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Estimating the latent heat flux (λET) accurately is important for water-saving
irrigation in arid regions of Northwest China. The Penman-Monteith model is a
commonly used method for estimating λET, but the parameterization of canopy
resistance in the model has been a difficulty in research. In this study, continuous
observation of λET during the growing period of maize and grassland in
Northwest China was conducted based on the Bowen ratio energy balance
(BREB) method and the Eddy covariance system (ECS). Two methods, Katerji-
Perrier (K-P) and Garcıá-Santos (G-A), were used to determine the canopy
resistance in the Penman-Monteith model and the estimation errors and
causes of the two sub-models were explored. The results indicated that both
models underestimated the λET of grassland and maize. The K-P model
performed relatively well (R2 > 0.94), with the root mean square errors (RMSE)
equaled 37.3 and 28.1W/m2 for grass andmaize, respectively. The accuracy of the
G-A model was slightly lower than that of the K-P model, with the determination
coefficient (R2) equaled 0.90 and 0.92, and the RMSE equaled 46.2 W/m2 (grass)
and 42.1 W/m2 (maize). The vapor pressure deficit (VPD) was the main factor
affecting the accuracy of K-P and G-A sub-models. The error of two models
increased with the increasing in VPD for both crops.
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1 Introduction

As the inefficient utilization of water resources have become key constraints to eco-
logically sustainable development, the development of reasonable irrigation systems is
essential. Accurate determination of λET can provide a scientific basis for the development
of a rational irrigation regime (Zhang et al., 2015; Niu et al., 2016; Yu, 2022). The λET is a
important part of the energy balance and the water balance, which is closely related to the
physiological activity of the crop and the harvested yield (Yan et al., 2023; Zheng et al.,
2023). Substantial progress has been made by previous researchers on the actual
measurement and simulation of λET (Yan et al., 2022b). Among them, the Penman-
Monteith (P-M) model is one of the most commonly used methods to simulate λET. The
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P-M model takes into account the effects of the canopy resistance
(rc) and the aerodynamic resistance (ra) at the same time, and it can
clearly reflect the process of evapotranspiration, which is the main
model for the estimation of λET in a wide range of applications at the
present time (Rana et al., 1997b; Yan et al., 2015). However, some of
the parameters in the P-M model usually have uncertainties under
different subsurface conditions, so the model parameters need to be
corrected (Xu et al., 2020). The determination of rc, which has a large
impact on the estimation accuracy of the model, has been a difficult
issue in research as well as in application. Many approaches have
been developed to obtain the rc, such as the Katerji-Perrier (K-P),
Garcıá-Santos (G-A), Todorovic (T-D), Jarvis and Leuning models
(Katerji et al., 1983b; Todorovic, 1999; Li et al., 2014; Haofang et al.,
2019; Guo et al., 2022). Accurately calculating rc as a function of
external factors is typically challenging. Katerji et al. (1983a)
therefore propose a semi-empirical approach, where rc depends
on aerodynamic resistance and climate variables and its
parameters need to be calibrated in situ (K-P model). The K-P
model contains only 2 empirical coefficients and a large number of
practices have found that the K-P model can be well applied to maize,
grassland, soybean, sorghum, sunflower and other crops (Rana et al.,
1994; Rana et al., 1997a; Todorovic, 1999; Rana et al., 2001; Lecina
et al., 2003; Yan et al., 2022a). Todorovic (1999) created a mechanistic
model for calculating λET that does not require in situ calibration, and
the rc is also dependent on aerodynamic resistance and climate
variables (T-D model). According to Monteith (1965), the rc can
be calculated by dividing the minimal stomatal resistance by the leaf
area that is participating in the energy exchange. The Jarvis model was
developed by Jarvis (1976) and was widely used to explain how
environmental conditions affect stomatal behavior. García-Santos
et al. (2009) proposed a simplified rc model (G-A model) by
retaining only net radiation (Rn) and water vapor pressure
difference (VPD) in the Jarvis-Stewart model, and the G-A model
better simulated λET for trees, but it has not yet been applied in the
estimation of λET for grassland andmaize. García-Santos et al. (2009)
indicated that the G-A model has better performance in arid regions.
The G-A model is similar in complexity to the K-P model in that it
contains 2 model parameters (Guo et al., 2022).

Liu et al. (2012) studied the performance of deriving time series
of λET data for the crop of maize and canola in the lower part of the
Murrumbidgee River Catchment in southeastern Australia and
pointed out that the K-P method performed well, with the R2

and RMSE equaled 0.80–65.15 W/m2, respectively. Gharsallah
et al. (2013) conducted a preliminary study on the λET models
for a surface irrigated maize agro-ecosystem in Italy, pointing out
that the K-P model provides a good accuracy, with the R2 and NSE
equaled 0.73–0.76, respectively. Li (2019) used 10 canopy resistance
sub-models such as K-P and G-A as the basis, and assessed the λET
of maize in Baiyin City, Gansu Province through the P-M model,
and the results showed that the K-Pmodel gave more reliable results,
and the G-A model had an overall error of 45.76% in 2 years, which
made the simulation effect poorer. Yan et al. (2022a) conducted field
observation experiments on summer maize and winter wheat in
Southern Jiangsu Province, China, and found that both the K-P and
T-D models could estimate the λET well, but the K-P model was
more superior and the simulation results were more accurate
compared to the T-D model for both crops. Lecina et al. (2003)
experimented with the resistance for reference evapotranspiration

estimation in the Zaragoza and Co´rdoba, pointed out that the K-P
model gave more reliable results. Li et al. (2015) conducted a
preliminary study on the crop λET over the entire growing
season in Wuwei City, Gansu Province of northwest China, pointing
out that the G-A canopy resistance model after calibration has better
accuracy in dense canopy phase. Guo et al. (2022) assessed the λET of
winter wheat in northern China using six differentmodels and observed
significant improvements in the simulation results of the corrected G-A
model compared to those prior to correction; after calibration, the
models’ effectiveness in estimating λET varied from excellent to good,
ranked as follows: K-P, G-A, T-D, P-M, CO, and Jarvis. Among them,
although the K-P and G-A models has been shown its good
performance, the obtained model parameters in previous studies are
not identical. Moreover, comparative studies of these twomodels in the
same region as well as an analysis of the causes of errors in both models
have rarely seen. Hence, experimental calibrations for the parameters
for these models are needed based on more observation data from
different fields, and a comparative study to evaluate the performance of
the G-A and K-P methods is required in order to identify an
appropriate approach for the specific field.

Water scarcity was a major problem in arid and semi-arid
regions, constraining local agricultural and economic development.
The Inner Mongolia Autonomous Region in northwestern China was
a prime example of the urgent need to develop water-saving agri-
cultural technologies. Northwest China, as an important agricultural
reserve and strategic base for grain production (Deng, 2018), has a
scarce precipitation (<500mmof annual rainfall), and is characterized
by arid, continental arid, semi-arid, and alpine climates (Guo et al.,
2018). Irrigation water in the region is primarily derived from
groundwater. Reductions in water diversions have made the task
of determining accurate water consumption in the region even more
urgent. Therefore, it is particularly important to determine precise
irrigation regimes to minimize water wastage by accurately estimating
the water consumption of major crops in the region. Despite many
studies have conducted on the parameterization and validation of the
P-M and canopy resistance models, the generalizability of the
parameterization results and model accuracy still varies widely.
Hence, the primary objective of this study is to assess the
performance of λET simulated using the P-M model, by
integrating the rc sub-models (the K-P and G-A models), for two
different vegetated covers (grass and maize) in the northwest area of
China. The estimated λET were compared to the corresponding
measured values using the Bowen ratio energy balance (BREB)
and Eddy covariance system (ECS) methods. The causes of the
discrepancies between the estimated and measured λET were
analyzed. The optimal approach to estimate λET at the grassland
and maize fields was recommended for establishing a more accurate
irrigation scheduling. Analyzing the causes of estimation errors of the
two models (the K-P and G-A models) in order to provide a scientific
basis for predicting crop λET in arid regions.

2 Material and method

2.1 Experimental site

The experiments were conducted in a grassland and amaize field
in 2020 and 2022, respectively. The grassland was located in

Frontiers in Environmental Science frontiersin.org02

Wang et al. 10.3389/fenvs.2024.1397704

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2024.1397704


Yinshanbeilu Grassland Eco-hydrology National Observation and
Research Station (N41°35′25″, E111°20′80″). The maize field was
located in Chagan Sanshe, Suburga Township, Yijinholo Banner,
respectively (N39°53′51″, E109°60′15″) (Figure 1).

The Yinshanbeilu Grassland Eco-hydrology National
Observation and Research Station is located in the Damao
Banner, Baotou City, Inner Mongolia. The total area of the
research station is about 1.3 km2, the altitude is 1,600 m, the
annual mean temperature (Ta) of the location is 3.8°C, the
annual mean wind speed is 5.3 m/s, the annual mean
precipitation is 246 mm, the annual mean evaporation from
the water surface is 2,200 mm, and the annual mean frost-free
period is 110 days. The soils in the experimental site are
chestnut soil. Due to differences in topography, parent
material, water conditions, saline-alkali soil, and aeolian sand
soil are formed in some areas. The overall amounts of
potassium, phosphorus, and nitrogen in the soil were 2.5%,
0.08%–0.15%, and 0.1%–0.15%, respectively. Also, the pH of the
soil ranged from 8 to 8.5. Grazing was the predominant land
use, moderate-to-severe degradation had been widely
distributed, and grassland overload in grazing regions was a
major concern (Han et al., 2023).

The altitude of Suburga Township, Yijinholo Banner, Ordos
City, is 1,456 m above sea level, the annual mean temperature (Ta)
is 7.6°C, the average annual wind speed is 2.8 m/s, the average
annual precipitation is 260 mm, the average annual evaporation
from the water surface is 2,501 mm, and the average annual frost-
free period is 160 days. The main crop grown in the area was
maize. The climate type of the two areas is a mid-temperate and
semi-arid continental monsoon climate and the soil texture
is sandy loam.

2.2 Experimental details

The Krylov Needlegrass was the typical grassland group species
in the Yinshanbeilu area, and the common species used were
Artemisia frigida Willd, Leymus chinensis (Trin.) Tzvel., and
Agropyron cristatum (L.) Gaertn (Han et al., 2022). The average
height and coverage of vegetation was 40 cm and 35%, respectively
(Miao et al., 2022). The growth periods of the grass in this study were
divided into early (May 13–June 15), middle (June 15–August 15),
and late stage (August 15–October 12).

Air temperature (Ta), relative humidity (RH), net radiation
(Rn) and surface temperature (Ts) during grass growing season
were measured by an ENVIS meteorological system (IMKO,
Germany) at the Yinshanbeilu Grassland Eco-hydrology
National Observation and Research Station. The meteorological
observation instrument was installed at a height of 3.5 m. Air
temperature and humidity sensors (HMP45C, Vasisla, Helsinki,
Finland) were included, which were used to observe Ta and RH. In
addition, Rn was observed by four-channel net radiation sensors
(Kipp and Zonen, the Netherlands). The Ts was observed by an
infrared radiometer (SI-111, Campbell Scientific, Inc.,
United States). The soil water content (SWC) at depths of
0–10 cm was measured. A tipping bucket rain gauge
(TE525WS, Campbell Scientific Inc., United States) was used to
measure precipitation (P) and stored after calculating the average

value for 30 min. The Eddy covariance system (ECS) used in this
study was manufactured by Licor Corporation, United States. The
system mainly consisted of a three-dimensional ultrasonic
anemometer (CSAT-3, Campbell Scientific, Logan, UT,
United States), an infrared gas analyzer (LI-7500, Li-CORInc,
United States), integrate, short and longwave radiation in one
sensor (NR-LITE, Campbell Scientific), two soil heat flux plates,
which were buried about 10 cm below the ground surface (HFP01,
Campbell Scientific). The data acquisition (CR3000, Campbell
Scientific) was at a frequency of 10 Hz with a measurement
step of 30 min (8:00–18:00).

Maize (Fengtian 1,631) in Yijinholo Banner was planted in
1 May 2022 and harvested in 30 September 2022 with a planting
density of 5,600 plants/acre. The experiment was conducted using a
single-wing labyrinth drip irrigation laterals with 0.3 m emitter
spacing, emitter flow rate of 3.6 L/h and wall thickness of 0.4 mm.
The drip irrigation pipes were buried at 3–5 cm under the
soil surface.

An automated weather station was installed in the middle of the
maize field. Net radiation (Rn) was measured by a CNR-4 sensor
(Kipp and Zonen, the Netherlands) at 3 m above ground. Air
temperature and relative humidity were recorded with
psychrometers HMP155A (Vaisala, Finland) at a height of
3 and 4 m above ground. The infrared thermometer (SI-111,
Apogee, United States) was adjusted to the height of the crop
canopy during the experiment and continuously measured the
crop canopy temperature. Wind speed and direction were
measured by a three cups anemometer A100L2 (MetOne,
United States) at 3 m above ground. Soil heat flux was
measured with a soil heat flux plate HFP01-L10 (Campbell
Scientific, United States). All the sensors were connected to a
data logger CR3000 (Campbell Scientific, United States) and all the
data were sampled every 10 s, averaged every 10 min. The accuracy
of all the sensors was validated before the installation. The maize
field was surrounded by other similar crops and the installation
height of the probes used to observe the air temperature and
relative humidity was low (50–100 cm above the canopy), so,
adequate fetch length can be met.

2.3 Methods

The energy balance equation could be expressed as Eq. 1 (Shi
et al., 2021):

Rn − G � λET +H (1)
where, Rn is net radiation (W/m2), G is soil heat flux (W/m2), λET is
latent heat flux (W/m2), H is sensible heat flux (W/m2).

Hourly latent heat flux of maize was obtained by the
Bowen ratio energy balance (BREB) method (Yan et al.,
2021) given by Eq. 2:

λET � Rn − G

1 + β
(2)

where, β is the Bowen ratio and can be expressed as Eq. 3:

β � H

λET
� λ

ΔT
Δe (3)

Frontiers in Environmental Science frontiersin.org03

Wang et al. 10.3389/fenvs.2024.1397704

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2024.1397704


where, ΔT is the air temperature gradient, Δe is the actual
vapor pressure gradient and λ is the psychrometric constant
(kPa/°C).

Hourly λET of grassland was obtained by the Eddy covariance
system (ECS).

The latent heat flux (λET) was calculated from the covariance
between the vertical wind speed and the water vapor concentration,
as shown in Eq. 4:

λET � ρCpw′q′ (4)

where, λET represents the latent heat flux (W/m2), ρ represents the
air density (kg/m3), Cp is the specific heat of air (J/(kg·°C)), and w′
and q′ represent the pulsations of the vertical wind speed and water
vapor content, respectively.

Energy balance closure analysis of the ECS is one of the main
methods for analyzing the reliability of flux data, the energy balance
ratio (EBR) was determined using Eq. 5:

EBR � ∑ λET +H( )∑ Rn − G( ) × 100% (5)
where, EBR denotes the energy closure (%),G denotes the soil heat
flux (W/m2), H denotes the sensible heat flux (W/m2), and Rn

denotes the net radiation (W/m2).
The EBR during the observation period (May- October 2020)

was approximately 85% (Figure 2). Li et al. (2018) analyzed the site
energy closure of the Chinese flux network with R2 ranging from
0.51 to 0.93 and regression slopes from 0.54 to 0.88. The energy
closure of this site is in a reasonable range compared to data from
other sites.

FIGURE 1
Location of the study area.

FIGURE 2
The energy balance ratio in May–October 2020.
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2.4 Model description

2.4.1 Penman-Monteith model
The λET were calculated by the Penman-Monteith (P-M) model

(Monteith, 1965) as Eq. 6:

λET � Δ Rn − G( ) + ρaCp
VPD
ra

Δ + γ 1 + rc
ra

( ) (6)

where, VPD is the water vapor pressure difference (kPa), ρa is the
density of air at atmospheric pressure (kg/m3), Cp is the specific
heat of air [J/(kg·°C)], Δ is the slope of the curve relating saturated
water vapor pressure and temperature (kPa/°C), rc is the canopy
resistance parameter (s/m), ra is the aerodynamic resistance
(s/m).

The rawas calculated by applying the logarithmic function of the
wind speed. The equation (Perrier, 1975) are Eqs 7–9:

ra �
ln z−d

z0
ln z−d

hc−d
K2uz

(7)
z0 � 0.123hc (8)
d � 0.67hc (9)

where, K is the von Karman constant (=0.41), z is the height of wind
measurements (m), d is the zero plane displacement height (m), uz is
the wind speed at height z (m/s), hc is the mean height of
the crop (m).

2.4.2 Katerji-Perrier model
Katerji et al. (1983b) developed a linear relationship

between the ratios rc/ra and r*/ra with the following relation
(K-P model), as shown in Eq. 10:

rc
ra

� a
r*
ra

+ b (10)

where, a and b are empirical coefficients, r* is climatic resistance (s/
m) and defined as Eq. 11:

r* � Δ + γ

Δγ
ρCpVPD

Rn − G
(11)

While the K-P method and the P-M equation share similar
hypotheses, the K-P method makes the assumption that the ae
rodynamic resistance originates from the top of the canopy and that
the “big leaf” is situated there. Thus, the following is a suggested
aerodynamic resistance (Rana et al., 2005), as shown in Eq. 12.

ra �
ln z−d

z0
ln z−d

hc−d
k2uz

(12)

where, hc is the reference crop height in this paper, z0 is the
roughness length estimated as z0 = 0.1hc, d is the zero plane
displacement estimated as d = 0.67hc, z is the height of
measurements (m), uz is the wind speed at the height of z (m/s).

2.4.3 Garcıá-Santos model
The Garcıá-Santos (G-A) model is based on the Jarvis-Stewart

model that calculates hourly canopy conductance. Only the Rn and
VPD were considered in the model. The G-A canopy resistance
model is expressed as follows (García-Santos et al., 2009):

1
rc

� gsm
1100 + e1( )Rn

1100 Rn + e1( )( ) exp −e2VPD( ) (13)

where, gsm (mm/s), e1 (W/m2) and e2 (g/kg) are empirical
coefficients which need experimental determination, VPD is the
vapor pressure deficit (kPa).

2.5 Statistical evaluation

The statistical indices include the determination coefficient (R2),
mean absolute error (MAE), Nash-Sutcliffe Efficiency (NSE) and
root mean square error (RMSE), defined as shown in Eqs 14–16:

MAE � 1
n
∑n

i�1 Ei − Oi| | (14)

RMSE �
�������������
1
n
∑n

i�1 Ei − Oi( )2
√

(15)

NSE � 1 − ∑n
i�1 Ei − Oi( )2∑n
i�1 Oi − �O( )2 (16)

where, Ei represent the estimated values, Oi represent the observed
values, O is the mean of observed values, n is the total number
of semple.

3 Results

3.1 Meteorological data

The observed meteorological data during the growing periods of
grass and maize plants are shown in Figure 3. The air temperature
(Ta) and vapor pressure deficit (VPD) during grass growing season
in 2020 (from 13 May 2020 to 5 October 2020) ranged from −4.49°C
to 23.60°C and 0.04–2.29 kPa, with average values equaled 14.74°C
and 0.78 kPa, respectively. Daily Rn ranged from 19.2 to 200.4W/m2,
with mean value of 116.1 W/m2. The daily wind speed (u) varied
from 0.12 to 4.87 m/s, with the highest value of 4.87 m/s in the
summer season.

The Ta and VPD ranged from 8.71°C to 27.53°C and
0.09–3.08 kPa, with average values equaled 19.79°C and 1.03 kPa
during maize growing season in 2022 (from 29 May 2022 to
28 September 2022). Daily Rn ranged from 0.17 to 216.31 W/m2,
with mean value of 129.95 W/m2. The value of u varied from 0.69 to
5.20 m/s, with mean value of 2.24 m/s.

3.2 Estimation of latent heat flux

3.2.1 Calibration of the Katerji-Perrier model
The K-P model was calibrated based on the data from

grassland and maize fields individually. The model coefficients
a and b were yielded from the linear regression between rc/ra and
r*/ra for each site. In this study, the K-P model was calibrated
using hourly data during ten typical clear days, which were
randomly chosen from the experimental periods at the
grassland and maize fields. The rc was computed by inverting

Frontiers in Environmental Science frontiersin.org05

Wang et al. 10.3389/fenvs.2024.1397704

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2024.1397704


the Eq. 6 with the measured λET. The Figure 4, Eqs 17, 18
represent the results of the linear regression between the rc/ra and
r*/ra for the grassland and maize. The regression coefficients a
and b of the K-P model were 0.67 and −1.74 for grassland and
0.74 and 4.8 for maize, respectively. The determination
coefficients (R2) were 0.91 and 0.88 for grassland and maize,
respectively. Moreover, the results of some previous studies for

the calibration results of the K-P model are summarized as shown
in Table 1.

rc
ra

� 0.67
r*
ra

− 1.74, R2 � 0.91 (17)
rc
ra

� 0.74
r*
ra

+ 4.8, R2 � 0.88 (18)

FIGURE 3
The variations of meteorological data during grass and maize growing season in 2020 and 2022, respectively. (A) Ta and VPD for grassland, (B) Rn

and u for grassland, (C) Ta and VPD for maize, (D) Rn and u for maize.

FIGURE 4
Calibration plots for K-P model parameters in grassland and maize field. (A) Grassland, (B) Maize.
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3.2.2 Calibration of the Garcıá-Santos model
The parameters of G-A model were calibrated using the least

squares method through hourly scale data from ten typical clear
days. The basic principle of the least squares method is to
estimate the model parameters on the criterion of
minimizing the sum of squares of the errors. Data for the
days used to calibrate the model were not used for the
validation of modeled rc and λET. The rc was computed by
inverting the Eq. 6 with the measured λET. The optimized
parameters gsm (mm/s), e1 (W/m2) and e2 (g/kg) as well as
the degree of variance explained (%) by the model for grasslands
and maize are listed in Table 2.

The results of some previous studies for the calibration results of
the G-A model are summarized as shown in Table 3.

3.3 Evaluation of the canopy
resistance model

For the K-P model, the slope of the linear relationships between
estimated and measured λET values was 0.95 for grassland and
0.97 for maize during the whole growing period (Figures 5A, B).
Thus, the K-P model underestimated λET slightly both in the
cases of grassland and maize. The intercepts were 0.52 and 3.75,
with RMSE of 37.3 and 28.1 W/m2 for grassland and maize,
respectively.

For the G-A model, the slope of the linear relationships between
estimated and measured λET was 0.94 for the grassland (Figure 5C)
with RMSE of 46.2 W/m2 and NSE of 0.88, indicating that the G-A
model underestimated the λET significantly, while the slope was

TABLE 1 Summary of the calibration coefficients a and b of the K-P model for different study areas or crops conducted by previous studies.

Crop a b R2 Experimental sites References

Tea 1.05 0.30 0.96 Zhenjiang, Jiangsu Yan et al. (2021)

Wheat 0.59 0.12 0.91 Zhenjiang, Jiangsu Yan et al. (2021)

Grass 0.16 0.00 0.59 Southern Italy Rana et al. (1994)

Sunflower 0.45 0.20 0.60 Southern Italy Rana et al. (1997a)

Lettuce 0.73 −0.58 0.97 South-central Portugal Alves and Pereira (2000)

Tomato 0.54 2.40 0.55 Southern Italy Rana et al. (1997a)

Canola 0.09 0.13 0.23 Southeastern Australia Liu et al. (2012)

Grain sorghum 0.54 0.61 0.43 Southern Italy Rana et al. (1997a)

Sweet sorghum 0.85 1.00 0.92 Southern Italy Rana et al. (1997a)

Soybean 0.95 1.55 0.69 Southern Italy Rana et al. (1997a)

Oats 0.88 3.39 0.42 Southern Italy Rana et al. (2011)

Vineyard 0.91 0.45 0.78 Southern Italy Katerji et al. (2011)

Canola 0.09 0.13 0.23 Southeastern Australia Liu et al. (2012)

Maize 1.50 −1.72 0.25 Southeastern Australia Liu et al. (2012)

Maize 0.24 4.44 – Northern Italy Gharsallah et al. (2013)

TABLE 2 Optimized values of parameters (gsm, e1, e2) in the G-A model and the variance explained by the model for grassland and maize.

Crop gsm (mm/s) e1 (W/m2) e2 (g/kg) Variance explained (%)

Grassland 0.38 1742 6.20 79.1

Maize 0.56 1987 8.13 82.4

TABLE 3 Summary of calibration coefficients gsm, e1 and e2 of the G-A model for different crops of previous studies.

Crop gsm (mm/s) e1 (W/m2) e2 (g/kg) Experimental sites References

Maize 0.34 1,589.1 2.132 Baiyin, Gansu Li (2019)

Wheat 4.81 514.82 0.906 Beijing Guo et al. (2022)

Rainy season forests 11.80 433.10 0.084 Canary Islands, Spain García-Santos et al. (2009)

Dry season forests 6.30 280.00 0.046 Canary Islands, Spain García-Santos et al. (2009)
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0.92 for the maize (Figure 5D) with RMSE of 42.1 W/m2 and
NSE of 0.90.

According to the statistics presented in Table 4, the best NSE
value (=0.96) was obtained with the K-P model for maize. The worst
NSE value (=0.88) was obtained with the G-A model for grassland,
despite the G-A model giving an excellent NSE value of 0.90 for
maize. The bestMAE, acquired on maize for K-P method, was equal
to 19.3 W/m2.

4 Discussion

In this study, the K-P and G-A models were used to simulate the
λET based on the P-M model during the growing periods of grass
and maize in the arid region of Northwest China. The estimated λET
values of the K-P and G-A model (λETK-P and λETG-A) were smaller
than the measured λET for grassland. The possible reason might due

to the effects of changes in soil moisture and crop LAI on canopy
resistance during the growing periods were not taken into account.
Li et al. (2015) conducted experimental studies on maize and grape
in the northern region of China based on twelve rc models, and the
results showed that the K-P model simulation results were more
superior. Simulations of λET in olive trees by Margonis et al. (2018)

FIGURE 5
Comparison between the λET of estimated values by two canopy resistance parameter sub-models and the measured values by Bowen ratio
balance method and Eddy covariance system for grassland and maize. (A) K-P for grassland, (B) K-P for maize, (C) G-A for grassland, (D) G-A for maize.

TABLE 4 Statistical indices between estimated and measured λET of
grassland and maize field.

Crop type Model MAE (W/m2) RMSE (W/m2) NSE

Grassland K-P 25.2 37.3 0.93

G-A 30.8 46.2 0.88

Maize K-P 19.3 28.1 0.96

G-A 27.6 42.1 0.90
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showed that the K-P model underestimated λET by about 9.8%. The
results of all the above studies were consistent with the results of the
present study.

The relationships between meteorological factors and absolute
value of error of the K-P and G-A models in estimating λET were
analyzed, it was found that VPD was the main factor affecting the
model errors (Figure 6), while other factors have little influence.
For the grassland, when the VPD value exceeds 1 kPa, the error
increased with the increasing in VPD for both models. Shi et al.

(2008) experimented with the broad-leaved Korean pine forest in
the Changbai Mountains in the south-east of Jilin Province, China,
pointed out that when the value of VPD was more than 1.5 kPa, the
accuracy of estimation tended to below.

For the maize field, when the VPD exceeded 1.5 kPa, the
absolute value of error increased with the increasing in VPD
(Figure 7). Results similar to this study were reported by Katerji
et al. (2011) on the effect of VPD in the values of
evapotranspiration which stated that when the value of VPD

FIGURE 6
The influence of VPD on the absolute value of error of the K-P and G-A models in estimation of λET of grassland. λETK-P represents the estimated
latent heat flux by the K-P model. λETG-A represents the estimated latent heat flux by the G-A model. (A) K-P for grassland, (B) G-A for grassland.

FIGURE 7
The influence of VPD on the absolute value of error of the K-P and G-Amodels in estimation of λET of maize. λETG-A represents the estimated latent
heat flux by the G-A model. (A) K-P for maize, (B) G-A for maize.
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was more than 2 kPa, the values of the estimated
evapotranspiration were larger than the measured
evapotranspiration. The greater abundance of water vapor in
July and August in maize field may be another reason for the
underestimation of λET by the K-P model. Most of the λETG-A

were smaller than the λETmeasured during the growing period of
maize especially when the λETmeasured was high. Srivastava et al.
(2018) conducted a preliminary study on the effect of VPD in the
value of evapotranspiration in the West Bengal, India, pointing
out that when the value of VPD was in the range of 1.23–3.0 kPa,
the accuracy of estimation tended to below. The more abundant
water vapor in the maize field in July and August may also
contributed to the large errors in the simulation results of the
G-A model simulation results.

Generally, the K-P model were more accurate in simulating the
λET of grassland and maize field in Northwest China.

5 Conclusion

In this study, two rc models (K-P and G-A) were applied and
compared for the λET estimation. Based on the analysis of statistical
indices, the following conclusions were made.

The K-P model was the superior method for predicting hourly
λET of grassland and maize. The G-A model was a good alternative
approach for estimating λET of grassland and maize. For the K-P
model, the RMSE were equal 37.3–28.1 W/m2 for grassland and
maize, respectively. For the G-A model, the RMSE values was
46.2 W/m2 for grassland and 42.1 W/m2 for maize during the
whole growing period. The results showed that the R2 of the
simulation results of the two rc models (K-P and G-A) were
above 0.8, but the K-P model simulation was better. Both the
K-P and G-A models underestimated the λET of grassland
and maize.

The absolute error of the two models increased with the
increasing in VPD. For the K-P model, the effect of LAI changes
on crop canopy resistance during crop growth was not
considered, which would have made the model performance
slightly worse in the early part of the growing season. For the
G-A model, due to the limitations of the modeling theory, only
the effects of mete-orological factors such as Rn and VPD were
taken into account, while the effect of soil on evapotranspiration
was not considered, which would have made the model
performance slightly worse (Li et al., 2015). Matheny et al.
(2014)conducted a preliminary study on the prediction of
evapotranspiration in the North Ameri-can, pointing out that
most rcmodels under water stress conditions have difficulty in re-

solving the dynamics of λET due to errors in calculating surface
resistance.
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