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As indispensable contributors to the energy and resource sectors, resource-
based cities have played a pivotal role in shaping China’s carbon emission
landscape. The carbon emission performance of these cities directly impacts
the overall carbon footprint of the country, thus highlighting the significance of
enhancing carbon emission efficiencywithin resource-based urban areas to drive
nationwide carbon reduction initiatives effectively. The digital economic
development strategy presents a promising avenue for improving carbon
emission efficiency in resource-based cities. This study employs the super
efficiency epsilon-based measure model to assess the carbon emission
performance of 103 resource-based cities over the period from 2011 to 2019.
Additionally, it utilizes an intermediate effect model to analyse the impact
mechanism of digital economic development on carbon emission
performance. The findings reveal a substantial 6.3% enhancement in carbon
emission performance in resource-based cities attributed to the implementation
of the digital development strategy, primarily driven by technological innovation.
Furthermore, the study identifies significant dual-threshold effects within
economic growth and environmental regulation, shedding light on the
complex interplay between these factors. These insights offer valuable
guidance for regional carbon reduction endeavors and serve as a valuable
supplement to the understanding of the environmental implications of digital
economic development in resource-based cities.
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1 Introduction

As the world’s largest energy consumer and carbon emitter,
China’s efforts to increase carbon emission performance (CEP) were
critical to global and domestic green development. Resource-based
cities in China are responsible for supplying more than 90% of the
coal and oil and more than 70% of the natural gas and crucial
mineral resources required for the country’s economic and social
development (NBS, 2021). However, as natural resources are
depleted, these cities often encounter issues such as industrial
structural imbalances and ecological environmental degradation.
By 2060, when China aimed to reach its peak carbon emissions,
under a normal scenario, 126 resource-based cities in China are
expected to peak their carbon emissions at 7.265 billion tons in 2030,
accounting for approximately 60% of the country’s total carbon
emissions for that year (Li and Dewan, 2017). Therefore, improving
the CEP of resource-based cities in China has become an urgent task.

The rapid expansion of digital economic development has
profoundly and extensively impacted China’s production and
daily life (Goldfarb and Tucker, 2019; Solomon and van Klyton,
2020; Pan et al., 2022). China’s digital economy reached a staggering
scale of 45.5 trillion yuan, representing 39.8% of the country’s gross
domestic product (GDP) in 2021 (CAC, 2022). The number of
internet users in China has soared to 1.051 billion, resulting in an
impressive internet penetration rate of 74.4% (CAC, 2022).
Furthermore, digital economic development has played a pivotal
role in propelling the digital transformation of the energy industry
(Semeraro et al., 2023), corporate governance (Cui et al., 2022), and
quality economic development (Ding et al., 2022; He et al., 2023)
while also greatly promoting green and sustainable development
(Costa et al., 2023).

Previous studies have explored the impact of digital economic
development on energy and the environment (Schulte et al., 2016;
Haseeb et al., 2019; Ma et al., 2022; Guo et al., 2023; Hong Nham
et al., 2023). On the one hand, the influence of digital progress on
energy primarily encompasses energy consumption (Salahuddin
and Alam, 2016; Lange et al., 2020; Ren et al., 2021; Zheng and
Wang, 2021), energy transition (Shahbaz et al., 2022), energy
security (Lee C-C. et al., 2022), and energy sustainability (Wang
et al., 2022b). On the other hand, the influence of digital economic
advancement on emission reduction predominantly encompasses
carbon emissions (Paschou et al., 2020; Ahmed and Le, 2021; Xu
et al., 2021; Dong et al., 2022; Dwivedi et al., 2022), environmental
quality (Xu et al., 2022), and air pollution (Wu L. et al., 2023). While
these studies emphasized the ecological and environmental impacts
of digital economic development, they did not consider the coupled
relationship between economic growth and the environment, with
emission performance being the optimal manifestation of this
coupling. Additionally, these studies have yet to consider the
digital economic development status of resource-based cities and
its impact on carbon emissions.

The significance of researching resource-based cities in the
context of carbon emission performance (CEP) cannot be
overstated. On the one hand, as vital suppliers of energy and
resources, these cities directly impact national carbon emission
levels (Liao et al., 2022). Enhancing CEP not only contributes to
local environmental improvements but also catalyses nationwide
carbon reduction efforts. On the other hand, improving CEP in

resource-based cities facilitates the efficient utilization of resources
and the optimization of energy structures, leading to reduced energy
consumption and environmental pollution. This dual benefit aligns
with the goals of sustainable economic development and
environmental protection (Gu et al., 2022).

Examining the influence of technological innovation on CEP in
resource-based cities within the framework of a digital economic
development strategy is crucial. First, the evolution of the digital
economy disrupts traditional energy consumption patterns, thereby
shaping the energy landscape and affecting CEP. Second, the digital
economy expands the horizons of CEP research by providing new
avenues and methodologies for improvement. Digital technologies
enhance energy utilization efficiency and reduce unnecessary energy
consumption, thereby positively impacting CEP.

Furthermore, investigating the impact of technological
innovation on CEP offers valuable insights for policymakers. By
understanding the interplay between digital advancements and CEP,
policymakers can formulate scientifically sound energy policies and
carbon emission control strategies. Finally, these insights are
essential for navigating the transition towards a more sustainable
and technologically driven energy future, ensuring the harmonious
coexistence of economic growth and environmental preservation.

Therefore, the objective of this study was to improve CEP from
the perspective of digital economic development across
103 resource-based cities in China from 2011 to 2019. We
employed fixed and mediated effects models to analyse both the
direct and indirect impacts of digital economic development on
CEP. Furthermore, we conducted robustness tests, including four
robustness analysis methods, and analysed threshold effects to
uncover potential nonlinear relationships between digital
economic development and CEP.

This study contributes to the existing research in the following
aspects. 1) Indicator selection: Previous studies have focused
predominantly on pollution emission variables, neglecting the
coupled relationship between economic growth and
environmental pollution (Dong et al., 2022; Wu L. et al., 2023).
To address this issue, this study, from a performance perspective,
measures the coupling relationship between carbon emissions and
economic growth. The super efficiency epsilon-based measure (SE-
EBM) model was used to measure CEP. 2) Methodological
advancements: Principal component analysis (PCA) is used to
construct a comprehensive index of digital economic
development, and this study establishes a theoretical framework
for understanding the relationship between digital economic
development and CEP. This enriches the theoretical and
methodological aspects of research on the relationship between
digital economic development and environmental issues. 3)
Mechanism analysis: Previous studies have seldom considered
technological innovation as a mediating variable (He et al., 2021;
Khan et al., 2022; Zhang and Liu, 2022) and its impact on the
environment. This study underscores the mediating role of
technological innovation in the impact of digital economic
development on CEP. 4) Heterogeneity: This study constructs a
threshold effect model of economic growth and environmental
regulation, revealing the influence of digital economic
development on economic growth and environmental regulation.
This provides insights for further research on the environmental
effects of digital economic development.
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The logical structure of this study was as follows: Section
2 provides the literature review. Section 3 outlines the
methodology employed and describes the data sources utilized.
Section 4 presents the results of the empirical analysis, while
Section 5 offers conclusions and implications.

2 Literature review

2.1 Carbon emissions in Chinese resource-
based cities

As primary suppliers of energy and resources, Chinese resource-
based cities directly influence national carbon emission levels. This
was crucial for the formulation of carbon reduction policies and the
achievement of environmental conservation goals (Li and Dewan,
2017; Wu JX. et al., 2023). Moreover, resource-based cities typically
exhibit a significant scale in energy and heavy industries, resulting in
potentially elevated carbon emissions, which could significantly
impact global climate change and environmental quality (Wan
and Liu, 2023). Therefore, conducting research on the CEP of
resource-based cities is of great theoretical and practical significance.

The carbon emission situation in Chinese resource-based cities
is complex (Pan et al., 2023). On the one hand, most resource-based
cities in China have significant carbon emissions that are still in the
growth stage and exhibit high spatial correlation and clustering
characteristics. Carbon emissions are expected to continue to
increase in the near future, but there are differences in the
achievement of the 2030 carbon emission peak target under
baseline development scenarios across different regions (Mu
et al., 2023). On the other hand, due to economic growth and
industrialization, certain resource-based cities face high levels of
carbon emissions (Qiao et al., 2022). Therefore, exploring the
potential pathways through which digital economic development
strategies can enhance CEP in Chinese resource-based cities is
crucial for the formulation of sustainable and environmentally
friendly strategies and measures.

2.2 Impact of digital economic development
on carbon emissions

Many studies have examined the positive relationship between
digital economic development and carbon emissions reduction (Wang
et al., 2019; Wang et al., 2022a; Zhang L. et al., 2022; Wang LL. et al.,
2022; Li andWang, 2022). In contrast, some scholars have argued that
digital economic development exacerbates carbon emissions (Ozturk
and Ullah, 2022), particularly in China (Zhou et al., 2019; Zhang L.
et al., 2022; Wang LL. et al., 2022). Furthermore, an inverted U-shaped
correlation between digital economic development and carbon
emissions has been reported (Li and Wang, 2022). Despite the
divergent findings, certain scholars have posited that digital
economic development could promote significant reductions in
carbon emissions, mainly through an optimal energy mix that
aligns to achieve carbon neutrality (Guo et al., 2022). However,
others have noted that digital economic development has
substantially increased national carbon emissions (Zhou XY.
et al., 2022).

Furthermore, studies have revealed that digital economic
development has a pronounced impact on low-carbon sustainable
development, particularly in the more economically developed
eastern regions (Zhang JN. et al., 2022; Lee and Wang, 2022).
Some scholars have highlighted the role of digital finance in
advancing environmental sustainability (Ozturk and Ullah, 2022).
Finally, some scholars have proposed the use of digital remote
sensing technology to monitor the ecological pollution status of
the ocean (Chen et al., 2020).

Existing studies have primarily analysed carbon emissions, often
neglecting the coupling of environmental pollution and economic
growth. Moreover, the literature focusing on resource-based cities
seldom considers performance issues. To address this gap, this study
took resource-based cities as the research subject, investigated the
impact of digital economic development on CEP in these cities, and
proposed the following hypotheses:

Hypothesis 1. A digital economic development strategy has a
significant positive impact on the CEP of resource-based cities.

2.3 The impact mechanism of digital
economic development on
carbon emissions

Many studies have shown that digital economic development
can exert spillover effects on energy and the environment.
Nevertheless, the conclusions were inconsistent (Zhang L. et al.,
2022; Shahbaz et al., 2022; Xue et al., 2022). This inconsistency may
be due to differences in the data and variables used in different
studies. Therefore, indicators of universal significance should be
used to reveal the correlation between digital economic
development and CEP.

Moreover, existing studies rarely consider the impact of digital
economic development on environmental performance, which has
resulted in a lack of theoretical support for the relationship between
digital economic development and the energy and environmental
sectors (Chen et al., 2016; Wurlod and Noailly, 2018; Ajayi and
Reiner, 2020; Chakraborty and Mazzanti, 2020; Chen et al., 2020).
Therefore, this study explores the impact mechanisms of digital
economic development on CEP from a technology innovation
perspective. Many scholars have demonstrated that digital
economic development is a crucial driver of technological
innovation (Apostolov and Coco, 2021; Yang et al., 2022; Radicic
and Petkovic, 2023), which has a significant impact on enhancing
energy and environmental performance (Ma et al., 2021; Wahab,
2021; Wang and Liu, 2022). Therefore, technological innovation
could serve as an intermediary variable in the influence of digital
economic development on CEP, which was appropriate. Therefore,
we propose the following hypothesis:

Hypothesis 2. Technological innovation has significant mediating
effects on the effect of digital economic development on CEP.

Rapid economic development in China has led to significant
regional differences in energy consumption, economic growth, and
carbon emissions (Zhang W. et al., 2022; Shahbaz et al., 2022).
Therefore, improving CEPmay have different results due to regional
differences. In addition, environmental regulation is a critical factor
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in achieving carbon neutrality (Ahmed, 2020; Aldieri et al., 2022).
An imbalance in environmental regulation could affect CEP.
Therefore, regional disparities, economic growth, and
environmental regulation heterogeneity may interfere with the
impact of digital economic development on CEP, and
consequently, these issues require further exploration. Figure 1
depicts the research framework. We also propose the following
hypothesis:

Hypothesis 3. The impact of digital economic development on
CEP varies across different regions in China.

Hypothesis 4. The correlation between digital economic
development and CEP has a threshold effect on economic growth
and environmental regulation.

3 Method and data

3.1 Method

3.1.1 Baseline model
In this study, we employed a fixed-effects model to analyse the

direct impact of digital economic development on CEP. The
rationale behind this choice was that the fixed-effects model

could control for time-invariant individual characteristics, thus
reducing the influence of confounding variables. We employed
digital economic development as the independent variable and
CEP as the dependent variable. To reveal improvements in CEP
from the perspective of digital economic development, we developed
the following model:

Yit � α0 + β1DDit +∑5

κ�1δκXκit+εit (1)

where Yit refers to the CEP at city i and time t; DD is the digital
economic development; β1 is the coefficient of interest, and we
expected its value to be positive, which implied that digital economic
development was beneficial for improving CEP; δ is the parameter of
variables; and X is the control variable. a0 and εit refer to the
intercept and error terms, respectively.

3.1.2 Panel threshold model
The impact of digital economic development on CEP is

influenced by various other factors, resulting in a nonlinear
relationship between the two factors. We propose utilizing a
threshold model to explore the threshold effect of digital
economic development and CEP. As economic growth and
environmental regulation vary significantly across different
regions (Zhang W. et al., 2022; Shahbaz et al., 2022; Zhou and
Li, 2024), they are considered potential threshold variables for
revealing the threshold effect of CEP.

FIGURE 1
Research framework.
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By introducing threshold variables, we can better capture the
nonlinearity in this relationship and accurately identify the
threshold value at which the impact of digital economic
development on CEP changes (Zhou and Li, 2022). The use of a
threshold effects model was motivated by the desire to reveal
potential nonlinear relationships between digital economic
development and CEP. Such nonlinear relationships may arise
due to critical points or thresholds in economic growth and
environmental regulation. Once the threshold variable reaches or
surpasses this threshold, its impact on CEP may exhibit nonlinear
changes. By employing a threshold effects model, we aim to better
understand the complex relationship between digital economic
development and CEP and identify potential nonlinear effects,
thereby providing policymakers with more precise policy
recommendations. We constructed the following model:

Yit � αi + β1DDitI c< h1( ) + β2DDitI h1 ≤ c< h2( )
+ β3DDitI h2 ≤ c< h3( ) + β4DDitI c≥ h3( ) +∑5

κ�1δκXκit + εit

(2)
where c and h represent the threshold variable and threshold value,
respectively. The threshold variables in this study included
economic growth and environmental regulation, and I indicated
the indicative function. When the value was correct, I took the value
1. Otherwise, it takes the value 0.

3.1.3 Mediation effect model
Digital economic development has the potential to enhance CEP

through increased investment in science and technology innovation.
In this study, we designed influence channels specifically targeting
scientific input and technological progress. We utilized a mediation
effects model to elucidate the pathways through which digital
economic development affects CEP. To ensure the accuracy and
comprehensiveness of our mechanism analysis model, we employed
a professional approach (Lee CC. et al., 2022) as follows:

Yit � a0 + a1DDit +∑5

κ�1γκXκit + εit (3)
Mit � b0 + b1DDit +∑5

κ�1γκXκit + εit (4)
Yit � c0 + c1DDit + c2Mit +∑5

κ�1γκXκit + εit (5)

where M represents the intermediate variable, which includes two
types: scientific input (SI) and technological innovation (TI), and the
coefficient c2 is of interest. A significant coefficient c2 suggested that
the mediating effect of the M variable was substantial. This study
expected the results c2 to be positive or negative. γwas the parameter
to be estimated. a0, b0, c0, and εit represent the intercept and error
terms, respectively.

3.2 Variables

3.2.1 Dependent variable
The dependent variable in this study was CEP. This variable was

a critical index for evaluating the effectiveness of environmental
policies. The SE-EBM model has been widely used in the field of
environmental ecology because it not only takes into account radial
and nonradial distance functions but also allows efficiency values to

be greater than 1, making CEP comparable among different cities
(Akbari et al., 2020; Jalo et al., 2021; Zhou and Li, 2021). We adopted
the SE-EBM model proposed by Tone and Tsutsui (Tone and
Tsutsui, 2010), which integrates both radial and nonradial
distance functions. The initial model was constructed according
to the following equation:

P* � min
χ,ρ,ϖ− R − wx∑m

i�1
q−i ϖ−

i

υio
(6)

Rυio − ∑n
j�1ρjυij − ϖ−

i � 0, i � 1,/, m
∑n

j�1ρjωrj ≥ωro, r � 1,/, η
ρj ≥ 0
ϖ−

i ≥ 0

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(7)

where P is the DEA optimal efficiency value, R is the efficiency value
for the radial condition, and ϖi is the ith input element in the
nonradial condition. q represents the weight of the input indicator
and needs to satisfy ∑m

i�1qi � 1, and wx indicates the changing trend
of radial distances and the vector parameters of nonradial distances.
ρ captures the relative weights of the input elements, and (]io, ωro)
captures the input and output vectors of the oth decision unit. Here,
if the value of wx was equal to 1, the model was considered a CCR
model. If the value of wx was 1 and the value of χ was 0, the model
was an SBM, and the EBM needed to calculate these parameters in
advance. When P � 1, the efficiency is effective. Since the
relationship between input and output includes radial and
nonradial relationships, we used the extended EBM model. The
model settings were as follows:

P* � min
R − wx∑m

i�1
q−i ϖ−

i
υio

m + wω∑ϖ
r�1

q+r ϖ+
r

ωio
+ ws∑q

u�1
qs−u ϖs−

u
sio

(8)

s.t.

∑n
j�1ρjυij + ϖ−

i − wυio � 0, i � 1,/, n
∑n

j�1ρjωrj − ϖ+
r −m]ro � 0, i � 1,/, θ

∑n
j�1ρjstj + ϖf−

t −msto � 0, t � 1,/, q
ρj ≥ 0,ϖ−

i ≥ 0,ϖ+
r ≥ 0,ϖs−

t ≥ 0

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(9)

The parameter sto captures the tth undesired output of the oth
city, (ϖ+

r , ϖs−
t ) represents the slack vectors of the expected and

undesired results, and when their values are greater than 0, we need
to improve the energy efficiency in technology. q+r and q−t captured
the desired and undesired output indicators on the rth and tth,
respectively. If the decision-making units had optimal efficiency, it
was impossible to distinguish which unit was the best. We
improved the original EBM model by creating an SE-EBM
model (Andersen and Petersen, 1993), which allowed a value
greater than 1.

The model’s input indicators included labor, capital, and energy
consumption, while its output indicators included economic
development and environmental pollution. The urban working
population measured labor, while capital was measured by the
sum of current and fixed capital at year-end. Energy
consumption was measured by liquefied petroleum gas, natural
gas, electricity, and heating. It was converted into standard coal
values based on prior research (Ru et al., 2015) (unit: 10,000 tons of
standard coal). Economic output was measured by the city’s GDP
(unit: 100 million yuan). The environmental outcome was assessed
by sulfur dioxide emissions (unit: 10,000 tons) due to the limited
availability of carbon emissions and solid waste data at the city level
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(Bi et al., 2014; Shan et al., 2020; Zhou and Li, 2020; Zhou
et al., 2023).

3.2.2 Independent variables
The independent variable in this study was digital economic

development, a comprehensive index composed of various elements.
According to (Bukht and Heeks, 2017; Li and Wang, 2022; Yi et al.,
2022; Zhu and Chen, 2022; Wu L. et al., 2023), digital economic
development encompasses five key dimensions: 1) telecom business
revenue (measured in ten thousand yuan), 2) computer employment
(measured by the number of people employed), 3) internet
broadband households (measured in ten thousand households),
4) mobile phone users (measured in 10,000 persons), and 5) the
inclusive finance index (measured without units). The PCA method
was utilized to simplify and consolidate these dimensions into one
index, which is a widely adopted approach for constructing
composite indicators (Interlenghi et al., 2017; Pan et al., 2022).
Therefore, PCA was adopted to construct a digital economic
development index.

3.2.3 Control variables
To mitigate the potential interference of extraneous factors on

CEP, we controlled for several relevant variables in this study.
Specifically, we included five control variables, namely, 1)
population density, which was measured as the ratio of total
urban registered population to metropolitan area at year-end
(Danish et al., 2020); 2) industrialization, which was measured by
the proportion of the GDP of the secondary industry to the total
GDP; 3) service industry development, which was calculated as the
proportion of tertiary industry added value in GDP; 4) financial
development, which was measured as the ratio of urban deposits and
loan balance to urban GDP; and 5) energy structure, which was
determined using electricity consumption as a share of total energy
consumption. We presented the definitions and sources of the
variables used in Table 1.

3.3 Data sources

This study utilized panel data encompassing 103 Chinese
resource-based cities (see Table A1) from 2011 to 2019. The data
sources included the China Urban Statistical Yearbook (CUS, 2021),
the National Bureau of Statistics (NBS, 2021), the China Energy
Administration (CEA, 2021), and the China Environmental

Statistical Yearbook (CES, 2021). The control and dependent
variables came from the China Urban Statistical Yearbook and
the National Bureau of Statistics. The independent variable was
derived from the China Urban Statistical Yearbook, while the
environmental pollution variable was sourced from the China
Environmental Statistical Yearbook. The results of the statistical
analysis of the main variables are summarized in Table 2. The
dataset comprised 103 cities spanning 9 years, resulting in a total of
927 observations. To enhance the empirical analysis results, these
variables underwent a logarithmic transformation.

4 Results and discussion

4.1 Impact assessment analysis

4.1.1 Direct effect analysis
This study aimed to reveal how to improve CEP from the

perspective of digital economic development while controlling for
potential issues of serial correlation and heteroscedasticity. We
employed a robust standard error estimation equation that was
clustered by city and utilized a benchmark regression model.

The results of the direct effect analysis are summarized in
Table 3. Columns 1) to 3) present the estimated impact of digital
economic development on CEP. The findings indicated that the
regression coefficients of LnDD in columns 1) to 3) were all positive.
These coefficients were statistically significant at the 1% level and
had values of 0.097, 0.068, and 0.063, respectively. This suggested
that digital economic development significantly enhanced CEP by
0.063 units. This estimate was consistent with previous studies by

TABLE 1 Variable definitions.

Variable Abbreviation Definition References

Carbon emission performance LnCEP Measured using the SE-EBM model (value) Zhou et al. (2022a)

Digital economic development LnDD Principal component analysis method was used to calculate Pan et al. (2022)

Population density LnPOPD The ratio of urban population to the area (log) Sang et al. (2023)

Industrialization LnIND The ratio of the secondary industry to the city’s GDP (log) Li et al. (2022)

Service industry LnSER The ratio of the tertiary industry to the city’s GDP (log) Zhu et al. (2022)

Financial development LnFD The ratio of the secondary industry to the city’s GDP (log) Qu et al. (2020)

Energy structure LnES Electricity consumption as a rate of total energy consumption Zhou and Li (2022)

TABLE 2 Brief analysis of variables.

Variable Obs Mean Std.Dev Min Max

LnCEP 927.000 −0.832 0.417 −2.086 0.425

LnDD 927.000 8.222 0.673 6.192 10.885

LnPOPD 927.000 6.239 1.043 2.263 8.911

LnIND 927.000 3.881 0.265 2.851 4.445

LnSER 927.000 3.745 0.263 2.589 4.358

LnFD 927.000 1.005 0.433 −0.551 2.279

LnES 927.000 −0.205 0.223 −1.328 −0.002
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(Husaini and Lean, 2022; Shahbaz et al., 2022). The latter analysed
the energy transition and found that it increased renewable energy
by 0.021 due to digital economic development.

The control variables also produced significant results. The
coefficients of the natural logarithm of industrialization (LnSER)
and energy structure (LnEL) were positive and statistically
significant at the 1% level, suggesting that industrialization and
the energy structure promoted CEP. However, no evidence was
found to support the role of population density in improving CEP.
This finding was inconsistent with the conclusions of several other
scholars (Morikawa, 2012). This conclusion was consistent with
existing research (Morikawa, 2012). Therefore, Hypothesis
1 was verified.

4.1.2 Mediation effect analysis
Directly analysing the path through which CEP improved was

insufficient, and its mediating effect is worth exploring. An
intermediary effect model was employed, incorporating scientific
input and technological innovation as mediating variables. The
study yielded substantial and noteworthy results, which are
briefly summarized in Table 4.

Columns 1) and 2) present the estimation results with SI as the
mediating variable. In Column 1), the regression coefficient of
LnDD was positive, with a value of 0.163, indicating that the
digital economy development strategy significantly enhanced SI.
Furthermore, in Column 2), the regression coefficients of LnDD and
SI were positive, with values of 0.056 and 0.042, respectively,
suggesting that SI played a significant mediating role in the
impact of the digital economy development strategy on CEP.
Additionally, Columns 3) and 4) show the estimation results with
TI as the mediating variable. In Column 3), the regression coefficient
of LnDD was positive, with a value of 0.347, indicating that the
digital economy development strategy significantly enhanced TI.
Moreover, in Column 4), both the regression coefficients of LnDD
and TI were positive, with values of 0.051 and 0.075, respectively,

implying that TI also exerted a significant mediating effect on the
impact of the digital economy development strategy on CEP (He
et al., 2021; Zhang and Liu, 2022). This conclusion verified
Hypothesis 2.

4.1.3 Heterogeneity analysis
The swift expansion of China’s economy has engendered notable

regional variances in development, with the eastern region boasting
advanced manufacturing and internet industries. In contrast, the
central and western areas lag far behind, exacerbating preexisting
economic inequality (Herrerias et al., 2016; Guang et al., 2019). To
scrutinize these regional heterogeneities, this study partitioned
China into eastern, central, and western regions to explore the
impact of digital economic development on CEP.

Table 5 indicates that the regression coefficient of LnDD was
negative (−0.090) for the samples from the eastern region,
suggesting that the digital economy development strategy
significantly suppressed CEP in the eastern areas. This could be
attributed to the relatively lenient environmental policies and rapid
industrial development in the eastern region, which led to
persistently high carbon emissions. In contrast, the regression
coefficient of LnDD was positive (0.156) for the samples from
the central region, indicating that the digital economy
development strategy significantly impacted CEP in the central
areas. Additionally, the results for the western region showed a
positive regression coefficient of 0.082 for LnDD, demonstrating
that the digital economy development strategy significantly
enhanced CEP in the western region (Guang et al., 2019). These
findings suggested that the digital economy development strategy
was positively effective in the central and western regions but not in
the eastern region, indicating significant heterogeneity among
regions. The primary reason for this heterogeneity could be the
differences in economic development and the implementation of
environmental policies across different regions. These findings lend
support to Hypothesis 3.

4.2 Robustness analysis

Robustness analysis contributed to enhancing the effectiveness
of hypothesis testing. In quantitative analysis methods, robustness
analysis serves as one of the crucial steps. By examining whether
there are significant changes in the significance, direction, and
magnitude of the coefficients across different model specifications
and samples, we can determine the robustness of the impact of the
explanatory variables on the dependent variable. Consequently, we
conducted three robustness tests: the IV approach, substitution
methods, and adjustments to the study period.

4.2.1 IV estimation
Due to the potential correlation between the explanatory

variables and the error term in the model, which may lead to
inaccurate or misleading estimation results, the use of IV
methods could effectively address the issue of endogeneity in
regression analysis. An IV was a variable that was highly
correlated with the endogenous explanatory variable but
uncorrelated with the error term. By employing the IV method,
the impact of endogeneity can be eliminated, thus obtaining more

TABLE 3 Baseline regression results.

Dependent variable: LnCEP

(1) (2) (3)

LnDD 0.097a (0.026) 0.068b (0.023) 0.063a (0.013)

LnPOPD −0.144a (0.024) −0.189a (0.017)

LnIND −0.261c (0.119) −0.346b (0.142)

LnSER −0.057 (0.163) 0.275b (0.114)

LnFD −0.510a (0.068)

LnEL 0.149a (0.027)

CONS −1.633a (0.183) 0.732 (1.039) 0.689 (1.014)

FE YES YES YES

N 927 927 927

R2 0.016 0.043 0.146

Note that standard errors are in parentheses; FE, means fixed effects.
bp < 0.05, and
ap < 0.01.
cp < 0.1.
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accurate estimation results. This study adopted widely used IV
methods in energy and environmental economics (Barrera-
Santana et al., 2022; Xue et al., 2022). The lagged term CEP was
chosen as the first IV (IV1) due to its relation to the independent
variable. Additionally, 1984 city telecommunications data were used
as IV (IV2) (Nunn and Qian, 2014). This approach considered the
impact of telecommunication infrastructure on internet

technologies, such as technology level and usage habits. A time-
varying variable was employed, and a panel instrument variable was
constructed using the interaction term of the number of internet and
telephone, which we referred to as “Telephone◊Internet.”
Furthermore, we recognized the declining impact of traditional
telecommunication tools, such as landline telephones, on
economic development with decreasing frequency of use.

The regression coefficients of IV1 and IV2 were positive and
significant in both models, indicating the appropriateness of the IV
selection, as shown in Table 6. The study addressed the endogeneity
problem, and the second-stage regression analysis results showed
that the regression coefficient of LnDD was significant at the 1%
level. These conclusions were similar to those of the direct effects
analysis and greater than those of the baseline regression results,
which supported the notion that endogeneity caused a lower impact.

Endogeneity tests showed that digital economy development
was endogenous. The LM statistic significantly rejected the original
“insufficient identification of IV” hypothesis. Additionally, theWald
F-statistic was greater than that of the Stock-Yogo weak
identification test, indicating that the choice of IV was appropriate.

4.2.2 Modifying the method
The substitution method was instrumental in identifying and

addressing potential model misspecification issues. When the
assumptions of a model do not fully align with the characteristics
of actual data, substitution techniques offer a flexible approach to
examine whether such mismatches impact the robustness of the
results. By comparing model outputs across different substitution
methods, we could assess whether the model was overly sensitive to
specific methods or function choices, allowing us to adjust the model

TABLE 4 Estimation results of the mediating effect.

Variables Dependent variable: LnCEP

LnSI LnCEP LnTI LnCEP

(1) (2) (3) (4)

LnDD 0.163a (0.111) 0.056b (0.015) 0.347b (0.064) 0.051b (0.015)

LnSI 0.042b (0.010)

LnTI 0.075b (0.011)

LnPOPD −0.102a (0.036) −0.185b (0.016) −0.467c (0.238) −0.004 (0.017)

LnIND −0.069 (0.124) −0.343a (0.144) −1.213a (0.484) −0.009 (0.145)

LnSER 0.676b (0.162) 0.246c (0.109) 0.802b (0.179) 0.237c (0.118)

LnFD −0.523b (0.062) −0.488b (0.071) 0.278b (0.076) −0.423b (0.029)

LnEL 0.891b (0.076) 0.111b (0.032) 1.534b (0.105) 0.030 (0.076)

CONS 6.550b (1.432) 0.413 (1.112) 8.145b (1.337) −2.062c (1.011)

FE YES YES YES YES

N 927 927 581 581

R2 0.071 0.157 0.239 0.192

Note that standard errors are in parentheses; FE, means fixed effects.
ap < 0.05.
bp < 0.01.
cp < 0.1.

TABLE 5 Regression results of regional and urban heterogeneity.

Dependent variable: LnCEP

Eastern Central Western

LnDD −0.090a (0.028) 0.156b (0.013) 0.082b (0.020)

LnPOPD −0.112b (0.020) −0.233b (0.037) −0.905b (0.084)

LnIND −0.440 (0.396) −0.458b (0.049) −0.003 (0.273)

LnSER 0.392 (0.386) 0.250b (0.050) 0.319 (0.262)

LnFD −0.330b (0.080) −0.725b (0.078) −0.517b (0.050)

LnEL −0.140 (0.114) 0.375b (0.076) 0.101 (0.074)

CONS 1.271 (3.175) 0.932a (0.310) 3.206c (1.571)

FE YES YES YES

N 252 441 234

R2 0.144 0.246 0.192

Note that standard errors are in parentheses; FE, means fixed effects.
ap < 0.05.
bp < 0.01.
cp < 0.1.
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and enhance its robustness. While the ordinary least squares method
is known to have excellent properties when classical assumptions are
met, we recognize that the generalized method of moments (GMM)
could be valid even when the exact distribution information of
random perturbation terms is unavailable (Hashmi and Alam, 2019;
Zakari et al., 2022) and when there is heteroskedasticity and
autocorrelation of the random perturbation terms that violates
classical assumptions. Some scholars have applied GMM to
environmental science and economics (Omri and Afi, 2020;
Ozturk and Ullah, 2022). Thus, we used this method to conduct
a robustness analysis of the impact of digital economic
development on CEP.

Table 7 presents the results of the GMM regression technique.
Our model tests indicated that all assumptions held, with AR 1)
being significant and AR 2) being insignificant, which was

consistent with the nature of GMM. Moreover, the Sargan and
Hansen tests satisfied the necessary conditions. We found that
the regression coefficient of LnDD was 0.059, which is significant
at the 1% level. This suggested that digital economic development
significantly enhanced CEP, which was consistent with the results
obtained from the direct effect analysis. We are confident that
these findings ensure the reliability of the conclusions of
this study.

4.2.3 Modifying the time
Varying the period of the research sample was conducive to

examining whether the model was influenced by specific
temporal factors. The model may be affected by various
factors, such as policy changes, market fluctuations, or
unexpected events during specific time periods, leading to

TABLE 6 Estimation results of the instrumental variables.

Variables Dependent variable: LnCEP

First stage regression Second stage regression

IV1: L.Y

L.Y 0.542a (0.033)

LnDD 0.097b (0.057) 1.324a (0.353)

CONTROL YES YES

CONS YES YES

Endogeneity tests 14.047a

Partial R-sq 0.868

Kleibergen‒Paap rk LM 195.000a

Kleibergen‒Paap rk Wald F 265.07

FE YES YES

N 824 824

R2 0.135 0.142

IV2:Telephone◊Internet

Telephone◊Internet 0.187a (0.044)

LnDD 1.323a (0.352)

CONTROL YES YES

CONS YES YES

Endogeneity tests 48.827a

Partial R-sq 0.768

Kleibergen‒Paap rk LM 17.42c

Kleibergen‒Paap rk Wald F 17.67

FE YES YES

N 927 927

R2 0.423 0.424

Note that standard errors are in parentheses; CONTROL, refers to control variables; FE, refers to fixed effects.
ap < 0.01.
bp < 0.1.
cp < 0.05.
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biases in the results. By altering the period of the research sample,
we can analyse the extent of these factors’ impact on the model
and accordingly adjust the model to enhance its robustness
(Vieira et al., 2018). Therefore, we divided the research sample
into three time periods (2012–2019, 2013–2018, and 2014–2017)
to eliminate the interference of different research cycles on the
evaluation results.

Table 8 indicates that in the sample period of 2012–2019, the
regression coefficient of LnDD was positively significant, with a
value of 0.063, suggesting that the digital economy development
strategy significantly promoted CEP. Furthermore, in the sample
period of 2013–2018, the regression coefficient of LnDD was also
positively significant, with a value of 0.042, implying that the digital
economy development strategy significantly improved CEP.
Additionally, the results for the sample period of
2014–2017 revealed that the regression coefficient of LnDD was
positively significant, with a value of 0.021, indicating that the digital
economy development strategy significantly enhanced CEP. These
findings suggest that the digital economy development strategy was
effective throughout all periods. However, as the research cycle
shortens, the impact effect decreases continuously, indicating that
the cycle has an influence on the estimation results, and there is
significant heterogeneity between different cycles. The most likely
reason for this difference was the differences in economic
development and market environments across different
time periods.

4.3 Threshold effect analysis

This study used a panel threshold model to investigate the
nonlinear impact on CEP at various levels of regional economic
growth and environmental regulation (Ibrahim and Vo, 2021; Zhou
and Li, 2022). Table 9 shows that economic growth and
environmental regulation significantly impacted CEP at the single

and double thresholds but not at the triple threshold, indicating a
double threshold effect.

This study revealed that the impact of digital economic
development on CEP varies under different thresholds of
economic growth and environmental regulation. Specifically, as
the threshold increased, the impact effect gradually changed
(Table 10). It was observed that with the increase in the
threshold variable, the impact effect of digital economic
development also linearly increased, confirming Hypothesis 4.
These results are illustrated in Figure 2 and emphasize the
importance of considering the role of digital economic
development in achieving low-carbon development in resource-
based cities.

Therefore, by analysing threshold effects, this study provides
valuable insights into the impact of digital economic development
on the CEP of resource-based cities.

TABLE 7 Regression results of the GMM estimation.

Variables Dependent variable: LnCEP

(1) (2)

L.CEP 0.597c (0.049) 0.515c (0.033)

LnDD 0.038a (0.020) 0.059c (0.021)

CONTROL NO YES

FE YES YES

N 824 824

Wald 3767.05c 5602.18c

AR (1) 0.000 0.000

AR (2) 0.475 0.102

Sargan test 305.48 333.32

Hansen test 86.48 83.30

Note that standard errors are in parentheses, CONTROL, refers to the control variable, and FE, refers to fixed effects.
ap < 0.1.
bp < 0.05.
cp < 0.01.

TABLE 8 Regression results after narrowing the study period.

Variable Dependent variable: LnCEP

2012–2019 2013–2018 2014–2017

(1) (2) (3)

LnDD 0.063a (0.009) 0.042b (0.012) 0.021c (0.007)

CONTROL YES YES YES

CONS 0.163b (1.242) −0.284b (1.336) −0.500b (2.937)

FE YES YES YES

N 824 618 412

R2 0.144 0.103 0.181

The standard errors are in parentheses.
ap < 0.01.
cp < 0.1.
bp < 0.05.
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TABLE 9 Threshold effect test results.

Threshold RSS MSE Fstat p-value Crit10 Crit5 Crit1

Threshold variable: economic growth

Single 45.360 0.049 38.840 0.000 16.372 17.854 23.022

Double 44.020 0.048 27.930 0.003 15.809 18.409 22.461

Triple 43.084 0.046 19.960 0.503 47.537 55.372 67.844

Threshold variable: environmental regulation

Single 45.054 0.049 45.330 0.000 17.243 20.467 25.148

Double 43.862 0.047 24.960 0.010 15.749 18.885 23.995

Triple 43.404 0.047 9.670 0.836 27.058 29.581 34.895

TABLE 10 Estimated results of the panel threshold model.

Threshold variable: Economic growth Threshold variable: environmental regulation

LnDD (h < 5.914) 0.020 (0.026) LnDD (h < 10.006) 0.034 (0.026)

LnDD (5.914 ≤ h < 6.563) 0.045a (0.026) LnDD (10.006 ≤ h < 12.828) 0.049a (0.026)

LnDD (6.563 ≤ h < 7.345) 0.065b (0.025) LnDD (12.828 ≤ h < 13.436) 0.074c (0.026)

LnDD (h ≥ 7.345) 0.108c (0.027) LnDD (h ≥ 13.436) 0.097c (0.026)

CONTROL YES YES

CONS YES YES

FE YES YES

N 927 927

R2 0.223 0.214

The standard errors are in parentheses, and CONTROL, refers to the control variable.
ap < 0.1.
bp < 0.05.
cp < 0.01.

FIGURE 2
Threshold parameter of threshold variables. Note: a and b refer to the threshold variables economic growth and environmental regulation,
respectively; the solid blue line refers to the LR; and the red dotted line indicates the 95% confidence interval.
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5 Conclusions and implications

Enhancing the CEP of resource-based cities is a crucial pathway for
China to achieve carbon neutrality and foster green development. This
study focused on resource-based cities and evaluated the impact of
technological innovation on carbon emissions from the perspective of
performance under a digital economic development strategy. The study
outcomes provide empirical evidence and policy insights for enhancing
CEP in resource-based cities, providing a foundation for informed
decision-making.

The empirical research revealed that digital economic
development improved the CEP of resource-based cities.
Specifically, digital economic development significantly
enhanced CEP by 6.3%. To enhance the credibility of our
conclusions, we conducted four robustness tests, three of
which supported our findings. Additionally, we discovered
that digital economic development influenced the CEP of
resource-based cities by promoting technological innovation.
Furthermore, we also observed significant threshold effects of
economic development and environmental regulation on this
improvement effect.

Based on these insights, some policy recommendations are
proposed as follows:

(1) Promotion of Sustainable Digital Economic Development.
Resource-based cities should be encouraged to formulate
and implement a sustainable digital economic
development strategy, emphasizing the application of
green, low-carbon, and efficient digital technologies.
This includes advancing digital technology innovations
that enhance energy efficiency and reduce carbon
emissions. Policies supporting the transition of resource-
based cities to clean energy should be established, reducing
the dependence on high-carbon energy sources.
Investments and innovations should be incentivized to
promote the adoption of renewable energy and decrease
the reliance on traditional energy sources, thereby
improving CEP.

(2) Strengthening digital technology training and education. The
digital technology skills of urban professionals should be
enhanced to ensure their effective adaptation to the
development and application of the digital economy. This
will contribute to improving the production efficiency and
energy utilization efficiency of resource-based cities in the
digital economy era. Simultaneously, a comprehensive carbon
emission monitoring and data collection system was
developed to track and evaluate the actual impact of digital
economic development on CEP. This will provide real-time
data support for policy formulation and aid in adjusting and
optimizing policy measures.

(3) Encouraging Innovation and Research & Development.
Fiscal and tax incentives should be provided to
encourage enterprises to innovate and conduct research
and development in digital technology and clean energy.
Collaboration between research institutions and industries
should be supported to expedite the dissemination and
commercialization of advanced technologies. Additionally,
incentive mechanisms should be designed to reward

enterprises and cities that achieve significant
improvements in CEP through digital economic
development. This will help foster a positive competitive
environment, encouraging more entities to adopt low-
carbon technologies and strategies.

However, there are still some limitations to this study that need
to be addressed. For instance, we focused solely on one pollutant
when calculating CEP, which may not adequately represent the
impact of multiple pollutants. Additionally, our research on the
underlying mechanism may also need to consider alternative
pathways. Therefore, future research should address these
limitations by collecting more indicators, datasets, and channels
of mechanism to promote a more comprehensive understanding of
the complex interplay between digital economic development and
the environment.
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Appendix A

TABLE A1 List of resource-based cities.

1 2 3 4 5 6 7 8

Qitaihe Baoshan Daqing Qingyang Zhaotong Wuwei Weinan Shizuishan

Sanming Liupanshui Loudi Yan’an Jinzhong Chizhou Huzhou Zigong

Sanmenxia Baotou Anshun Zhangjiakou Jincheng Hechi Chuzhou Pingxiang

Dongying Nanchong Yichun Zhangye Jingdezhen Tai’an Puyang Huludao

Linfen Nanping Baoji Xuzhou Qujing Luzhou Jiaozuo Hengyang

Linyi Nanyang Suzhou Xinzhou Shuozhou Luoyang Mudanjiang Hezhou

Lijiang Shuangyashan Suqian Chengde Benxi Jining Baishan Ganzhou

Wuhai Xianyang Pingliang Fushun Songyuan Zibo Baiyin Chifeng

Yunfu Tangshan Pingdingshan Panzhihua Zaozhuang Huaibei Baize Liaoyuan

Yichun Datong Guangyuan Xinyu Yulin Huainan Panjin Dazhou

Yuncheng Xingtai Shaoyang Ezhou Tongchuan Changzhi Yangquan Anshan

Tonghua Handan Chenzhou Jinchang Tongling Fuxin Ya’an Shaoguan

Ma’anshan Hebi Huangshi Longyan Jixi Hegang Heihe
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