
Enhancing spatial modeling and
risk mapping of six air pollutants
using synthetic data integration
with convolutional neural
networks

Abed Bashardoost1, Mohammad Saadi Mesgari1 and
Mina Karimi1,2*
1GIS Department, Faculty of Geodesy and Geomatics Engineering, K. N. Toosi University of Technology,
Tehran, Iran, 2Department of Geography and Regional Research, University of Vienna, Vienna, Austria

Air pollution poses significant risks to human health and the environment,
necessitating effective air quality management strategies. This study presents a
novel approach to air quality management by integrating an autoencoder (AE)
with a convolutional neural network (CNN) algorithm in Tehran city of Iran. One
of the primary and vital problems in deep learning is model complexity, and the
complexity of a model is affected by data distribution, data complexity, and
information volume. AE provide a helpful way to denoise input data and make
building deep learning models much more efficient. The proposed methodology
enables spatial modeling and riskmapping of six air pollutants, namely, particulate
matter 2.5 (PM2.5), particulate matter 10 (PM10), sulfur dioxide (SO2), nitrogen
dioxide (NO2), ozone (O3), and carbon monoxide (CO). For air pollution
modelling, data from a spatial database containing the annual average of six
pollutants from 2012 to 2022 was utilized. The model considered various
parameters influencing air pollution: altitude, humidity, distance to industrial
areas, NDVI (normalized difference vegetation index), population density,
rainfall, distance to the street, temperature, traffic volume, wind direction, and
wind speed. The risk map accuracy was assessed using the area under the
receiver operating characteristic (ROC) curve for six pollutants. Among them,
NO2, PM10, CO, PM2.5, O3, and SO2 exhibited the highest accuracy with values of
0.964, 0.95, 0.896, 0.878, 0.877, and 0.811, respectively, in the risk map
generated by the CNN-AE model. The findings demonstrated the CNN-AE
model’s impressive precision when generating the pollution risk map.
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1 Introduction

Pollution occurs when toxic substances enter the environment and impact humans and
other organisms. Pollutants refer to harmful substances (solids, liquids, or gases) present in
higher-than-normal concentrations and harm the environment’s quality (Manisalidis et al.,
2020). Furthermore, increasing population growth in large cities has intensified air
pollution, a significant environmental repercussion. This situation has been exacerbated
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by various factors, including the rise in the utilization of heating
devices, the presence of industrial centers, increased commercial
activities, and the reliance on fossil fuels for transportation and
traffic (Shogrkhodaei et al., 2021). Since cities contain a large
population, they have the highest load of ambient air pollution.
According to statistics announced by the World Health
Organization (WHO), about 9 out of 10 people (approximately
91% of the world’s population) are exposed to a high level of air
pollution (Agarwal, 2021). Air pollution has many effects on human
life, and poor air quality leads to the death of three million people
annually (Sakti et al., 2023). The impact of air pollution includes an
increase in cardiovascular and respiratory diseases, diabetes and
blood pressure, dementia, the chance of miscarriage in pregnancy,
early psychiatric and mental mortality, memory issues, the
impairment of cognitive function, and a decrease in life
expectancy. Severe air pollution can lead to an increase in
criminal and immoral behavior, a reduction in the happiness of
city dwellers, and a decrease in the potential of solar energy (Liu
et al., 2020).

The uncontrolled expansion of urban areas and the rapid growth
of industries have significantly diminished the quality of life and the
environment in developing nations. Consequently, there is a
pressing need to evaluate the geographical dispersion of air
quality and its impact on human populations residing in
metropolitan regions (Sengupta et al., 1996). The issues
stemming from air pollution and their potential threat to human
life underscore the significance of diligent air quality monitoring.
Such monitoring is crucial for precise air quality regulation and
effective urban management (Ma et al., 2019). It is essential to
control and reduce ambient air pollutants, improve air quality, and
maintain public health in urban areas. This is possible by developing
appropriate strategies and policies and investigating and
understanding the spatial changes of ambient air pollutants
because being modifiable and reversible is one of the
characteristics of ambient air pollution (Faridi et al., 2019). For
analyzing air quality in a city, pollution maps, which show the
average pollution level in a certain period, are considered a suitable
tool (Szopińska et al., 2022).

It is necessary to understand the location to find the right
solution for the population health problems caused by air
pollution. The location of people in cities plays a vital role in
exposure to air pollution (Zou et al., 2014). Therefore, the spatial
analysis of air pollution can lead to the understanding of the location
of pollutants in the city. Spatial analysis can help people solve
complex location-based problems. The spatial analysis involves
comprehending various aspects, including the distinctive features
of a place, the interconnections between different locations, and the
incidence of events within specific geographical areas (Farahani
et al., 2022). It is possible to perform spatial analysis and solve spatial
problems using a geographic information system (GIS) (Lü et al.,
2019). In GIS, the first step in processing and analyzing any
phenomenon is the spatial modeling of that phenomenon
(Hogland and Anderson, 2017). GIS is a fundamental tool
utilized in air pollution modeling. It enables the extraction and
processing of spatial data necessary as input for air pollution models
and the visualization of the models’ outcomes (Makarovskikh and
Herreinstein, 2022). GIS provides the results of urban air quality in
the form of maps, which are very visual and can be easily interpreted

even by non-specialists. He also analyzed these maps according to
their complexity and user ability (Mavroulidou et al., 2004). Spatial
analysis and overlay techniques available in GIS provide a powerful
tool for pollution mapping (Briggs et al., 1997). GIS is essential for
spatially monitoring air quality and creating spatial models to
predict future air quality conditions ((Gulliver and Briggs, 2011;
Somvanshi et al., 2019). Researchers use GIS techniques in various
fields of air pollution investigation, such as analyzing air pollutants’
spatial and temporal distribution (Kumar et al., 2016; Razavi-
Termeh et al., 2021) and converting point data to surface data in
studying the spatial distribution of air pollutants (Bell,
2006) have used.

So far, various methods such as land use regression (LUR),
machine learning, and deep learning have been used to monitor and
model air pollutants. Among the research conducted using the LUR
method are: Mölter et al. (2010) estimated annual mean nitrogen
dioxide (NO2), and particulate matter 10 (PM10) concentrations
from 1996 to 2008 for Manchester using LUR models. Xu et al.
(2019) investigated national particulate matter 2.5 (PM2.5) and NO2

exposure models based on China’s LUR, satellite measurements, and
kriging method. Shi et al. (2020) studied a temporal LUR model for
assessing ambient PM2.5 in Pakistan. Xu et al. (2022) used the 3D
LUR method to assess PM2.5 exposure in central Taiwan. Ge et al.
(2022) investigated the LUR method to determine exposure to
ultrafine particles (UFP) in Shanghai, China. LUR models usually
cannot be generalized to places other than the place developed for
them, and optimizing the features for new models in specific study
areas is a cumbersome process (Steininger et al., 2020). Another
weakness of the LUR model is the need for experimental data (Dons
et al., 2014). To address the limitations of the LURmethod, machine
learning algorithms have been developed to establish nonlinear and
intricate relationships between observations and predictive
variables. These algorithms offer several advantages, including
rapid processing speed, higher efficiency compared to traditional
models, and the absence of a requirement for statistical assumptions
(Shogrkhodaei et al., 2021). One notable advantage of machine
learning-based methods is their ability to operate without an in-
depth understanding of atmospheric pollutants’ physical or
chemical properties (Bekkar et al., 2021). Machine learning
methods generally work well and can identify data patterns
quickly. Studies that have been used machine learning algorithms
to investigate air pollution are described as follows: Hu et al. (2016)
introduced a dense air pollution estimation model based on support
vector regression (SVR) using a static and wireless sensor network.
The results showed that air pollution estimations through this
method have high spatial resolution and are more accurate than
artificial neural network (ANN) model estimations. Delavar et al.
(2019) investigated a new method to improve air pollution
prediction based on machine learning approaches (SVR,
geographically weighted regression, ANN, and auto-regressive
nonlinear neural network with external input). According to their
findings, the autoregressive nonlinear neural network that utilizes
the proposed prediction model and external information is the most
dependable algorithm for predicting air pollution. Castelli et al.
(2020) investigated a machine-learning approach to predict air
quality in California. The results indicated the possibility of
predicting the concentration of carbon monoxide (CO), sulfur
dioxide (SO2), NO2, ozone (O3), and PM2.5 as well as air quality
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index (AQI) for the state of California with the SVR with radial basis
function (RBF) kernel. Shogrkhodaei and colleagues (2021)
conducted a study in Tehran, focusing on the spatial-temporal
modeling of PM2.5 risk mapping. Their analysis used three
machine learning algorithms - random forest (RF), AdaBoost,
and stochastic gradient descent (SGD) -. Abu El-Magd et al.
(2022) employed a machine learning approach to develop a PM
pollution susceptibility map using time series data of PM pollution
records. The findings demonstrated that the generated prediction
maps are reliable and could aid in enhancing air quality monitoring
in the future.

Much research has been done on air pollution using deep learning
algorithms in recent years. Deep learning algorithms have been
preferred over machine learning models for greater flexibility and
predictive accuracy (especially for big data) (Ghorbanzadeh et al.,
2019). Deep learning, having advantages such as using more layers,
more expansive data sets, and processing all layers simultaneously to
obtain more accurate results, is suitable for modeling and forecasting
air pollution (Bekkar et al., 2021). The following studies have been
reviewed that investigated air pollution through the deep learning
method. Bui et al. (2018) investigated a deep learning approach for
forecasting air pollution using long short-term memory (LSTM) in
South Korea. The proposed model showed significant results in
predicting PM2.5 in the long future based on historical
meteorological data. Kalajdjieski et al. (2020) predicted air
pollution with multi-modal data and deep neural networks
(DNN). The results showed the substantial accuracy of this
method, which was comparable to sequence models and
conventional models that use air pollution data. Zaini et al. (2022)
utilized a hybrid deep learning model to forecast hourly PM2.5

concentration in an urban region of Malaysia. The outcomes
revealed that the EEMD-LSTM model had the best accuracy
compared to other deep learning models, and the combined
prediction model outperformed the individual models. In the deep
learning method, over fitting may happen with random noise in the
data. Also, one of the primary and vital problems in deep learning is
model complexity, and the complexity of a model is affected by data
distribution, data complexity, and information volume (Hu et al.,
2021). Autoencoders (AE) provide a helpful way to denoising input
data and make building deep learning models much more efficient.
Among the uses of AE is the ability to identify anomalies, deal with
unsupervised learning problems, and remove complexity in data sets
(Bank et al., 2020). Combining deep learning with AE in studies such
as spatiotemporal modeling and prediction in cellular networks
(Wang et al., 2017), traffic flow prediction with big data (Lv et al.,
2014), and pollution map recovery with mobile sensing networks (Ma
et al., 2019) had acceptable accuracy.

The innovation of this research lies in integrating AE with
convolutional neural networks (CNN) for improved spatial
modeling and risk mapping of air pollutants. This approach
enhances predictive accuracy and efficiency by using AE to
denoise and reduce data complexity while CNN captures
complex spatial patterns. The combined CNN-AE model
outperforms traditional methods like LUR and essential machine
learning by automating feature extraction and handling large,
complex datasets. The methodology generates high-resolution
risk maps, aiding policymakers and public health officials in
identifying pollution hotspots and implementing targeted

interventions. This study significantly advances air pollution
modeling and management by addressing the limitations of
traditional models and leveraging advanced deep-learning
techniques.

2 Materials and methods

2.1 Methodology

This research was generally conducted in six general steps
(Figure 1). In the first step, six air pollutants, including PM2.5,
PM10, SO2, NO2, O3, and CO, were monitored over 10 years. During
this phase, data from monitoring stations were collected to capture
the concentrations of these pollutants. A comprehensive study area
map was also created, incorporating 11 spatial criteria known to
influence air pollutant levels. These spatial criteria included altitude,
humidity, distance to industrial areas, NDVI (normalized difference
vegetation index), population density, rainfall, distance to the street,
temperature, traffic volume, wind direction, and wind speed. In the
next step, the researchers aimed to determine the presence of
multicollinearity among the spatial criteria. The multicollinearity
test assessed the degree of correlation between the various
parameters. This analysis was crucial in identifying redundant or
highly correlated variables, allowing for eliminating or consolidating
such factors to avoid multicollinearity issues in subsequent modeling
steps. To understand the importance of the spatial criteria with air
pollutant concentrations, the Geodetector method was employed.
This method assessed the contributions and significance of each
spatial criterion to the overall air pollution levels. It helped prioritize
influential factors and provided insights into the relative importance
of various spatial parameters. The researchers combined the CNN
algorithm and the AE technique in the modeling phase. By
integrating these two methods, the researchers could leverage the
strengths of both approaches. The encoded data was then fed into
the CNN, which effectively learned the spatial relationships and
patterns associated with the concentrations of the six air pollutants.
This fusion approach enhanced the accuracy and precision of the
modeling process. The trained CNN-AE model generated risk maps
for the six air pollutants. To generate risk maps, the predicted values
obtained for each pixel in the study area were assigned to the center
of each pixel. Then, using raster to point analysis, the risk map was
created. In the next step, the natural breaks classification method
was utilized to categorize the risk classes for each pollutant. These
risk maps provided spatial representations of the pollutant
concentrations across the study area. The results and risk maps
obtained from the modeling process were evaluated and compared
in the final step. Evaluation metrics such as mean absolute error
(MAE), coefficient of determination (R2), root mean square error
(RMSE), and the area under the curve (AUC) of the receiver
operating characteristic (ROC) were employed to assess the
accuracy and performance of the models.

2.2 Study area

Tehran city (the capital of Iran) is located at 35° 36′to 35°

44′north latitude and 51° 17′to 51° 33′east longitude and an altitude
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of 1032–1832 m above sea level. The city of Tehran as the most
populous city in Iran (9,039,000) in the last 2 decades due to reasons
such as the unsustainable development of industrialization and
urbanization, the ever-increasing growth of the transport fleet,
and the emission of their pollutants, ineffective national
environmental air quality standards, and dust storms. The

Middle East has faced severe air pollution, especially (PM10,
PM2.5, O3, NO2, SO2, and CO) (Yousefian et al., 2020). In
general, 20% of Iran’s energy is consumed in Tehran. The
mountain ranges surrounding the city of Tehran stop the flow of
humid wind to the capital, so in winter, the cold weather and lack of
wind cause the polluted air to be trapped inside the city (Naddafi

FIGURE 1
Methodology for spatial modeling and risk mapping of air pollutants.
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et al., 2012). Urban space structures are deeply connected with the
urban transportation system (Rodrigue, 2020). The statistics of
Tehran indicate the high rate of land consumption in this city,
which has caused a high growth in the area and size of the town,
which has caused an increase in the distance and the amount of
transportation (private cars and public transportation) to carry out
administrative and educational activities, and entertainment, in
Tehran. Figure 2 displays the geographic location of the study
area in Tehran province, Iran, highlighting the air quality control
monitoring stations and meteorological stations.

2.3 Air pollutants

Air pollutants can be categorized as either natural or
anthropogenic and can be classified as primary or secondary.
Primary pollutants are released directly into the atmosphere from
a particular source, retaining the same composition. On the other
hand, secondary pollutants are not directly released into the
atmosphere and are formed in case of a reaction or interaction of
primary pollutants or become another compound in the
atmosphere, such as photochemical smog (Bhargav, 2020). Six
pollutants, PM2.5, PM10, SO2, NO2, O3, and CO, are considered
for this research. Air pollution is a challenging environmental issue
that endangers the health and wellbeing of people worldwide,
comprising a complex blend of gaseous components and
suspended particles (Özbay, 2012; Bergstra et al., 2018). Air
quality in cities in developing countries has gradually

deteriorated due to rapid urbanization, population growth, and
industrialization (Turalıoğlu et al., 2005). The annual average
concentration of air pollutants in Tehran was measured from
1 January 2012, to 1 January 2022, using data collected from
23 air quality monitoring stations located in the city. The
characteristics of the six pollutants are shown in Table 1, and the
trends of the data in the years 2012–2022 are shown in Figure 3.
Maps related to the concentration of pollutants were prepared using
kriging interpolation in ArcGIS 10.8 software with a pixel size of
30 × 30 m (Figure 4). For modeling, high-risk areas for each
pollutant were converted into occurrence points (with a target
value of 1) and the low-risk regions into non-occurrence points
(with a target value of 0). In the following, each of these parameters
will be explained.

FIGURE 2
Study area with air pollution and climate stations.

TABLE 1 Characteristics of the six air pollutants.

Parameter Unit Min Max Mean Standard
Division

NO2 ppb 38 71 50.08 8.96

PM10 μg/m3 29 104 74.08 18.39

CO ppm 1 4 2.26 0.67

PM2.5 μg/m3 21 45 31.6 6.4

O3 ppb 16 27 20.52 2.76

SO2 ppb 5 18 9.13 3.24
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➢ Particulate Matter (PM)

Suspended particles include large particles (PM10) and fine
particles (PM2.5), associated with lung cancer and asthma. PM10

can settle in the bronchi and lungs, and PM2.5 is the most minor and
most dangerous type of suspended particle and can penetrate deep
into the respiratory system (Quercia et al., 2015). PM2.5 particles are
mainly caused by fuel combustion, construction dust, and vehicle
exhaust, which cause dust-haze. All types of manufactured
combustion and some industrial processes are among the most
common human sources of PM10 (Özbay, 2012).

➢ Sulfur Dioxide (SO2)

SO2 is mainly obtained through the combustion of fossil fuels,
biomass burning, and melting ores containing sulfur (Santosa et al.,
2008). It is also released through industrial activities and is
considered among the harmful gases that affect human, animal,
and plant life (Manisalidis et al., 2020). The release of SO2 in
industrial regions can result in serious health concerns such as
respiratory irritation, bronchitis, mucus production, bronchospasm,
skin redness, eye and mucous membrane damage, and deterioration

of cardiovascular health (Chen et al., 2007). Moreover, the
environmental consequences of SO2 include acid rain and soil
acidification (Manisalidis et al., 2020).

➢ Nitrogen Oxide (NO2)

NO2 is a common traffic-related pollutant that originates from
automobile engines, and it is one of the most prevalent air pollutants
found in urban regions (Dragomir et al., 2015; Richmond-Bryant
et al., 2017). NO2 is one of the compounds that lead to adverse effects
on the environment and human health (Mavroidis and Ilia, 2012),
disrupting the sense of smell, burning eyes, throat, and nose, reducing
visibility and changing the color of the fabric (Chen et al., 2007).

➢ Carbon Monoxide (CO)

CO is produced due to incomplete or inefficient fuel combustion
and affects the blood oxygen transfer in the body and heart (Quercia
et al., 2015). CO gas emission and production sources encompass all
combustion sources, including motor vehicles, power plants, waste
incinerators, domestic gas boilers, and cookers (Vakkilainen, 2017;
Manisalidis et al., 2020).

FIGURE 3
The trend of air pollutant concentrations from 2012 to 2022.
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➢ Ozone (O3)

O3 is a secondary photochemical pollutant resulting from the
oxidation of volatile organic compounds, including benzene, in
nitrogen oxides. This colorless, pungent, and reactive gas is the
primary component of smog, which is mainly attributed to
automobile emissions in urban regions. The concentration of
O3 in urban areas typically increases in the morning, reaches its
peak in the afternoon, and decreases at night (Yerramilli
et al., 2011).

2.4 Effective factors

The influential factors in this research include
meteorological data (rainfall, temperature, humidity, wind
direction, and wind speed), altitude, NDVI, distance from
street, distance from industrial areas, traffic volume, and
population density (Delavar et al., 2019; Shogrkhodaei et al.,
2021). Each of the mentioned factors was prepared with a 30 ×
30 m pixel size in ArcGIS 10.8 software (Figure 5). In the
following, each practical criterion for air pollution has
been examined.

• Meteorology data

Air pollution has two natural and human causes, natural causes
include volcanic eruptions and severe drought, and human
activities include motor vehicle emissions, industry, and the
burning of agricultural lands and forests, which cause the
release of various types of pollutants with multiple
characteristics and effects (Sakti et al., 2023). Pollutants in the
atmosphere can be dispersed or diluted under various
meteorological conditions, such as rainfall, air temperature, and
wind speed (Özbay, 2012). Meteorological data, such as wind
speed, wind direction, precipitation, temperature, and humidity,
were collected from the National Meteorological Organization.
The data were obtained from 12 stations and represented the
annual average between 2012 and 2022. The kriging interpolation
technique was used in ArcGIS 10.8 to create these maps, with a
pixel size of 30 * 30 m. The following discusses the impact of
meteorological parameters on air pollutants.

➢ Rainfall

Rainfall is one of the main factors of meteorological conditions
that affect air quality and has a specific inhibitory effect on air

FIGURE 4
Air pollutant concentration maps: (A) CO, (B) O3, (C) NO2, (D) SO2, (E) PM10, and (F) PM2.5.
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pollutants (Guo and Jiang, 2020; Shukla et al., 2008). Rainfall can
affect the concentration of air pollutants by removing gaseous
pollution and deposition of suspended particles through
atmospheric chemical processes (Kayes et al., 2019).

➢ Temperature

Temperature plays a crucial role in urban air quality, directly
influencing gas properties, heterogeneous chemical reaction rates,
and the gas-to-particle partitioning process (Aw and Kleeman,
2003). Sunlight and high temperatures stimulate chemical

reactions in pollutants and increase smog. The effect of
temperature on air pollutants is such that an increase in
temperature increases the dispersion and decreases the
concentration of contaminants (Shogrkhodaei et al., 2021).

➢ Humidity

Humidity, as one of themeteorological parameters, plays an essential
role in air pollutants (their concentration and dispersion) in the urban
environment (Endeshaw and Endeshaw, 2020). Most pollutants
negatively correlate with relative humidity, so the amount of air
pollutants decreases with the increase in humidity (Kayes et al., 2019).

➢ Wind speed and direction

Air quality is affected by wind speed. One case is that wind speed
reduces the concentration of pollutants and dilutes them (in areas
with higher concentrations). Another issue is that wind speed leads
to the entry of contaminants from further distances and increases
the concentration of pollutants in an area with a lower concentration
(Oleniacz et al., 2016).

• NDVI

Urban vegetation impacts air quality by affecting the
sedimentation and dispersion of pollutants (Janhäll, 2015). Urban
trees and vegetation are considered an ecosystem regulating service in
removing air pollutants (Setälä et al., 2013). The NDVI is a primary
indicator of the physiological properties of land vegetation. The NDVI
standard was prepared using Landsat-8 satellite images in Google
Earth Engine (GEE) (https://earthengine.google.com/) as an annual
average from 2012 to 2022. NDVI index was calculated using Eq. 1.

NDVI � NIR –Red( )
NIR + Red( ) (1)

In this equation, the symbol NIR denotes the reflectance in the
near-infrared band, and the symbol Red represents the reflectance in
the red band. By taking the difference and sum of these reflectance
values, the NDVI equation normalizes the values and produces an
index that ranges from −1 to +1.

•Altitude

Air pollution is affected by the change in altitude, so the increase
in altitude causes an increase in sunlight and causes the problem of
photochemical smog (U.S. EPA, 1978). This research prepared the
height through a digital elevation model (DEM) with a pixel size of
30 × 30 m through the SRTM (Shuttle Radar Topography Mission)
image in GEE platform.

• Distance to industrial areas

Industrial sources located inside and close to city borders are
among the influential primary factors of urban air pollution
(Hosseini and Shahbazi, 2016). Heavy industry causes the release
of many dangerous pollutants in the air that affect health (Bergstra
et al., 2018). Industrial areas were extracted through land use layers
of industrial areas with a scale of 1:10,000. Subsequently, the

FIGURE 5
Factors affecting air pollution levels: (A) Humidity, (B) NDVI, (C)
Distance to industrial, (D) Wind speed, (E) Wind direction, (F)
Temperature, (G) Rainfall, (H) Altitude, (I) Population density, (J)
Distance to street, and (K) Traffic volume.
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aforementioned criterion was transformed into a raster map with a
pixel resolution of 30 × 30 m by employing the Euclidean distance
function in ArcGIS 10.8.

•Distance to street

Motor vehicles produce more air pollutants than any other
human activity. Motor vehicle emissions from roads can be
considered as a mobile line source with an emission rate per
unit of road length (Oji and Adamu, 2020). Therefore, the
distance from the measurement location to the roads affects
the air quality near the streets (Dragomir et al., 2015). The
data relating to the roads of Tehran was extracted through the
open street map (OSM) (https://www.openstreetmap.org) with a
scale of 1:100,000 in 2022. Subsequently, the mentioned criterion
was transformed into a raster map with a pixel resolution of 30 ×
30 m by utilizing the Euclidean distance function within the
ArcGIS 10.8 software.

• Traffic volume

Urban air pollution is primarily caused by traffic emissions
(Guarnieri and Balmes, 2014). Monitoring data about pollution
near roads shows hot pollution spots in high-traffic areas (Samet,
2007). Traffic congestion increases vehicle emissions, decreases
air quality, and increases air pollutants, including CO, CO2,
nitrogen oxides (NOx), and PM, which cause complications
such as death to drivers, passengers, and people who live near
the main roads (Zhang and Batterman, 2013). Data on the traffic
volume in Tehran city were obtained from the Tehran Traffic
Control Company. The data represent the average traffic volume
between 2015 and 2020.

• Population density

The expansion of urban areas and population growth has a
significant adverse effect on ambient air quality (Kumar et al., 2016),
as the rise in population is linked to an increase in the number of
vehicles (traffic density) and industrial and commercial operations
(Shogrkhodaei et al., 2021). This factor was obtained based on the
data from Iran Statistics Center in 2017.

2.5 Methods

2.5.1 Multicollinearity analysis
The problem of multicollinearity arises due to a correlation

(strong relationship) between predictors and their lack of
independence in a data set. In the models derived from these
data, if multicollinearity is not checked, it may lead to wrong
analyzes (Garg and Tai, 2013). Variance Inflation Factor (VIF)
is a method used to identify multicollinearity in a regression
model (Kim, 2019), and a VIF more significant than
10 indicates the presence of multicollinearity (Chen et al.,
2018 Eq. 2).

VIF � 1
Tolerance

� 1
1 − R2 (2)

In the abovementioned equation, the symbol tolerance
represents tolerance, and R2 is the R-squared value of the regression.

2.5.2 Feature importance using
GeoDetector method

GeoDetector is a method used to identify and exploit geographic
differences and determines the number of driving forces, influencing
factors, and multi-factor interactions (Wang and Xu, 2017). This
method does not include complex parameter-setting procedures,
nor is it limited to the assumptions of classical linear statistical
techniques. In this method, if an independent variable significantly
affects another independent variable, it will show spatial distribution
(Zhang et al., 2022). GeoDetector has four distinct functions: agent
detection, interaction detection, hazard detection, and ecological
detection (Wang and Xu, 2017). A factor detector is used to detect
the spatial heterogeneity of the dependent variable Y and to evaluate
the explanatory ability of the independent variable X on Y. The
factor detector assesses the effectiveness of the derived q value in
capturing the relationship between the variables. The q values
obtained from GeoDetector allow the measurement of spatial
variations and factor analysis (Jia et al., 2021). The value of qx
was obtained from Eqs 3–5.

qx � 1 − SSW
SST

(3)

SSW � ∑l

h�1Nh σh
2 (4)

SST � Nσ2 (5)

Where SSW denotes the sum of the local variance, while SST
represents the global variance. The variable h stands for the number
of independent variable categories,Nh and N denote the number of
units in zone h and the entire area, respectively. The variable σh2

represents the variance of Y in zone h, and σ2 denotes the global
variance of Y in the entire region.

2.5.3 Convolutional neural network
(CNN) algorithm

The traditional ANN in the analysis of complex networks faced
the challenge of slowing down the learning process, which Bengio
proposed to overcome by a CNN, a neural network that finds local
connections between layers (Lu et al., 2017). CNN has achieved
remarkable results in various areas of pattern recognition and is
particularly useful in reducing the number of parameters in ANN
(Albawi et al., 2017). CNN is one of the most widely used deep
learning algorithms suitable for spatial data analysis (Khosravi et al.,
2020). A CNN architecture generally consists of convolutional,
pooling, and fully connected layers (like standard layers in ANN)
(Pham et al., 2020). The following is a description of the structure of
each layer (Ajit et al., 2020):

➢ The convolutional layer is the most basic and essential in CNN
architecture. This layer performs convolution or multiplication
operations on the pixel matrix generated for the target image,
resulting in an activation map for that image. The activation
map stores all the image’s unique features and helps reduce the
amount of processed data, which is one of its primary benefits.

➢ Pooling is a crucial layer that helps reduce the activation map’s
dimensions while preserving essential features and decreasing
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spatial invariance. By reducing the number of learnable
features, this layer addresses the issue of overfitting. Pooling
also enables CNN to combine all dimensions of an image,
allowing it to correctly identify the desired object even if its
shape is not in the correct position.

➢ The final layer in the neural network is the fully connected
layer, which receives input from the previous layers. All the
computations and reasoning are performed in this layer
of the data.

2.5.4 Autoencoder (AE) algorithm
AE are neural networks that automatically learn useful features

and representations from data (Pinaya et al., 2020). AE is also an
unsupervised approach to the neural network method. It does not
require data labeling with an operational logic that trains input
vectors to be reconstructed as output vectors (Sewani and Kashef,
2020). AE can be used for dimensionality reduction, denoising data,
generative modeling, and pre-training deep learning neural
networks (Pinaya et al., 2020). An encoder and a decoder make
AE architecture. An AE layer has an encoder and a decoder
according to Eqs 6, 7, respectively (Zavrak and İskefiyeli, 2020).

h � σ Wxhx + bxh( ) (6)
z � σ whxx + bhx( ) (7)

In the given equations, b and W are referred to as the bias and
weight of the neural network, respectively. The symbol σ represents
a non-linear transformation function.

2.5.5 Implementing models
The integrated model was implemented using Python in Google

Colab, a cloud-based Python development environment. The input
data underwent normalization between zero and one to ensure
consistent scaling across the different spatial features. This
normalization step helps improve the training efficiency and
convergence of the model. The experiments and analyses were
conducted on a Windows 10 desktop PC with an Intel
i7 processor and 16 GB of RAM. The input data was divided
into training and testing sets using a 70–30 split. The training
set, comprising 70% of the data, was used for model training and
parameter optimization. The remaining 30% of the data was
reserved for testing the trained model’s performance and
evaluating its predictive accuracy. In this research, our objective
centered on regression and prediction tasks, for which we employed
a 1D CNN model architecture. The implemented CNN model was
configured with the following parameters: kernel size set to 3,
activation function using ReLU, optimizer utilizing Adam, loss
function defined as mean squared error (MSE), an epoch count
of 400, batch size set to 16, and verbosity level configured to 2 for
detailed logging during training.

2.5.6 Validation methods
To extend the model’s applicability to unfamiliar outputs, it is

necessary to assess its performance by comparing the predicted
outcomes from each model with the actual results (Mombeini and
Yazdani-Chamzini, 2015). In this study, various indicators such as
RMSE, MAE, R2, and ROC-AUC are employed to evaluate the
effectiveness of the model’s construction.

➢ RMSE and MAE

RMSE and MAE are indicators that calculate the error between
the actual and predicted values (Farahani et al., 2022). The primary
difference between MAE and RMSE indices is that MAE assigns
equal weight to all errors. Conversely, RMSE penalizes variance by
giving more weight to errors with larger absolute values than errors
with smaller values (Chai and Draxler, 2014). RMSE and MAE were
calculated according to Eqs 8, 9.

RMSE �
������������∑n

i�1 Ai − Pi( )2
N

√
(8)

MAE � ∑n
i�1 Ai − Pi( )| |

N
(9)

In the above equations, Ai represents the observed value, Pi

represents the predicted value, and N is the number of samples.

➢ R2

R2 is the variance ratio in the dependent variable that the
independent variables can explain (An et al., 2020; Chicco et al.,
2021). R2 was calculated according to Eq. 10.

R2 � 1 − ∑n
i�1 Ai − Pi( )2∑n
i�1 Ai − Ai( )2 (10)

In this equation, Ai is the observed value, Pi is the predicted
value, and Ai is the average of the observed set.

➢ ROC curve

The ROC is a prominent method for evaluating spatial models
and a standard tool for determining the accuracy of output maps
(Shogrkhodaei et al., 2021). The ROC curve plots the false positive
rate (FPR) on the x-axis (Eq. 11) against the true positive rate (TPR)
on the y-axis (Eq. 12) to measure the area under the curve (AUC) as
the true-false thresholds change (Pham et al., 2020).

x � 1 − TN
FP + TN

(11)

y � TP
FN + TP

(12)

In this equation, the four data categories in the confusion matrix
are TN (True Negative), TP (True Positive), FN (False Negative),
and FP (False Positive) (Davis and Goadrich, 2006). AUC is between
0 and 1 (Farahani et al., 2022).

3 Results

3.1 Result of multicollinearity test

A multicollinearity test was performed to assess the presence of
multicollinearity among the independent variables utilized in the
geographic modeling and risk mapping of the six air contaminants.
The results of the test, presented in Table 2, indicate the levels of VIF
for each independent variable. From the results, it can be observed
that none of the independent variables have VIF values exceeding
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the threshold limit of 10. This indicates no severe multicollinearity
among the independent variables, suggesting that they can be
considered individually and collectively in the spatial modeling
and risk mapping analysis. The VIF values, ranging from 1.07 to
6.80, indicate that the independent variables have relatively low to
moderate levels of correlation with each other. This suggests that the
variables provide unique information and do not excessively
duplicate each other’s predictive power.

3.2 Result of feature importance

The GeoDetector method was employed to determine the
importance of different parameters on air pollutants (Figure 6).
The analysis revealed distinct findings for each pollutant. CO,
temperature, wind speed, and wind direction emerged as the
most significant parameters. Variations notably influenced the
levels of CO in these factors. In the case of O3, humidity,
precipitation, and altitude were identified as the primary criteria
affecting its concentration. Altitude plays a crucial role in the
formation and distribution of ozone in the atmosphere.

Conversely, for PM10, altitude, wind direction, and wind speed
were deemed the most influential parameters. These factors
influenced the dispersion and transport of PM10 particles.
Regarding NO2, altitude, rainfall, and wind direction were found
to have the most significant impact. Altitude affected the vertical
distribution of NO2, while rainfall and wind direction influenced its
dispersion andmovement. Similarly, for PM2.5, altitude, rainfall, and
temperature were identified as the key parameters. Altitude affected
the vertical distribution of PM2.5 particles, while rainfall and
temperature were crucial in their formation and dispersion.
Lastly, for SO2, temperature, wind direction, and altitude were
determined as the most important parameters. Temperature
played a role in the chemical reactions involving SO2, while wind
direction and altitude affected its transport and dispersion. In
general, altitude, wind direction, wind speed, rainfall, and
temperature parameters had the most significant effect on
pollutants in the study area.

3.3 Model development

The AE, comprising encoder and decoder layers, is a pre-
training step to learn a compact and efficient representation of the
input data. The CNN, however, is designed to capture spatial
patterns and dependencies within the pollutant data. The input
data includes various spatial features such as altitude, humidity,
distance to industrial areas, NDVI, population density, rainfall,
distance to the street, temperature, traffic volume, wind direction,
and wind speed. The Autoencoder’s encoded features serve as
input to the CNN, which then extracts spatial features. The model’s
weights, biases, learning rates, regularization techniques, and
dropout rates are randomly initialized and updated during the
training process using the Adam optimizer. A loss function is
utilized to measure the difference between the predicted pollutant
concentrations and the actual measurements to assess the model’s
performance. Common regression loss functions, such as mean
squared error (MSE), are commonly used. The results of the loss
functions for all pollutants, as shown in Figure 7, indicate the
convergence and effectiveness of the integrated CNN-AE model.
The loss function values for the training and test data decrease
throughout training, demonstrating the model’s ability to learn
and capture the underlying patterns in the pollutant data. The
decreasing trend of the loss function values suggests the model
successfully minimizes the discrepancy between the predicted
pollutant concentrations and the actual measurements during
training. This indicates that the model is learning to make
accurate predictions and is effectively capturing the complex
relationships within the data. The decreasing loss function
values in the training and test data support the notion that the
integrated CNN-AE model successfully learns and generalizes to
unseen data, highlighting its ability to capture the spatial patterns
and dependencies of the air pollutants.

Additionally, metrics such as MAE, RMSE, and R2 are calculated
to assess the accuracy and predictive power of the model (Table 3;
Table 4). For the pollutant PM2.5, the CNN model exhibited
reasonably good performance, achieving an R2 of 0.889. The
corresponding RMSE and MAE values were 0.166 and 0.046,

TABLE 2 Multicollinearity test results on factors affecting air pollution.

Independent variables PM2.5 PM10 SO2 NO2 CO O3

Altitude 1.8 1.77 2.09 1.6 1.5 1.5

Humidity 4.4 4.3 5.3 5.4 4.8 4.4

Distance to industrial 1.2 1.3 1.2 1.2 1.2 1.2

NDVI 1.1 1.12 1.14 1.07 1.16 1.15

Population density 1.09 1.16 1.17 1.14 1.2 1.2

Rainfall 5.3 5.2 6.2 5.9 5.6 5.5

Distance to street 1.13 1.13 1.14 1.19 1.2 1.2

Temperature 5.9 3.6 4.9 5.2 5.1 5.2

Traffic volume 1.2 1.09 1.2 1.13 1.15 1.09

Wind direction 3.9 3.4 4.1 3.6 3.5 3.6

Wind speed 6.7 6.8 6.3 6.5 6.6 6.3
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respectively. However, the CNN-AE model surpassed the CNN
model’s performance, demonstrating an improved R2 of 0.969.
Moreover, the RMSE and MAE values for the CNN-AE model
were 0.087 and 0.157, respectively, indicating better accuracy and
precision in predicting PM2.5 concentrations.

Regarding the pollutant PM10, both models performed
exceptionally well. The CNN model achieved an impressive R2 of
0.972, suggesting that the model could explain approximately 97.2%
of the PM10 concentration variance. Additionally, the CNN model
exhibited low RMSE and MAE values of 0.082 and 0.053,
respectively. The CNN-AE model further enhanced the
prediction accuracy, yielding an even higher R2 of 0.98. The
RMSE and MAE values for the CNN-AE model were 0.0701 and
0.045, respectively, indicating a significant improvement over the
CNN model. For the pollutant SO2, both the CNN and CNN-AE
models demonstrated commendable performance. The CNN model
achieved an R2 of 0.951, suggesting that the model could explain
approximately 95.1% of the SO2 concentration variability. The
corresponding RMSE and MAE values were 0.11 and 0.075,
respectively. The CNN-AE model showed similar performance,
with an R2 of 0.955, indicating a comparable ability to explain
the variability in SO2 concentrations. The RMSE and MAE values
for the CNN-AE model were 0.105 and 0.067, respectively,
demonstrating their effectiveness in predicting SO2 levels.

Regarding the pollutant NO2, both models exhibited solid
predictive capabilities. The CNN model achieved an R2 of 0.972,
indicating that the model could explain approximately 97.2% of the
NO2 concentration variability. The RMSE and MAE values were
0.083 and 0.054, respectively, suggesting accurate predictions. The
CNN-AE model outperformed the CNN model, attaining an
exceptional R2 of 0.994. The RMSE and MAE values for the
CNN-AE model were significantly lower at 0.038 and 0.032,
respectively, indicating superior precision and accuracy in
predicting NO2 concentrations. For the pollutant O3, both
models demonstrated satisfactory performance. The CNN model
achieved an R2 of 0.949, suggesting that the model could explain
approximately 94.9% of the O3 concentration variability. The RMSE
and MAE values were 0.112 and 0.08, respectively. The CNN-AE
model improved the prediction accuracy with an R2 of 0.96.

Regarding the CO pollutant, the CNN model demonstrated a
high level of performance, as indicated by an R2 value of 0.952. This
suggests that the model’s predictions account for around 95.2% of
the variability in CO concentrations. The RMSE andMAE values for
CO were calculated as 0.109 and 0.073, respectively. Notably, the
CNN-AE further enhanced the accuracy of CO predictions. The
CNN-AE model achieved an improved R2 value of 0.978, indicating
that the model captured approximately 97.8% of the CO
concentration variability. The corresponding RMSE and MAE
values were calculated as 0.073 and 0.044, respectively.

Moving on to the test data, the CNN exhibited moderate
performance with R2 values ranging from 0.57 to 0.715 for six
pollutants. The RMSE values ranged from 0.265 to 0.324,
indicating some difference between the predicted and actual values.
TheMAE values ranged from 0.162 to 0.233, representing the average
absolute difference between predicted and actual values. In contrast,
the CNN-AE improved performance on the test data compared to the
CNN. It achieved higher R2 values ranging from 0.681 to 0.829,
indicating a better fit. The lower RMSE values, ranging from 0.205 to
0.281, suggested more accurate predictions. The MAE values ranged
from 0.106 to 0.185, indicating a more negligible average absolute
difference between predicted and actual values compared to the CNN.

In summary, integrating the AE with the CNN algorithm
showed promising results in air quality management. The CNN

FIGURE 6
Feature importance results using GeoDetector.
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and CNN-AE models exhibited strong performance in the training
phase, with the CNN-AE model consistently outperforming the
CNN. Although there was a slight decrease in performance during
the testing phase, the CNN-AE model maintained its superiority
over CNN. Figure 8 shows the fitting diagram of the training and test
data on the target data.

3.4 Creation of risk map and validation

Using the trained model, the CNN-AE model estimated
pollutant concentrations for each location in the study area.
These estimated concentrations were then assigned risk levels to

different regions based on classification criteria. The risk levels could
be categorized as very low, low, moderate, high, and very high,
representing varying degrees of pollution severity (Figure 9). The
risk maps were generated by overlaying the estimated pollutant
concentrations onto a geographical map of the study area. Each
region was color-coded according to the assigned risk level,
providing an intuitive visualization of the pollution hotspots and
areas of concern, and according to the risk maps generated from the
CNN-AE model, the southwest and northeast regions exhibited
higher risk levels for CO pollution. Concerning O3 pollution,
elevated risk levels were observed in the north, east, and west
areas. The risk of NO2 pollution was particularly pronounced in
the north and central regions. In the case of SO2 pollution, the risk

FIGURE 7
Loss function comparison of CNN and CNN-AE models: (A) CO, (B) O3, (C) NO2, (D) SO2, (E) PM10, and (F) PM2.5.

TABLE 3 Result of air pollution modeling in the training phase.

Pollutants CNN CNN-AE

R2 RMSE MAE R2 RMSE MAE

PM2.5 0.889 0.166 0.046 0.969 0.087 0.157

PM10 0.972 0.082 0.053 0.98 0.0701 0.045

SO2 0.951 0.11 0.075 0.955 0.105 0.067

NO2 0.972 0.083 0.054 0.994 0.038 0.032

O3 0.949 0.112 0.08 0.96 0.099 0.073

CO 0.952 0.109 0.073 0.978 0.073 0.044

TABLE 4 Result of air pollution modeling in the test phase.

Pollutants CNN CNN-AE

R2 RMSE MAE R2 RMSE MAE

PM2.5 0.715 0.265 0.162 0.793 0.226 0.157

PM10 0.691 0.277 0.163 0.829 0.205 0.106

SO2 0.608 0.312 0.222 0.77 0.238 0.164

NO2 0.678 0.28 0.167 0.763 0.24 0.151

O3 0.57 0.324 0.233 0.681 0.281 0.185

CO 0.606 0.312 0.178 0.805 0.22 0.145
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was concentrated in the south and northeast areas. PM10 pollution
posed a higher risk in the west and southwest regions, while PM2.5

pollution was more prominent in the southern part.
Several evaluationmetrics were employed to assess the effectiveness

of the risk maps generated by the CNN-AEmethod, including the ROC
curve, AUC, and Youden index J. These metrics were used to analyze
the performance of the risk maps in terms of their ability to accurately
discriminate between different risk levels. The evaluation results, as
presented in Table 5 and Figure 10. For NO2, an AUC of 0.964 was
obtained, indicating a high level of discrimination between different risk
levels. The Youden index J was 0.8936, further confirming the model’s
ability to identify the optimal threshold for risk classification. The
Standard Error was 0.0235, and the 95% Confidence Interval ranged
from 0.903 to 0.991, indicating high precision in the risk map. The z
statistic value was 19.72, and the significance level was p < 0.0001,
demonstrating the statistical significance of the results.

Similarly, for PM10, an AUC of 0.95 was achieved, indicating
good discriminatory power. The Youden index J was 0.8276,

highlighting the model’s effectiveness in identifying risk
thresholds. The Standard Error was 0.0175, and the 95%
Confidence Interval ranged from 0.907 to 0.977, indicating a
high confidence level in the risk map. The z-statistic value was
25.764, and the significance level was p < 0.0001, further
confirming the statistical significance of the findings. The
performance of the CNN-AE algorithm was also evaluated for
CO, PM2.5, O3, and SO2. The AUC values for CO, PM2.5, and O3

were 0.896, 0.878, and 0.877, respectively, demonstrating moderate
to high discriminatory power. The Youden index values were 0.75,
0.7368, and 0.7292, indicating the model’s ability to identify
suitable risk thresholds. The Standard Errors were 0.0321,
0.0298, and 0.0391, respectively, showing the precision of the
risk maps. The 95% Confidence Intervals ranged from 0.827 to
0.944 for CO, 0.815 to 0.926 for PM2.5, and 0.794 to 0.935 for O3,
further strengthening the reliability of the risk estimates. The
z-statistic values were 12.332, 12.69, and 9.632, respectively, and
the significance levels were p < 0.0001 for all three pollutants,

FIGURE 8
Error diagram in training and test data. (A) CO, (B) O3, (C) NO2, (D) SO2, (E) PM10, and (F) PM2.5.
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underscoring the statistical significance of the observed results.
Lastly, for SO2, an AUC of 0.811 was obtained, indicating an
acceptable level of discrimination between risk levels. The Youden

index J was 0.6308, suggesting the model’s capability to identify
appropriate risk thresholds. The Standard Error was 0.0425, and
the 95% Confidence Interval ranged from 0.733 to 0.874, providing

FIGURE 9
Risk map of different pollutants.

TABLE 5 Validation result of air pollutants risk mapping.

Parameter AUC Youden index J Standard error 95% confidence interval z statistic Significance level

NO2 0.964 0.8936 0.0235 0.903 to 0.991 19.72 p < 0.0001

PM10 0.95 0.8276 0.0175 0.907 to 0.977 25.764 p < 0.0001

CO 0.896 0.7500 0.0321 0.827 to 0.944 12.332 p < 0.0001

PM2.5 0.878 0.7368 0.0298 0.815 to 0.926 12.690 p < 0.0001

O3 0.877 0.7292 0.0391 0.794 to 0.935 9.632 p < 0.0001

SO2 0.811 0.6308 0.0425 0.733 to 0.874 7.317 p < 0.0001
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a reliable estimate of the risk map. The z statistic value was 7.317,
and the significance level was p < 0.0001, affirming the statistical
significance of the results. Integrating the AE with the CNN
algorithm proved effective in spatial modeling and risk
mapping of the six air pollutants. The high AUC values,

significant Youden index values, narrow confidence intervals,
and low p-values indicate the model’s ability to discriminate
between different levels of pollutant risk and its statistical
reliability. These results contribute to our understanding of the
spatial distribution and potential.

FIGURE 10
Validation of risk maps by ROC curve.
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4 Discussion

The study’s outcomes indicate that combining AE with CNN
algorithms is a successful approach for spatial modeling and risk
mapping of six air pollutants. By combining the strengths of these
two techniques, we overcame-overcame the limitations of traditional
modeling approaches and achieved more accurate predictions of air
pollutant concentrations. This section discusses the key findings,
implications, limitations, and potential future directions of the
research. One of the major findings of this study is the
significant improvement in modeling accuracy achieved through
the CNN-AE fusion approach. Integrating the autoencoder allowed
for extracting essential features and patterns from the air pollutant
data, effectively reducing dimensionality while preserving relevant
information (Dairi et al., 2021).

On the other hand, the CNN leveraged the spatial relationships
and patterns in the data, enabling more precise modeling of the
pollutant concentrations across the study area (Jiang et al., 2022). As
a result, the combined model outperformed traditional modeling
approaches, as evidenced by the reduced MAE and RMSE values.
The superior performance of the CNN-AE model can be attributed
to the benefits provided by the AE component. The AE enables the
model to learn a compact and meaningful representation of the
input data, which enhances its ability to extract relevant features and
patterns. This feature extraction capability is significant in air quality
management, as various complex and interrelated factors influence
pollutant levels (Cheng et al., 2018; Shankar and Parsana, 2022).

The GeoDetector method assessed the importance of different
parameters on various air pollutants, revealing crucial insights for
policymakers and researchers. For the CO pollutant, the observed
influence of temperature, wind speed, and wind direction can be
attributed to their impact on the combustion processes and
emissions. Higher temperatures may enhance CO’s chemical
reactions, increasing pollutant levels (Noyes et al., 2009). Wind
speed and direction play a crucial role in the dispersion of CO
emissions, affecting the spatial distribution and concentration of the
pollutant (Gorai et al., 2015). Regarding the O3 pollutant, humidity,
rainfall, and altitude are important factors. The formation of ozone
is primarily influenced by photochemical reactions that occur when
nitrogen oxides (NOx) and volatile organic compounds (VOCs) are
present in sunlight (Swamy et al., 2012). Humidity and precipitation
can influence these reactions by altering the availability of reactants
and the rate of chemical transformations (Bell, 2020). Altitude plays
a role in determining the amount of solar radiation and the
temperature conditions conducive to ozone formation (Zhao
et al., 2019). For PM10, altitude, wind direction, and wind speed
have significant impacts. Altitude affects the dispersion and
transport of PM10 particles, with higher altitudes often leading to
increased atmospheric mixing and dilution of pollutants (Li et al.,
2019). Wind direction and speed determine the pathways and
distances PM10 particles can travel, influencing their spatial
distribution and concentration (Wang et al., 2010).

Regarding the NO2 pollutant, the altitude parameter indicates
the vertical distribution of NO2 emissions (Salmond et al., 2013).
Higher emissions released from industrial sources or vehicle
exhausts closer to the ground can contribute to increased levels
of NO2 (Richter et al., 2005). Rainfall can play a role in removing
NO2 from the atmosphere through wet deposition, while wind

direction influences the spatial distribution and transport of NO2

emissions (Matejko et al., 2009). For PM2.5, altitude, rainfall, and
temperature exhibit notable effects. Altitude influences the vertical
distribution of PM2.5 particles, with emissions and sources at
different heights impacting their ground-level concentration
(Peng et al., 2015). Rainfall can remove PM2.5 particles from the
atmosphere, lowering pollutant levels (Nowak et al., 2013).
Temperature can influence the chemical reactions and physical
processes involved in forming, transforming, and dispersing
PM2.5 particles (Su et al., 2020). Finally, for the SO2 pollutant,
temperature affects the rates of chemical reactions involving SO2.
Higher temperatures can facilitate the conversion of SO2 into other
secondary pollutants, such as sulfuric acid aerosols (He et al., 2014).
Wind direction and height play a role in the transport and
dispersion of SO2 emissions, influencing the spatial distribution
and concentration of the pollutant (Hong et al., 2021).

Our analysis revealed higher risk levels of SO2 pollution in
Tehran’s northeastern, central, and southern regions. This
heightened risk can be attributed to the concentration of
industrial zones and higher population density in these areas.
Industrial activities and dense urban settlements are known to be
significant sources of SO2 emissions, contributing to elevated
pollution levels. Our findings depicted higher risk levels of PM2.5

and PM10 pollution in Tehran’s southwestern and southern regions.
This pattern can be attributed to the concentration of industrial
areas in these zones. Industrial activities are a significant source of
particulate matter emissions, contributing to higher pollution levels
in nearby residential and commercial areas. The risk maps for CO
indicated increased risk levels in the southwestern and northeastern
parts of Tehran. This observation can be linked to the density of road
networks and higher traffic volume in these areas. The combustion
of fossil fuels in vehicles releases CO emissions, resulting in elevated
concentrations near significant roadways and urban centers. The
risk maps for O3 pollution indicated elevated risk levels in the
northern, southern, and eastern parts of Tehran. This heightened
risk is associated with increased traffic emissions, NOx, indirectly
contributing to O3 formation through photochemical reactions.
Additionally, Tehran’s central, northeastern, and eastern areas
exhibited higher NO2 concentrations due to population density
and increased vehicular traffic.

Despite the valuable insights gained from this research on air
quality management using spatial modeling, risk mapping, and the
integration of the AE with the CNN algorithm, it is important to
acknowledge certain limitations and offer suggestions for future
research. Firstly, the accuracy of the models heavily relies on the
quality and representativeness of the input data. Any inaccuracies or
biases in the monitoring data could affect the reliability of the
models and risk maps. Additionally, the spatial criteria used in the
analysis are based on existing knowledge and assumptions about
factors influencing air pollution. There may be other unaccounted
spatial parameters that could affect the models’ accuracy. Future
studies could explore incorporating more comprehensive datasets
and advanced feature selection techniques to enhance the
modeling accuracy.

Furthermore, the evaluation metrics used in this study, such as
MAE and RMSE, provide an overall assessment of the modeling
performance. However, it is essential to consider additional
evaluation measures, such as spatial validation techniques, to
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assess the goodness of fit and the model’s ability to capture spatial
patterns accurately. This can provide further insights into the
reliability and generalizability of the risk maps generated. In
terms of future directions, this research opens avenues for
exploring additional techniques and methodologies to enhance
air quality modeling and risk mapping. For example,
incorporating spatiotemporal modeling approaches could capture
the dynamic nature of air pollution and improve the accuracy of
predictions. Furthermore, integrating other machine learning
algorithms or hybrid models could yield even better results by
leveraging the strengths of different techniques.

The improved spatial modeling and risk mapping techniques
developed in this study provide valuable tools for policymakers and
environmental regulators to design targeted interventions and
implement evidence-based policies for air quality management. By
identifying pollution hotspots and understanding the underlying
factors contributing to elevated pollutant levels, policymakers can
prioritize resources and implement mitigation measures to reduce
exposure and protect public health. Furthermore, integrating
advanced modeling techniques can enhance the effectiveness of
regulatory initiatives to reduce emissions from industrial facilities,
transportation networks, and other pollution sources.

The successful fusion of AE with CNN opens up new avenues for
air quality modeling and risk assessment research. Future studies
could explore further enhancements to the modeling framework by
incorporating additional data sources, refining feature extraction
algorithms, and integrating spatiotemporal modeling approaches to
capture the dynamic nature of air pollution. Additionally, research
efforts could focus on investigating the interactions between
different pollutants and identifying synergistic effects on human
health, ecosystems, and climate change. Furthermore,
interdisciplinary collaborations between researchers from various
domains, including environmental science, computer science, and
public health, can facilitate the development of innovative solutions
to address complex air quality challenges.

5 Conclusion

This research presents a novel and innovative approach for spatial
modeling and risk mapping of six air pollutants by combining AE
with a CNN algorithm. Integrating these two techniques has
significantly improved modeling accuracy and the generation of
informative risk maps. The research results indicate that the
integrated CNN-AE model outperforms the standalone CNN
model regarding predictive accuracy. The evaluation of the models
on train and test data further confirmed the superiority of the CNN-
AE model, as it achieved higher R2 values, lower RMSE values, and
smallerMAE values than the CNNmodel. These findings suggest that
integrating the AE with the CNN algorithm enhances the model’s
ability to capture and utilize the spatial relationships in the pollutant
data. In the study area, the pollutants were most influenced by specific
parameters, namely, altitude, wind direction, wind speed, rainfall, and
temperature, as determined by applying the GeoDetector method.

The riskmaps generated by the CNN-AEmodel indicated distinct
pollution patterns across different regions. The southwest and
northeast regions showed higher risk levels for CO pollution.
Elevated risk levels for O3 pollution were observed in the north,

east, and west areas. The north and central regions exhibited a
pronounced risk of NO2 pollution. The risk of SO2 pollution was
concentrated in the south and northeast areas. PM10 pollution posed a
higher risk in the west and southwest regions, while PM2.5 pollution
was more prominent in the southern part. The risk maps generated
through the integrated methodology provide valuable insights for air
quality management. By visualizing the spatial distribution of the
pollutant concentrations, these risk maps help identify high-risk areas
and pollution hotspots. This information is crucial for policymakers,
environmental agencies, and stakeholders to prioritize mitigation
efforts and allocate resources effectively. The risk maps can also
support decision-making processes, facilitating the development of
targeted interventions to reduce pollutant levels and protect public
health. For future research, it is suggested that the CNN-AEmodel be
adapted and validated across diverse geographical regions to ensure
generalizability and robustness. Incorporating real-time data from
sensors and satellite imagery could enhance the model’s real-time air
quality monitoring applicability. Additionally, expanding the
methodology to include a broader range of pollutants and
investigating the impact of climate change on pollution patterns
will provide comprehensive assessments. Linking the risk maps
with health impact assessments could offer valuable insights into
public health implications, supporting informed policy development.
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