dataset (CLCD) with a spatial
resolution of 30 m × 30 m. This dataset, published by Huang L.
et al. from Wuhan University, is generated based on all the
Landsat data from the Google Earth Engine platform and is
produced by combining the Random Forest, spatiotemporal
filtering, and logistic inference methods with an overall
accuracy of 80%. Extracted using ArcGIS cropping techniques,
the land use/cover data were categorized into the following
classes: cropland, forest land, shrubs, grassland, watershed,
unutilized land, and construction land.

2.2.4 Other thematic data
Population density data and GDP data used in this study were

acquired from Word Pop (https://hub.worldpop.org/) and the
Center for Resource and Environmental Science and Data of the
Chinese Academy of Sciences (https://www.resdc.cn/), respectively.
Both datasets are presented in a grid format with a spatial resolution
of 1 km × 1 km. The topographic elevation data were obtained from
the ASTERDEMv3 dataset released by the National Center for Earth
System Science Data (http://www.geodata.cn) with a spatial
resolution of 30 m × 30 m.

FIGURE 1
Overview of the study area.
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The above data sources are not uniform, and there are some
differences in the format. Therefore, all datasets are harmonized to
the WGS84 UTM projection, and the spatial resolution is resampled
to 1 km × 1 km.

2.3 Methodology

2.3.1 NEP estimation modeling
NEP is an important metric for ecosystem carbon balance,

reflecting the carbon cycling dynamics between terrestrial ecosystems
and the atmosphere. When not accounting for the influence of other
factors, NEP can be defined as the difference between the net vegetation
productivity NPP and soil heterotrophic respiration RH (Noormets
et al., 2021). The detailed calculation is as Eq. 1.

NEP � NPP − RH (1)
RH was estimated using the empirical model developed by Pei

Pei et al. (2010) by the Formula 2.

RH � 0.22 × EXP 0.0913 × T( ) + ln 0.3145 × P + 1( )[ ] × 30 × 46.5%

(2)
where T is the mean annual temperature (°C) and P is the annual
precipitation (mm).

2.3.2 Trend analysis
The Theil-Sen Median (Sen) is a nonparametric statistical trend

calculation method that is not sensitive to measurement error
(Yilmaz and Tosunoglu, 2019). Similarly, the Mann-Kendall
(MK) method is a nonparametric statistical test used for trend
analysis; this method does not require measurements to be
normally distributed and is not affected by missing values and
outliers (Agbo et al., 2023). These two methods have been widely
used for trend analysis and trend significance testing of long-time
series data in hydrology and meteorology.

In this study, the Sen and MK methods are employed to explore
the trend of NEP change in Henan Province from 2001 to 2020 at the
image metric scale. The formula for calculating the trend test factor
(β) is expressed as the Eq. 3.

β � median
NEPj −NEPi

j − i
( ), 1< i< j< n (3)

where median () denotes the median function; i, j represent the
indices for the time series. The trend is interpreted based on the
value of β. If β is greater than zero, it suggests an increasing trend in
NEP. Conversely, if β is less than zero, it indicates a decreasing trend.
The significance of βwas further tested by theMKmethod, using the
test statistic S calculated using the Formula 4.

S � ∑n−1
i�1 ∑n

j�i+1sgn NPPj −NPPi( ) (4)

Of these,

sgn NPPj −NPPi( ) � 1, NPPj −NPPi > 0
0, NPPj −NPPi � 0
−1, NPPj −NPPi < 0

⎧⎪⎨⎪⎩ (5)

where sgn () in the Eq. 5 is the sign function, the standardized test
statistic Z is calculated by the Formula 6.

Z �

S − 1�����������������
n n − 1( ) 2n + 5( )/18√ , S> 0

0, S � 0

S + 1�����������������
n n − 1( ) 2n + 5( )/18√ , S< 0

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(6)

|Z|≥1.65,1.96,2.58 indicates that the trend passes the significance
test with 90%, 95%, and 99% confidence levels, and the trend is
characterized as highly significant change, significant change, and
minimally significant change, respectively.

2.3.3 Analysis of correlation
Pearson correlation analysis was used to explore the correlation

between NEP and precipitation, as well as air temperature. The
correlation coefficient (rxy) is expressed as the Formula 7.

rxy � ∑n
i�1 xi − �x( ) yi − �y( )[ ]����������������������∑n

i�1 xi − �x( )2∑n
i�1 yi − �y( )2√ (7)

where t is the total number of time series; xi, yi are the annual mean
values of NEP and precipitation (air temperature) in year i; , are the
multi-year mean values of the corresponding variables.

2.3.4 Center of gravity
In physics, the center of gravity refers to the geographic location

representing the point of equilibrium of forces acting on an object. If
the mass of the object is uniformly distributed, the point of
equilibrium coincides with its geometric center; otherwise, it
deviates from the geometric center (Peng Y. et al., 2023). In this
study, the concept of the center of gravity is introduced, and the NEP
of each image element is considered its quality factor. The spatial
distribution of NEP in Henan Province is quantitatively in terms of
aggregation and balance, along with its spatio-temporal evolution
characteristics. This is achieved by analyzing the long time series of
the center of gravity migration, using the Formula 8:

ui, vi( ) � ∑n
j�1wijuij∑n
j�1wij

,
∑n

j�1wijvij∑n
j�1wij

⎛⎝ ⎞⎠ (8)

where �ui, �vi are the longitude and latitude of the center of gravity of
the NEP in year i;wij, uij and vij are the NEP value, the longitude, and
the latitude of image element j in year i, respectively.

2.3.5 Hurst index
In this study, the Hurst index was estimated using the rescaled

polarity R/S (Rescaled Range) method (Tong et al., 2018) to analyze
the future trend of vegetation carbon sequestration capacity in
Henan Province. The time series n was homogenized into m
intervals of length l. The mean value of NEP for subinterval Iα
(1<α<m) can be expressed as 9.

NEPα � 1
l
∑l

k�1NEPk,α (9)

The cumulative deviation is calculated by the Formula 10.

Xk,α � ∑k

i�1 NEPi −NEPα( ) k � 1, 2/, l( ) (10)

The extreme difference is calculated by the Formula 11.
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Rα � max Xk,α( ) − min Xk,α( ) (11)

The standard deviation is calculated by the Formula 12.

Sα �
��������������������∑l

k�1 NEPk,α −NEPα( )2
l

√
(12)

The re-labeling polarities are calculated by the Formula 13.

R /

S( )v � 1
u
∑u

α�1
Rα

Sα
(13)

The following relationship exists for R, S, and l as 14

R /

S( )l � CplH (14)

In the formula, H is the Hurst index, with the value ranging
from 0 to 1. When 0.5 < H < 1, the future trend of NEP is
consistent with the past, indicating positive persistence. When
0 < H < 0.5, the future trend of NEP is opposite to the past,
signifying anti-sustainability. The closer H is to 0 (or 1), the
stronger the anti-sustainability (or persistence). Taking “log” v as
the independent variable and “log” (R/S)v as the dependent
variable, the least squares method can be used to obtain the H
value, given by the expression as the Formula 15.

log R /

S( )l � logC +Hplogl (15)

2.3.6 Geodetector
Geodetector is a scientific statistical method capable of detecting

the spatial divergence of multiple data types, including type, order,
ratio quantities, and their factorial explanatory power. It is
particularly effective in identifying factorial interactions (Yang
et al., 2019). Traditional geodetector results are often reliant on
the discretization of continuous variables set by humans. However,
in this paper, a parameter-optimal geodetector was employed to
assess the explanatory power of factors such as precipitation and
temperature on NEP (Wang et al., 2023). The R language GD
package was used to obtain the factor detection results under
different classification methods and parameters. The q value
under the optimal parameter combination can be automatically
filtered out using the Formula 16.

q � 1 − ∑l
t�1Ntσ2t
Nσ2

(16)

where l is the total number of categories of NEP variables or factors
(e.g., precipitation and temperature); Nt and N are the number of
cells in category t and the whole study area, respectively, and σ2

t and
σ2 are the variance of NEP in the corresponding area.

3 Results analysis

3.1 Spatial and temporal patterns of
NEP change

3.1.1 Temporal change of NEP
The interannual variation of NEP in Henan Province from

2001 to 2020 is depicted in Figure 2. The annual mean value of
NEP ranged from 272.84 to 451.39 gC·m-2·a1, with a multi-year

average of 382.74 gC·m-2·a1. Overall, NEP in Henan Province
exhibited a fluctuating and slightly increasing trend in the past
20 years. Specifically, NEP experienced a rapid increase from 2001 to
2003, with an average growth rate of 3.54%. From 2004 to 2012, NEP
showed a small fluctuation at a medium level, oscillating around the
multi-year average value, ranging from 355.24 to 419.49 gC·m-2·a1.
Following a sharp decline during 2012–2013, the NEP value
increased rapidly from 2013 to 2015. NEP maintained an overall
high level with significant fluctuations during 2016–2020, surpassing
the multi-year average in all years except 2019 when NEP was lower
than the average. The peak value was reached in 2020 at
451.39 gC·m-2·a1.

3.1.2 Spatial distribution of NEP
The spatial distribution of NEP in Henan Province from 2001 to

2020 is presented in Figure 3. Overall, Henan Province has exhibited
carbon sinks over the past wo decades, with only a few areas in
Jiyuan City and Zhengzhou City demonstrating carbon source status
in 2001. Meanwhile, the spatial and temporal distribution of NEP
varies significantly, showing a spatial distribution pattern of higher
values in the south and lower in the north. In particular, the high-
value areas are concentrated in the adjacent zones of Sanmenxia,
Luoyang, and Nanyang, while the low-value areas are primarily
located in the region of the Henan section of the Yellow River Basin.
Over the study period, the carbon sequestration capacity of
vegetation in most areas of Henan Province gradually increased.
However, in certain areas north of central Zhengzhou City, the
improvement in carbon sequestration capacity was less pronounced,
having NEP below 400 gC·m-2·a1.

To comprehensively examine the significant changes in NEP
across prefecture-level cities, the frequency method was employed in
estimating the variability of NEP for Henan from 2001 to 2020 at
two scales: regional and image metrics. The results are illustrated in
Figure 4. As shown in Figures 4A, B, NEP experienced considerable
annual fluctuations. Zhengzhou, Jiaozuo, and Pingdingshan cities
exhibited slightly more decreases than increases in NEP, while other
cities underwent more increases, with Luohe and Shangqiu cities
having the most significant improvements. In Figures 4C, D, the
spatial distribution of changes in NEP is presented at the metric
scale. The figures suggest that the observed changes are generally
aggregated, with more pronounced decreases in NEP in the northern
part of Zhengzhou City, the southern part of Xinxiang City, and the
southern part of Zhumadian.

3.1.3 NEP trends
The joint SEN-MK trend test and center of gravity model were

employed to further analyze the spatio-temporal dynamic evolution
characteristics of NEP. As shown by the analysis results in Figure 5,
the overall trend of NEP in Henan Province in the past 20 years has
been increasing, with about 93.1% of Henan’s total area yielding
higher NEP values. This suggests that the carbon sequestration
capacity of vegetation ecosystems in the province has gradually
improved from 2001 to 2020. The non-significantly increased area
constituted 41.29% and can be found primarily in the central and
eastern plains, while the significantly and extremely significantly
increased areas comprised 40.88%, mainly situated in the Taihang
Mountains, Xiong’er-FuNiu Mountains, Nanyang Basin, Tongbai-
Dabie Mountains, and Tongbai-Dabie Mountains. Areas with
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decreasing NEP are limited and sporadically distributed in various
prefecture-level cities, notably in Zhengzhou, Kaifeng, and Xinyang.
Highly significant decreases are concentrated in the central and
northern parts of Zhengzhou City.

Henan’s average center of gravity of NEP in the past 20 years
was situated 16.5 km southwest of the province’s geometric
center. This suggests that the vegetation in the southwest
region demonstrated a slightly stronger carbon sequestration
capacity, contributing to a more uniform spatial distribution

of NEP. The evolution trajectory of the center of gravity indicates
multi-directional changes around the mean center of gravity
during the study period, with an average migration distance of
8.19 km per year. In particular, the centers of gravity during the
years 2001–2003, 2006–2009, and 2010–2014 exhibited more
pronounced directional changes and migration distances, with
a minimum migration distance recorded at 7.66 km. The overall
trend of the center of gravity from 2014 to 2019 indicates a
northwesterly movement.

FIGURE 2
Inter-annual variation of NEP in Henan Province, 2001–2020.

FIGURE 3
Spatial distribution of NEP in Henan Province for (A) 2001, (B) 2005, and (C) 2010, (D) 2015, and (E) 2020.
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3.1.4 Future changes of NEP
The Hurst index method was used to analyze the future trend

of NEP in Henan Province, and the results are shown in Figure 6.
The NEP in Henan showed a positive persistence characteristic
area slightly larger than the anti-persistence characteristic
area. The positive persistence area accounted for about
53.46% of Henan’s total area, primarily distributed in the
northwestern, central-eastern, and southern parts of the
province, including Jiaozuo, Xuchang, Luohe, and Shangqiu.
The areas with anti-persistence characteristics were mainly
located in the north and southwest, encompassing places
such as Anyang, Puyang, and Sanmenxia. The overall trend of
NEP in these areas over the past 20 years has been increasing,
indicating that the carbon sequestration capacity of
vegetation ecosystems in nearly half of the province may not
maintain the increasing change characteristics observed
in the past.

Based on the NEP trend shown in Figure 6, regions expected to
exhibit non-significant increases and strong persistence in the future
include Jiaozuo, Kaifeng, Xuchang, Luohe, Zhoukou, and Shangqiu.
These areas are projected to maintain a trend of consistent, slight
increase in NEP. In comparison, places like Xinxiang, Hebi, Jiyuan,
Sanmenxia, and Xinyang demonstrate anti-persistence
characteristics in areas with significant increases, while areas with
non-significant increases show persistence characteristics. This
suggests that the spatial distribution of vegetation carbon
sequestration capacity in these areas will likely become more
balanced. Zhengzhou City, experiencing a significant decrease in
NEP over the last 20 years, shows persistence characteristics in areas
with non-significant increases, while areas with significant increases
show anti-persistence. In Xinxiang, Hebi, Jiyuan, Sanmenxia, and
Xinyang, significantly increasing areas are characterized by anti-
persistence, while non-significantly increasing areas exhibit
persistence. This implies that the spatial distribution of the

FIGURE 4
Change of NEP in Henan Province from 2001 to 2020 the frequency of (A) decreased and (B) increased NEP at the regional scale; and the frequency
of (C) decreased and (D) increased NEP at the metric.
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vegetation carbon sequestration capacity in these areas will tend to
be more balanced. Zhengzhou City, having undergone a significant
decrease in the NEP in the last two decades, exhibits persistence

characteristics in non-significantly in-creasing areas and anti-
persistence in places with significant increases, suggesting a
weakening capacity of vegetation in those areas.

FIGURE 5
(A) Trend and (B) center of gravity shift of NEP in Henan Province from 2001 to 2020.

FIGURE 6
Future trends of NEP in Henan Province.
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3.2 Drivers of NEP change

3.2.1 Response of NEP to climate factors
Precipitation and air temperature, recognized as primary

climatic factors affecting vegetation growth (Mao and
Shangguan, 2023; Wang et al., 2021), were analyzed for their
correlation with NEP in Henan Province (Figure 7). At the
annual scale (Figures 7A, B), precipitation significantly
affected NEP, while air temperature exhibited a weaker
influence. As highlighted in Figures 7C, D, the correlations
between NEP and both precipitation and air temperature
showed significant spatial distribution variability. Precipitation
was positively correlated with NEP across the majority of the
province, encompassing about 98.77% of the total area, with the
strength of correlation gradually increasing from west to east; the
negatively correlated areas were concentrated in Sanmenxia City.
Approximately 43.74% of Henan’s total area exhibited a negative
correlation between temperature and NEP, mainly located in
Zhengzhou City and the cities to its north and east, as well as the
southern part of Nanyang City.

3.2.2 Response of NEP to land use
In Henan Province, which is primarily an agricultural region, the

predominant land use type is arable land, followed by forest land and
construction land. The temporal evolution of land use in Henan
Province from 2001 to 2020 is shown in Figure 8. Over the past two
decades, there has been a consistent reduction in the extent of arable
land: 70.53% of Henan’s total area was arable land in 2001, 69.48% in
2005, 68.15% in 2010, 66.33% in 2015, and 65.58% in 2020. The
decrease is mainly attributed to the conversion of arable land into
forest land and construction land, a trend closely associated with
policies promoting the return of farmland to forests and the rapid
urbanization process.

The expansion of construction land has been notably significant
in the last two decades, accounting for only 9.99% in 2001 and
expanding to 10.69% in 2005, 11.78% in 2010, 13.24% in 2015, and
14.21% in 2020. The analysis indicates substantial changes in
cropland and construction land, particularly from 2001 to 2015.
Since 2015, these two land cover types have an increasing and a
decreasing trend, respectively. However, the changes have been
significantly reduced, primarily due to the implementation of

FIGURE 7
Correlation of NEP with (A) precipitation and (B) temperature; Spatial heterogeneity of the correlation (C) between NEP and precipitation, and (D)
between NEP and temperature.
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various policies such as “resolutely guarding the red line of arable
land,” and “decelerating urbanization.”

Figure 9 shows the inter-annual changes in NEP for cropland,
forest, and grassland vegetation in Henan Province from 2001 to
2020. As presented in Figure 9A, the NEP for cropland, forest, and

grassland vegetation all exhibited varying degrees of upward trends.
Among them, forest land had the strongest vegetation carbon
sequestration capacity, followed by grassland. From 2001 to 2011,
the difference between the NEP for cropland and grassland was not
particularly pronounced. However, after 2011, the vegetation carbon

FIGURE 8
Sanki map of land use transfer in Henan Province, 2001–2020.

FIGURE 9
Inter-annual changes in (A) annual mean and (B) total values of NEP for different land cover types in Henan Province, 2001–2020.
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sequestration capacity of grassland increased at a faster rate, leading
to a progressively significant gap between cropland and grassland.
As shown in Figure 9B, cropland consistently contributed the most
to NEP, a pattern attributed to the extensive distribution of cropland
in the province.

3.2.3 Factor impact detection
Geodetector was used to assess the spatial differentiation

response of NEP to physical geography, human activities, and air
pollution in Henan Province. Considering data availability,
precipitation (X1), temperature (X2), elevation (X3), slope (X4),
land use (X5), population density (X6), GDP (X7), PM2.5 (X8), and
O3 (X9) were selected as driving factors for 2013, 2015, 2017, and
2019. The geodetection q-values are shown in Figure 10.

The results reveal temporal variability in the response of spatial
differentiation of NEP to the driving factors in Henan Province.
From a single-factor perspective, the explanatory power of
precipitation, temperature, GDP, and PM2.5 on the spatial
differentiation of NEP was stronger in 2013 and 2015,
precipitation, temperature, PM2.5, and O3 in 2017, and
precipitation, elevation, PM2.5, and O3 in 2019. From the
perspective of multifactor interactions, the interactions among
the factors showed two-factor enhancement or nonlinear

enhancement, with their explanatory power significantly higher
than that of the single factor.

4 Discussion

NEP in Henan Province has exhibited a fluctuating, although
slightly increasing trend in the past 20 years. This pattern indicates
the effectiveness of implemented ecological restoration measures,
such as increasing forest cover and enriching biodiversity (Huang
W. et al., 2023), in improving vegetation productivity and
strengthening its carbon sequestration capacity. Trough values in
NEP occurred in 2001, 2013, and 2019, aligning with troughs in
precipitation and relatively high-temperature periods in Henan
Province during the same periods. In particular, 2001 was a
megadrought year in China (Wang et al., 2020), and in 2013, the
forest cover in Henan declined considerably. This underscores the
direct relationship between vegetation growth, climatic factors, and
land-use types, as well as its carbon sequestration capacity in
Henan Province.

Spatially, NEP in Henan Province exhibits a high-to-low
gradient from south to north, with high-value areas concentrated
in the western part of the study area. This region, characterized by

FIGURE 10
Response of spatial differentiation of NEP to drivers in Henan Province for (A) 2013, (B) 2015, (C) 2017, and (D) 2019.
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higher altitude, sparse precipitation, low air humidity, strong solar
radiation, and minimal human activities, provides favorable and
stable conditions for vegetation growth. These conditions include
fertile soil, lower susceptibility to pests and diseases, and reduced
human interference. Conversely, the low-value area is mainly
located in the plain area in the northern part of the study area,
which has a relatively high latitude, low precipitation, low altitude,
and high temperatures.

The majority of regions in Henan Province showed an
increasing trend in NEP over the past two decades, consistent
with the national trend (Wu P. et al., 2022; Huang Y. et al.,
2023); however, about 6.9% of the province experienced a
declining trend in NEP. At the prefecture-level analysis,
Zhengzhou City in the north, Kaifeng City in the west, Luoyang
in the north, and Shangqiu City in the middle consistently showed
an overall decreasing trend in NEP. In addition, the number of
annual decreases surpassed the number of increases in these areas.
These trends are particularly pronounced in the main urban areas of
prefecture-level cities characterized by high population density,
rapid urban construction, and in some instances, elevated air
pollution levels. Of particular significance is the large continuous
area in the north-central part of Zhengzhou City (i.e., Jinshui,
Zhongyuan, and Huiji districts), where NEP is expected to
persistently weaken in the future, highlighting the need to
prioritize ecological protection and restoration efforts.

The overall trend in NEP in the neighboring areas of Sanmenxia
City, Luoyang City, and Nanyang City shows an increasing pattern.
Although the number of decreases is greater than the number of
increases from year to year, indicating a certain degree of
interannual fluctuation in NEP, the magnitude of the increases
exceeds the magnitude of the decrease in these regions.

Climate factors exert a significant influence on NEP in Henan
Province, with precipitation having a more pronounced impact,
while the correlation with temperature is relatively weak. Henan,
being a large agricultural province, has experienced a continuous
decline in the total area of cultivated land over the past 20 years due
to the conversion of farmland into forests and urban areas. Despite
this decline, cultivated land remains the primary source of
vegetation carbon sequestration in the province, given its
extensive coverage.

In contrast, forest land exhibits the strongest carbon
sequestration capacity and serves as the second-largest
contributor to vegetation carbon sequestration in Henan
Province. This affirms that the decrease in NEP in Henan
Province in 2013 is closely related to the reduction in forest
cover. The influence of human activities on the carbon
sequestration capacity of vegetation should not be overlooked,
consistent with the findings of previous studies (Wang H. et al.,
2022). Given the unique characteristics of Henan Province as a
major food production base, a prudent, rational adjustment of forest
land resources, within the framework of arable land protection,
becomes imperative to enhance the vegetation carbon sink in
the region.

Precipitation and temperature play key roles in vegetation
growth and photosynthesis. Integrating analyses from annual,
pixel scales, and geographical detector results, precipitation
emerges as the primary limiting factor for carbon sequestration
by vegetation in Henan Province. This finding aligns with other

research, largely because Henan enjoys abundant sunshine and falls
mostly within a semi-humid region where vegetation generally does
not experience optimal moisture levels. Increased rainfall effectively
enhances photosynthesis in vegetation. As altitude increases, the
limitation of precipitation on vegetation gradually diminishes
because it begins to meet the growth needs of the vegetation,
resulting in weaker correlations between vegetation NEP and
precipitation in regions like Sanmenxia and Luoyang. The
correlation between vegetation NEP and temperature in Henan
Province is relatively weak and complex. The spatial clustering of
these correlations is not strong, which may be due to underlying
surface characteristics, vegetation types, etc. The internal
mechanisms of these relationships require further elucidation and
validation through extended field experiments and monitoring.

Geographical detector results indicate that, besides climatic
factors, the q-value for atmospheric pollution is relatively high.
Since 2017, the influence of O3 on the spatial variability of vegetation
NEP has progressively increased, surpassing the impact of PM2.5 in
2019. This trend coincides with the annual decline in the
concentration of major pollutants led by PM2.5 and the gradual
exacerbation of ozone pollution (Lu et al., 2020). Numerous studies
have confirmed that atmospheric pollution directly or indirectly
affects vegetation growth; for example, ozone impairs
photosynthesis, reduces crop yields, and impacts tree growth
(Zhou et al., 2018; Ma R. et al., 2022; Bo et al., 2023). In
summary, PM2.5 and O3 are strongly correlated with the spatial
variability of NEP, however, quantifying the causal relationship
requires further exploration through field models, mechanistic
models, and analyses of internal mechanisms.

Diverging from prior related studies (Gong et al., 2017; Liu et al.,
2021; Cao et al., 2022), comprehensive approaches that integrate
macroscopic and microscopic perspectives are adopted, and regions,
where NEP is likely to continue decreasing, are identified.
Additionally, the association between NEP and atmospheric
pollution is confirmed through factor detection. Despite these
advancements, the study has limitations requiring deeper
investigation, particularly: 1) NEP in this study is estimated
based on MODIS NPP products, precipitation and temperature,
which inherently contain uncertainties due to sensors, cloud
coverage, parameter settings, multiple spatiotemporal scales and
so on. Meanwhile, there are various models for regional scale NPP
estimation, such as statistical models, mechanistic models, and light
use efficiency models (Ma W. et al., 2022; Shen et al., 2022). These
diverse methodologies involve different principles, parameters and
calculation steps, introducing significant variability into NEP
estimates. Future research should focus on quantitatively
assessing these uncertainties and refining NEP estimation
methods. 2) Correlation analyses and geographic detectors
primarily utilize statistical approaches to identify the explanatory
power of various drivers on the spatiotemporal variations of NEP,
however, the methods lack the analysis of the internal linkage
mechanisms. 3) Farmland is vital for grain production in Henan
Province, whereas forests and grasslands have superior carbon
sequestration capabilities compared to croplands. Given this
context, there is an urgent need to study the future
spatiotemporal distribution of vegetation carbon sequestration
capacity in Henan under different scenarios, including natural
development, farmland conservation, and ecological protection.
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5 Conclusion

(1) During the period from 2001 to 2020, the overall trend of NEP in
Henan Province exhibited a fluctuating yet slightly rising pattern,
with an average value of 382.74 gC·m-2·a1. Spatially, the overall
capacity of vegetation carbon sequestration in Henan Province is
gradually increasing from north to south, with high-value areas
concentrated in the northwestern part of the province and low-
value areas predominantly located in the north.

(2) About 93.1% of the regional NEP in Henan Province
exhibited varying degrees of increasing trends. Conversely,
areas with decreasing NEP were mainly located in
Zhengzhou, Xinxiang, and Zhumadian. Among them, the
NEP in Zhengzhou City demonstrated a consistent
weakening trend for the future.

(3) In terms of climatic factors, precipitation was found to be the
dominant factor affecting the NEP in Henan Province.
Among the different land cover types, forests have the
strongest carbon sequestration capacity, while cropland is
the primary source of carbon sequestration in Henan due to
its extensive land area. In terms of complex multi-factors,
climate and atmospheric pollution factors have a stronger
explanatory power in the spatial differentiation of NEP in the
province. Moreover, the interaction power of the two-factor
interaction surpasses that of a single factor.
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