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This research enhances air quality predictions in Abu Dhabi by employing
Autoregressive Integrated Moving Average (ARIMA) models on comprehensive
air quality data collected from2015 to 2023.We collected hourly data on nitrogen
dioxide (NO2), particulate matter (PM10), and fine particulate matter (PM2.5) from
19 well-placed ground monitoring stations. Our approach utilized ARIMAmodels
to forecast future pollutant levels, with extensive data preparation and
exploratory analysis conducted in R. Our results found a significant drop in
NO2 levels after 2020 and the highest levels of particulate matter observed in
2022. The findings of our research confirm the effectiveness of the models,
indicated by Mean Absolute Percentage Error (MAPE) values ranging from 7.71 to
8.59. Additionally, our study provides valuable spatiotemporal insights into air
pollution historical evolution, identifying key times and areas of heightened
pollution, which can help in devising focused air quality management
strategies. This research demonstrates the potential of ARIMA models in
precise air quality forecasting, aiding in proactive public health initiatives and
environmental policy development, consistent with Abu Dhabi’s Vision 2030.
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1 Introduction

Air pollution, characterized by the presence of harmful substances like nitrogen dioxide
(NO2), particulate matter (PM10), and fine particulate matter (PM2.5), poses significant
threats to both human health and environmental integrity. Exposure to these pollutants is
linked to a spectrum of health complications, from respiratory issues to life-threatening
diseases such as cancer and heart conditions, emphasizing the vital necessity for proactive
air quality management strategies (Sharma et al., 2018; Samal et al., 2019). In the domain of
environmental science, the formulation of statistical models for air quality prediction is
crucial, particularly in Abu Dhabi, where they provide essential insights for environmental
management. These models equip scientists and policymakers with the ability to forecast
pollution levels and dissect the spatial and temporal patterns of air pollutants. Their
approaches span from straightforward linear models to complex machine learning
methods, each shedding light on the dynamics influencing air quality variations and the
efficacy of interventions designed to curtail pollution (Rao et al., 2012). As a result, the tasks
of monitoring, assessing, and predicting air quality have become increasingly crucial,
particularly in the context of disease outbreaks ((Nimesh et al., 2014; Samal et al., 2019;

OPEN ACCESS

EDITED BY

Nsikak U. Benson,
Topfaith University, Nigeria

REVIEWED BY

Ana Cristina Russo,
University of Lisbon, Portugal
Cheng-Hong Yang,
National Kaohsiung University of Science and
Technology, Taiwan

*CORRESPONDENCE

Mona S. Ramadan,
mona.s.ramadan@uaeu.ac.ae

RECEIVED 01 March 2024
ACCEPTED 02 May 2024
PUBLISHED 15 May 2024

CITATION

Ramadan MS, Abuelgasim A and Al Hosani N
(2024), Advancing air quality forecasting in Abu
Dhabi, UAE using time series models.
Front. Environ. Sci. 12:1393878.
doi: 10.3389/fenvs.2024.1393878

COPYRIGHT

© 2024 Ramadan, Abuelgasim and Al Hosani.
This is an open-access article distributed under
the terms of the Creative Commons Attribution
License (CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that the
original publication in this journal is cited, in
accordance with accepted academic practice.
No use, distribution or reproduction is
permitted which does not comply with these
terms.

Frontiers in Environmental Science frontiersin.org01

TYPE Original Research
PUBLISHED 15 May 2024
DOI 10.3389/fenvs.2024.1393878

https://www.frontiersin.org/articles/10.3389/fenvs.2024.1393878/full
https://www.frontiersin.org/articles/10.3389/fenvs.2024.1393878/full
https://www.frontiersin.org/articles/10.3389/fenvs.2024.1393878/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fenvs.2024.1393878&domain=pdf&date_stamp=2024-05-15
mailto:mona.s.ramadan@uaeu.ac.ae
mailto:mona.s.ramadan@uaeu.ac.ae
https://doi.org/10.3389/fenvs.2024.1393878
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org/journals/environmental-science#editorial-board
https://www.frontiersin.org/journals/environmental-science#editorial-board
https://doi.org/10.3389/fenvs.2024.1393878


Taufik et al., 2020; Liu B. et al., 2021; Ramadan and Ramadan,
2022)). This has led to the development of advanced tools for
evaluating pollution ((Liu B. et al., 2021; Liu H. et al., 2021;
Huang et al., 2021; Liao et al., 2021; Effat et al., 2022; Ramadan
et al., 2022)).

Contemporary programming technologies facilitate the analysis
of environmental data on a grand scale through specialized
functions ((Zhang et al., 2019; Setiawan et al., 2020; Huang et al.,
2021)). The R programming language, created by Ihaka and
Gentleman and renowned for its statistical computing
capabilities, is a prime example (Kazi et al., 2023). Its capacity
for extension through additional packages allows for a wide range of
ecological applications ((Kembel et al., 2010; Carslaw and Ropkins,
2012; Frichot and François, 2015; Guenzi et al., 2017; Patil et al.,
2020; Setiawan et al., 2020; Stanke et al., 2020; Lemenkova and
Debeir, 2022)).

Notably, Autoregressive Integrated Moving Average (ARIMA)
models have garnered acclaim for their precision in predicting air
quality metrics by analyzing historical evolution. Esteemed for their
adept handling of time series data, which often display historical
evolution, seasonality, and autocorrelation, ARIMA models are
instrumental in navigating the characteristic fluctuations in air
quality readings (Basagaña et al., 2013; Young et al., 2016).

Globally, statistical models like ARIMA have proven their
versatility and efficacy in air quality research. In regions
experiencing swift industrial expansion, such as Asia, ARIMA
models have been crucial in forecasting pollution historical
evolution, and facilitating the development of timely and efficient
air quality management strategies (Zhao et al., 2018). In the urban
landscapes of Europe and North America, these models have been
pivotal in evaluating the impact of vehicle emissions and industrial
activities on air quality, guiding emissions reduction policies
(Abhilash et al., 2018).

ARIMA models have shown their prowess in accurately
forecasting time series data affected by non-stationarity. For
example, (Koo et al., 2020), underscored the efficacy of ARIMA
in predicting PM10 levels in Malaysia, demonstrating the model’s
capacity to capture the seasonal variances in air pollutant
concentrations. Similarly, (Katsoulis and Pnevmatikos, 2009),
successfully applied ARIMA models to predict daily
PM10 concentrations in Athens, Greece, showcasing the model’s
adaptability across diverse environmental settings. Comparative
analyses, such as the study by (Peralta et al., 2022), which
evaluated neural networks against ARIMA models for air
pollution forecasting in Santiago, Chile, revealed that despite
neural networks’ marginally better accuracy, ARIMA models’
simplicity and interpretability render them a practical option for
air quality prediction. The employment of statistical models for air
quality assessment in developing nations has been particularly
noteworthy. (Saraswat, 2015). leveraged multiple linear regression
models to examine the influence of traffic volume on NO2 and
PM2.5 levels in New Delhi, India, highlighting statistical models’
role in shaping traffic and pollution management policies in cities
experiencing rapid urban growth.

Despite their extensive application, the adoption of statistical
models, including ARIMA, for air quality forecasting in the Middle
East, especially Abu Dhabi, remains sparse. This study aims to
bridge this gap by implementing ARIMA models in a bespoke

forecasting framework that leverages RStudio and Abu Dhabi’s
air quality data. Considering the region’s distinct environmental
challenges, like dust storms and rapid urbanization (Abuelgasim and
Farahat, 2020)., a customized forecasting approach is imperative.
This research seeks to refine ARIMAmodels’ predictive accuracy for
principal pollutants (NO2, PM10, PM2.5), offering essential insights
to direct specific air quality governance measures in Abu Dhabi.

2 Materials and methods

2.1 Study Area

This study centers on the Emirate of Abu Dhabi, the largest of
the UAE’s emirates, encompassing more than three-quarters of the
nation’s total area, as shown in Figure 1. Situated in the UAE’s
western part, it shares borders with Saudi Arabia and Oman and is
home to the capital city, Abu Dhabi City (24°28′0.0012″N,
54°22′0.0084″E). The emirate stands out due to its distinct blend
of environmental, climatic, and socio-economic elements.
Characterized by a hot desert climate, Abu Dhabi experiences
intense heat, high humidity, and winds carrying sand,
complicating the dispersion and management of air pollutants
(Böer, 1997). Dust storms, frequently arising from the desert,
industrial areas, and major roads, not only reduce visibility but
also carry particulate matter and heavy metals across urban areas
and beyond national boundaries ((Farahat et al., 2016; Tawabini
et al., 2017)). Monitoring air quality in such conditions is crucial for
both public health and the promotion of sustainable urban growth,
in alignment with the environmental quality goals of Abu Dhabi’s
Vision 2030. Given the commonality of dust storms and industrial
pollution, Abu Dhabi presents an ideal scenario for applying
ARIMA modeling with R to explore the spatiotemporal dynamics
of air pollution levels.

2.2 Materials

2.2.1 Data collection
In this research, air quality metrics were assessed through hourly

recordings of nitrogen dioxide (NO2), particulate matter ≤10 μm
(PM10), and ≤2.5 μm (PM2.5) collected from 2015 to the beginning
of 2023. These records were obtained from the Abu Dhabi Air
Quality Portal (https://www.adairquality.ae/), which compiles data
from 19 ground-based monitoring stations positioned as shown in
Figure 2, strategically throughout the urban and industrial sectors of
the Abu Dhabi Emirate (Environment Agency - Abu Dhabi, 2023).
The extensive data collected from these stations serves as a solid
basis for the examination of air quality patterns and the projection of
future air conditions.

2.3 Methodology

The study’s analysis centered on pollutants NO2, PM10, and
PM2.5, employing the R programming language for data processing
and visualization, alongside ARIMA models for forecasting. Data
preparation, including outlier removal and filling in missing values,
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along with preliminary exploratory analyses, were conducted using
R language and R Studio. The Openair package within R Studio
facilitated the calculation of daily, monthly, and yearly averages, as
well as their visualization. Spatial analyses were performed by
comparing mean values across monitoring stations using tables,
rankings, and maps. Temporal historical evolution was examined
across various timeframes—hourly, daily, monthly, and
yearly—utilizing line graphs, heat maps, and time series
decomposition methods. The study also explored cross-
correlations to understand the relationships between different
pollutants. For forecasting, this research adopted specific methods
contained within the forecast package of R-Studio, a suite that offers
a wide range of techniques for time series analysis (Hyndman and
Khandakar, 2008). The following sections detail the particular
forecasting approaches used in this investigation.

2.3.1 ARIMA model
Initially, we planned to use a Seasonal Autoregressive Integrated

Moving Average (SARIMA) model for our study because of its
ability to handle both seasonal and non-seasonal variations in time-
series data (Amaefula, 2021), a key aspect for effective air quality
prediction. However, during the early stages of data analysis, we

carried out various diagnostic tests to check for seasonality in the air
quality data from Abu Dhabi.

These tests included examining the autocorrelation and partial
autocorrelation functions and performing seasonal decomposition
to spot any consistent patterns at certain intervals in the data.
Unexpectedly, the results showed little or no significant seasonal
patterns in the levels of pollutants like PM2.5, PM10, and NO2 over
the examined periods. This absence of marked seasonality indicated
that the additional complexity of a seasonal model like SARIMA
might be unnecessary and could even cause overfitting. In light of
these results, we adjusted our strategy to better match the observed
data characteristics. We chose to use the Autoregressive Integrated
Moving Average (ARIMA) model instead, which is well-suited for
forecasting time series that show historical evolution but not
seasonality (Khashei et al., 2012). ARIMA models are not only
more straightforward but also versatile enough to effectively model
the non-seasonal historical evolution we observed in our data.

This shift adheres to the principle of model parsimony, which
emphasizes using the simplest possible model without
compromising its ability to explain the data (Shumway et al.,
2017). ARIMA models, which combine autoregression (AR),
integration I), and moving average (MA), provide a strong basis

FIGURE 1
Location of the study area.

Frontiers in Environmental Science frontiersin.org03

Ramadan et al. 10.3389/fenvs.2024.1393878

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2024.1393878


for prediction in scenarios like ours, where the data is primarily
influenced by historical evolution and non-seasonal changes.

Seasonal ARIMAmodels were developed to analyze the monthly
data for PM10, PM2.5, and NO2. The models’ accuracy was tested
by comparing their forecasts against actual data from a held-out test
period spanning 2022-2023. The Autoregressive Integrated Moving
Average (ARIMA) modeling process involved applying the Auto
ARIMA function to both daily and monthly datasets covering the
years 2015–2021. The ARIMA framework combines autoregressive
(ARI) elements with moving average (MA) components, offering a
robust method for examining time series data that exhibits
consistent patterns.

• Autoregressive (ARI)Model: The ARI model posits that future
values in the series are linearly dependent on previous
observations (Kaur et al., 2023), formalized in Eq. 1 as AR(p):

AR p( ): y t( ) � ∑
p

i�1ϕiy t − i( ) + ∈ t( ) (1)

• Moving Average (MA) Model: The MA model suggests that
current series values are linear functions of past forecast errors
(Jaiswal et al., 2018), represented in Eq. 2 as MA(q):

MA q( ): y t( ) � ∑
q

j�1θiϵ t − i( ) (2)

By amalgamating ARI(p) and MA(q), the ARIMA model
characterizes the current observation of a time series as shown in
Eq. 3, employing ARMA of order (p, q):

ARMA p, q( ): y t( ) � ∑
p

i�1ϕiy t − i( ) + ∈ t( ) +∑
q

j�1θi ∈ t − i( )
(3)

2.3.2 Evaluation and comparison of
forecasting models

Subsequently, the optimal model was utilized to project air
quality values from 2022 to July 2023. The model’s precision was
quantified using the Mean Absolute Percentage Error (MAPE). It is
critical to evaluate the performance of forecasting models to verify
their predictive accuracy and to facilitate comparisons among
various forecasting techniques. Enhancing the accuracy of
predictions is usually the main goal in forecasting tasks. Due to
the limitations of the Akaike Information Criterion (AIC) in
comparing models from different families (for example, ARIMA
versus Holt-Winters) (Ilyas et al., 2024), other criteria are adopted

FIGURE 2
Locations Map of Air Quality ground-based monitoring stations in Abu Dhabi, UAE.
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for the assessment and comparison of models. This research chose to
use the Mean Absolute Percentage Error (MAPE) as one of these
criteria because of its broad recognition and ease of use in time-
series forecasting, especially in the context of predicting levels of
NO2, PM10, and PM2.5 (Garg et al., 2021; Rahman et al., 2023).

2.3.2.1 The mean absolute percentage error (MAPE)
MAPE is used to measure the precision of the forecasting model,

as outlined in Eq. 4. This involves taking the average of the absolute
differences between the predicted and actual values, normalizing
these differences by the actual values, and then expressing the result
as a percentage. The choice of this metric is largely attributed to its

capacity to convert errors into a percentage form, making the
accuracy of forecasts easier to comprehend intuitively. The
accuracy of the model is then determined using Eq. 5.

MAPE% � 1
N

∑
N

i�1
yt − ŷt

yt

∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣ × 100 (4)
Accuracy% � 100 −MAPE( ) (5)

2.3.3 Data preparation and analysis
In our investigation, we implemented a structured approach to

predict air quality, concentrating on utilizing the ARIMA model.

FIGURE 3
Diagrammatic representation of the research methodology.
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This process involved preparing the data through cleansing and
filling in missing values, conducting exploratory data analysis to
uncover historical evolution and seasonal behaviors, and employing
ARIMA for prediction purposes. The details of these phases are
efficiently depicted in Figure 3.

This diagram outlines the methodical steps followed in our
approach to forecasting air quality, beginning with data
preparation, where anomalies are spotted and gaps are filled,
moving on to exploratory analysis to unearth patterns, historical
evolution, and seasonal factors. The culmination of this process is
the use of the ARIMA model for predicting future air quality
indices. Every step is vital to guarantee the precision and
dependability of our predictions, with further information on
the model’s specification and its validation discussed in the
related text.

2.3.4 Addressing data gaps
During our investigation, we faced challenges with missing

entries in the datasets concerning NO2, PM10, and
PM2.5 concentrations. These missing points accounted for
around 5% of the total data, a figure within the expected range
for environmental research due to factors like equipment errors and
maintenance breaks (Alsaber et al., 2021). To tackle these gaps, we
integrated linear interpolation with the method of carrying forward
the last observed data for brief interruptions spanning one to 3 hours
(Chastko and Adams, 2019). This strategy preserved the continuous
flow of our data series and did not significantly distort the original
statistical characteristics. Our methodology ensured the
preservation of our analysis’s depth and accuracy, with
subsequent evaluations showing minimal effect on the predictive
capabilities of our models. Further analysis verified the resilience of
our results, demonstrating consistent predictions despite different
methods of managing missing data.

2.3.5 Evaluating ARIMA model accuracy through
time series cross-validation

To evaluate the accuracy and predictive capabilities of our
ARIMA models, we utilized time series cross-validation. This
method splits the time series data into training and testing
segments, which allows us to gauge how the model performs on
new, unseen data (Ramos and Oliveira, 2016).

For our analysis, the dataset was divided into two primary
sections: a training set and a test set. The training set includes
80% of the data, spanning from 2015 to 2020. We chose this period
for training due to its comprehensive historical data on air quality,
which exhibits extensive variability and historical evolution in
pollution over several years. Using a significant portion of the
data for training is essential for creating a model that is well-
adjusted and can identify complex patterns within the data. The
remaining 20% of the data, from 2021 to early 2023, was designated
as the test set. This segment was specifically selected to evaluate the
model against the latest data. Testing the model with recent data is
crucial because it measures the model’s effectiveness against current
pollution historical evolution and recent changes in regulations that
might not have been as significant in the earlier data (Mani and
Viswanadhapalli, 2022). This strategy ensures the model remains
current and accurate for predicting immediate and future
historical evolution.

The data was split sequentially, maintaining the chronological
order of the collection. This approach preserves the temporal
structure of the time series, ensuring the training and testing data
represent a natural time progression without any overlap or data
contamination between the sets (Hasnain et al., 2022). By training
our model on an extensive historical dataset and testing it against the
latest available data, we ensure both the precision and practical
relevance of our predictive insights, which are vital for policymakers
and environmental planners involved in managing air quality.

2.3.6 Comparative performance analysis: ARIMA vs.
persistence and linear regression models

In assessing our ARIMA model, we compared its predictive
performance against that of persistence models and simple linear
regression. Persistence models, based on the assumption that future
conditions mirror the current ones, and linear regression, predicting
future air quality levels from past data historical evolution, served as
our comparative baselines (Turias et al., 2008; Basha et al., 2017).

3 Results and discussion

3.1 Station variability analysis

Table 1 outlines the mean concentrations of NO2, PM10, and
PM2.5 across different monitoring stations, using a color gradient
from green to yellow to rank the average values in an ascending
manner. Remarkably, Station 15 (Al Mafraq) shows the highest
aggregate levels of these pollutants, with Station 4 (Mussafah) also
registering high levels of pollutants, trailing slightly behind.

The results illustrate that the mean concentrations of NO2,
PM10, and PM2.5, respectively, as recorded at different monitoring
locations. It is significant to mention that the station in Al Qua’a
reported the lowest average hourly concentration of NO2, at 6.71 μg/
m³, with the Liwa station having a slightly higher average of 7.16 μg/
m³. On the opposite end, the highest average hourly concentration of
NO2 was found at the Hamdan Street station, which recorded a level
of 52.29 μg/m³, closely followed by the Mussafah station, where the
average was 50.44 μg/m³.

The lowest hourly average concentration of PM10 was observed
at the Sweihan station, recording a value of 103.18 μg/m³, followed
by Al Ain Street, which noted a concentration of 107.16 μg/m³. In
contrast, the highest hourly mean concentration of PM10 was
measured at the Al Mafraq station, reaching 183.04 μg/m³, with
the Mussafah station showing the second highest level at 156 μg/m³.

The lowest hourly average concentration of PM2.5 was found at
the Khalifa City A station, with a measurement of 35.52 μg/m³.
Conversely, the highest hourly average concentration of PM2.5 was
detected at the Al Mafraq station, which recorded 48.05 μg/m³, with
the Mussafah station closely trailing with an average of 45.7 μg/m³.
Most of the stations reported average PM2.5 concentrations falling
within the 35–39 μg/m³ range.

The analysis by station reveals considerable differences in the
levels of pollutants, particularly noting that locations such as Al
Mafraq andMussafah show elevated pollution figures. This variation
emphasizes the impact of nearby emission sources, including
industrial operations and vehicular traffic, on the quality of air.
The observed spatial diversity in pollution concentrations stresses
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the need for policy measures tailored to specific areas and highlights
the critical role of local environmental and socio-economic
considerations in devising strategies for air quality management
(Sharifi et al., 2021).

3.2 Temporal Historical evolution analysis

Table 2 showcases the statistical breakdown for the pollutants
NO2, PM10, and PM2.5 across the 19 monitoring stations, detailing
the minimum, average, median, maximum values, standard

deviation, and the count of missing data points. The significant
difference observed between the median and maximum values
indicates outliers in the dataset. To mitigate this issue, the
average value from each station was employed to fill in missing
entries and replace outlier values.

Figures 4–6 display the changes in daily, monthly, and yearly
averages for NO2, PM10, and PM2.5 spanning from 2015 to 2023,
after correcting for missing data and outliers at all monitoring
locations. The daily averages for NO2 generally fluctuated
between 20 and 35 μg/m³, with a distinct decrease in the daily
and monthly averages of NO2 noted after the year 2020. Similarly,
the emissions historical evolution for PM10 and PM2.5 showed a
steady rise starting in January, reaching their highest levels in July,
and then beginning to fall. The year 2022 stood out for having
significantly higher concentrations of PM10 and PM2.5.
Additionally, 2018 was highlighted as the year with the peak
emissions for all three pollutants.

Figure 7 vividly depicts the time-based changes in
concentrations of NO2, PM10, and PM2.5 across the
19 monitoring stations. During the day, PM10 and PM2.5 levels
show slight variations but are generally higher during daylight hours
than at night. On the other hand, NO2 concentrations display more
pronounced changes, with peaks occurring from 9 to 11 a.m.Weekly
historical evolution reveals that NO2 and PM2.5 levels maintain a
relative consistency, whereas PM10 concentrations are significantly
higher on Sundays and Mondays.

TABLE 1 NO2, PM10 & PM2.5 means by station.

Station ID Station name NO2 (μg/m³) PM10 (μg/m³) PM2.5 (μg/m³)

1 Hamdan Street 52.29 111.63 39.19

2 Khadejah School 31.44 111.87 39.77

3 Khalifa School 29.11 122.52 39.05

4 Mussafah 50.44 156.00 45.70

5 Baniyas School 31.16 133.32 43.63

6 Al Ain Islamic Institute 31.38 114.99 40.33

7 Al Ain Street 40.90 106.55 36.98

8 Bida Zayed 15.28 113.69 39.01

9 Gayathi School 14.62 120.86 38.89

10 Liwa 7.16 122.24 40.98

11 Ruwais 22.94 112.50 42.18

12 Habshan South 15.58 134.59 38.71

13 Bain Al Jessrain 37.34 129.47 37.28

14 Khalifa City A 29.94 132.73 35.52

15 Al Mafraq 48.70 183.04 48.05

16 Sweihan 14.75 103.18 39.07

17 Al Tawia 23.15 113.97 35.96

18 Zakher 29.25 111.37 35.62

19 Al Qua’a 6.71 126.35 39.56

Note: All concentrations are reported in micrograms per cubic meter (μg/m³).

TABLE 2 Summary of all station’s hourly data.

Pollutant NO2 PM10 PM2.5

Minimum (μg/m³) 0.005 0 0

Mean (μg/m³) 27.90532 124.05 39.57208

Median (μg/m³) 18.68 92.9 31.1

Maximum (μg/m³) 450.81 7716 2861.794

Std. Deviation (μg/m³) 25.46715 134.584 47.63485

Data Count 1427823 1423901 1387107

Missing Data 67737 71659 108453

Note: All concentrations are reported in micrograms per cubic meter (μg/m³).
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Looking at the yearly historical evolution, both PM10 and
PM2.5 levels gradually rise through the first 5 months, peaking in
July, then decrease. NO2 levels, in contrast, show little change on
a monthly basis but experience a noticeable drop from April to
July, followed by an increase, showcasing a clear
seasonal variation.

Figures 8–10 depict the fluctuations in concentrations of NO2,
PM10, and PM2.5 across different months and hours of the day,
serving as alternative representations of underlying
historical evolution.

The findings from the Temporal Historical evolution Analysis
indicate significant fluctuations in the levels of NO2, PM10, and
PM2.5 across the 19 monitoring stations. The noted reduction in
NO2 emissions on a daily and monthly basis after 2020, coupled

with the heightened occurrences of PM10 and PM2.5 in 2022, point
to a changing air quality landscape potentially shaped by regulatory
measures and socio-economic factors. The marked seasonal
historical evolution, with pollutant concentrations peaking in
July, are consistent with observations from urban studies which
have identified increased levels of particulate matter during the
warmer months, attributed to intensified atmospheric chemical
reactions and possibly greater human activity (Zhai et al., 2019).
The approach of utilizing average values to address missing data and
outliers, as implemented in this methodology, aligns with
established practices in environmental data handling, thus
confirming the reliability of the historical evolution analysis.
These outcomes support the initial goal by underscoring the
temporal patterns in air quality, reflecting the impact of human

FIGURE 4
Daily spatially averaged values across all monitoring stations.

FIGURE 5
Monthly spatially averaged values across all monitoring stations.
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actions and possibly the effectiveness of environmental policies. The
downward historical evolution in NO2 emissions may reflect the
success of measures aimed at reducing emissions or alterations in

patterns of urban transport. Understanding the seasonal peaks in
pollutant levels during the hotter months is essential for pinpointing
pollution sources and developing targeted mitigation plans.

FIGURE 6
Yearly spatially averaged values across all monitoring stations.

FIGURE 7
Hourly, monthly, and weekly cycles for the spatially averaged air quality values.
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3.3 Correlation analysis

Table 3 includes Pearson correlation coefficients to shed light on
the relationships between the three pollutants. A strong positive
correlation is observed between PM10 and PM2.5, as illustrated in
Figure 11. In contrast, the correlation coefficients between NO2 and
both PM10 and PM2.5 are minimal, nearly zero, suggesting there is
no significant association between these pollutants.

In our correlation analysis, we examined the relationships
between the concentrations of nitrogen dioxide (NO2),
particulate matter (PM10), and fine particulate matter (PM2.5)
across the monitoring stations. All concentrations were measured
in micrograms per cubic meter (μg/m³). The Pearson correlation
coefficients calculated indicate the degree of linear association
between these pollutants. Notably, the correlation between

PM10 and PM2.5 was strong and positive (r = 0.691), suggesting
that these particles often co-occur and may have common sources or
similar formation mechanisms. Conversely, NO2 showed little to no
correlation with PM10 (r = −0.011) and PM2.5 (r = 0.005),
indicating distinct sources or behaviors in the atmosphere. This
underscores the intricate nature of urban air pollution and
highlights the importance of adopting strategies that address
multiple pollutants simultaneously in air quality
management practices.

3.4 Forecasting models

Table 4 outlines the ARIMA (Autoregressive Integrated Moving
Average) models, the predictions of the levels of PM10, PM2.5, and

FIGURE 8
Historical evolution heat maps for NO2 levels in all stations. Note: All concentrations are reported in micrograms per cubic meter (μg/m³).

FIGURE 9
Historical evolution heat maps for PM10 levels in all stations. Note: All concentrations are reported in micrograms per cubic meter (μg/m³).
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NO2were intended for the years 2022–2023, based on data spanning
from 2015 to 2021. The Mean Absolute Percentage Error (MAPE)
values, which fall between 7.71 and 8.59, demonstrate a high level of
accuracy in fitting the historical data.

Figures 12–14 display the monthly average levels of PM10,
PM2.5, and NO2 respectively based on data collected from
2015 to 2021, which were intended for prediction for the years
2022–2023, generated by the ARIMA models described in Table 4.
The forecasts, shown with a blue line, along with their confidence
intervals, match closely with the actual observed data, represented by
a red line, showcasing the efficacy of the ARIMA model predictions.

The predictive success of the ARIMA model is evidenced by the
following outcomes:

NO2 Forecasting: The ARIMA model (1,0,1) (1,1,0) achieved a
MAPE of 7.71%, indicating high accuracy in predicting NO2 levels.
PM10 Forecasting: For PM10, the model (2,0,0) (0,1,1) resulted in a
MAPE of 7.99%, reflecting its effectiveness in capturing the
variability in PM10 concentrations. PM2.5 Forecasting: The
model (1,0,1) (2,1,1) used for PM2.5 forecasting recorded a
MAPE of 8.59%, demonstrating its proficiency in predicting fine
particulate matter concentrations.

These results underscore the ARIMA models’ capability to
forecast air quality with considerable precision, which is crucial
for planning and implementing proactive air quality management
strategies in urban environments. The strong correlation between
the forecasted and actual observed values reinforces the credibility of
the ARIMA model as an effective instrument for air quality
prediction in urban settings.

3.5 Comparative performance of
forecasting models

The ARIMA model demonstrated superior accuracy over both
alternatives across all examined pollutants (NO2, PM10, PM2.5),
achieving lower Mean Absolute Error (MAE) and Root Mean
Squared Error (RMSE). For example, the ARIMA model enhanced
the accuracy of NO2 predictions by 20% over persistence models and
15%over linear regressionmodels. This outcome highlights theARIMA
model’s proficiency in capturing the intricate temporal patterns and
seasonal fluctuations of air quality data, confirming its efficacy as a
forecasting tool for air quality in Abu Dhabi.

FIGURE 10
Historical evolution heat maps for PM2.5 levels in all stations. Note: All concentrations are reported in micrograms per cubic meter (μg/m³).

TABLE 3 Pearson correlation coefficients between NO2, PM10 &PM2.5.

NO2 PM10 PM2.5

NO2 1 −0.011** 0.000 0.005** 0.000

PM10 −0.011** 0.000 1 0.691** 0.000

PM2.5 0.005** 0.000 0.691** 0.000 1

**Correlation is significant at the 0.01 level (2-tailed).

Note: All pollutant concentrations are measured in micrograms per cubic meter (μg/m³). The correlation coefficients are dimensionless but indicate the strength and direction of the linear

relationship between the concentrations of different pollutants.
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3.6 Limitations of ARIMA modeling in air
quality forecasting

Utilizing Autoregressive Integrated Moving Average (ARIMA)
models for predicting air quality indices, particularly in Abu Dhabi,
demonstrates their significance. Nevertheless, the deployment of
these models encounters obstacles, chiefly due to the complex nature
of air quality data. This analysis examines the aptness of ARIMA
models for such endeavors, highlighting the issues arising from
nonlinearity, the constraints of extended forecasting, and the
reliance on historical data historical evolution. Recognizing these
obstacles is crucial for the accurate interpretation of forecasts from
ARIMA models and for guiding the advancement of more complex
forecasting techniques. By acknowledging the complex nature of air
quality variations and the modeling challenges, we can promote the
development of improved predictive tools, ultimately bettering air
quality management strategies.

Forecasting air quality necessitates consideration of numerous
interrelated factors, such as emissions, weather conditions, and
atmospheric chemical reactions. These factors tend to introduce

nonlinear historical evolution in air quality data, challenging
ARIMA models, which are inherently linear (Zhang et al., 2012a;
2012b; Sokhi et al., 2021). This limitation in addressing nonlinear
patterns may lead to forecast inaccuracies, especially when air
quality is subject to abrupt shifts due to unforeseen events or
significant policy changes. Future research should consider
combining ARIMA with nonlinear modeling techniques or
adopting machine learning methods to more accurately reflect
these complex dynamics.

While ARIMA models are adept at short to medium-term
forecasting, leveraging the idea that past historical evolution
predict future occurrences, their long-term forecasting accuracy
diminishes (Christodoulos et al., 2010; Abdoli, 2020). This is
mainly because they do not incorporate potential changes in
emissions, policy alterations, or socio-economic factors that
could influence air quality (Sen et al., 2019; Homolka et al.,
2020). To improve the reliability of long-term forecasts,
integrating external factors into the models or using scenario-
based methods that can adapt to future shifts might be
advantageous.

FIGURE 11
Scatter plot PM10 &PM2.5. Note: All concentrations are reported in micrograms per cubic meter (μg/m³).

TABLE 4 ARIMA Models For PM10,PM2.5&NO2 and their MAPE for all stations 2022-2023.

ARIMA for montly agerages MAPE

PM10 (2,0,0) (0,1,1) 7.99

PM2.5 (1,0,1) (2,1,1) 8.59

NO2 (1,0,1) (1,1,0) 7.71

Note: MAPE (Mean Absolute Percentage Error) is presented as a percentage, which provides a dimensionless measure of accuracy. The ARIMA, model configurations are described using the

standard (p,d,q (P,D,Q) format for non-seasonal and seasonal components, respectively.
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The efficacy of ARIMAmodels heavily depends on the quality
and availability of historical data (Khashei et al., 2012). In areas
with sparse air quality monitoring or where data collection
methodologies have changed, the data’s precision, and
consequently, the model’s forecasts, might be affected (Yu and
Lin, 2015). Furthermore, ARIMA models assume the
continuation of historical evolution into the future, a premise
that may not always be valid due to rapid urbanization or climate
change (Das et al., 2020; Bhattacharjee et al., 2021). Addressing
these concerns requires continuous model updates with recent

data and the investigation of adaptive models that can
accommodate emerging historical evolution.

3.7 Spatiotemporal insights and implications
for public health

The predictive insights from our ARIMA model, focusing on
NO2, PM10, and PM2.5 levels, shed light on the intricate patterns of
air quality in Abu Dhabi. By analyzing data from 19 monitoring

FIGURE 12
Seasonal ARIMA forecast of PM10 for all stations 2022-2023.

FIGURE 13
Seasonal ARIMA forecast of PM2.5 for all stations 2022-2023.
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stations, we uncovered both the temporal fluctuations and spatial
disparities in pollutant concentrations across various urban and
industrial regions.

Our investigation highlights the critical periods of increased
pollution, especially during the sweltering heat of July, setting the
stage for strategic health advisories and proactive measures to shield
vulnerable communities such as children, the elderly, and those with
chronic illnesses. The distinct pollution patterns across different
locales offer a map to pinpointing areas in dire need of air quality
improvements, guiding efforts to create healthier environments.
Here, we explore the actionable outcomes of our study and lay
out a series of policy suggestions aimed at reducing air pollution’s
grip on public health.

3.7.1 Policy suggestions
The clear identification of pollution epicenters and peak

pollution periods should drive the launch of targeted air quality
boosts. Tactics like mobilizing air purifying units, expanding urban
greenery, and tightening emissions regulations in these critical areas
could markedly diminish pollution. The insights call for an urban
development ethos that embeds air quality at its core. This might
involve infrastructure projects championing sustainable transport
-bike lanes, walkways-to cut down on one of the largest contributors
to city smog: vehicle emissions. The cyclical nature of air pollutants
necessitates the timely release of health advisories, especially during
high-pollution windows, advising on reduced outdoor activity and
protective measures for at-risk groups. Our analysis advocates for a
revamp in regulations targeting pollution sources, suggesting a move
towards tougher industrial emission standards and vehicular
emission laws, alongside a shift to greener energy options.
Building community knowledge on air pollution’s dangers and
mitigation strategies can foster a collective movement towards
cleaner air, encouraging shifts towards public transportation and
energy-efficient habits.

3.7.2 Crafting robust air quality management
approaches

Utilizing ARIMA model projections for air quality enables
informed policy-making, allowing for the anticipation of
pollution historical evolution and the deployment of preventive
public health measures. The insights gained should weave into the
existing fabric of environmental policies, aligning with overarching
sustainability visions like Abu Dhabi Vision 2030 for a unified air
quality management strategy. Setting up a robust framework for the
continual assessment of air quality management efforts is key.
Persistent monitoring and analysis will pave the way for the fine-
tuning of strategies, ensuring their efficacy over time.

Our comprehensive analysis not only charts the current state of air
pollution in Abu Dhabi but also projects its future trajectory, providing
a crucial foundation for crafting impactful air quality strategies. The
suggested multifaceted approach to air quality management integrates
targeted actions, regulatory updates, community involvement, and
iterative policy evaluation, setting a course towards a healthier
populace and a more resilient environment. These strategic
applications of ARIMA model predictions underscore the profound
impact that sophisticated forecasting can have on improving public
health outcomes in AbuDhabi. Aligning these efforts with the emirate’s
Vision 2030 not only fosters sustainable urban growth but also heralds a
future of enhanced health and environmental stewardship.

3.8 The study contribution to Abu Dhabi
vision and 2030 sustainable development
goals (SDGs)

This study significantly advances the objectives of Abu Dhabi
Vision 2030 by contributing to sustainable development,
environmental conservation, and the enhancement of public health
(Low, 2012). Abu Dhabi Vision 2030 lays out a strategic plan to evolve

FIGURE 14
Seasonal ARIMA forecast of No2 for all stations 2022-2023.
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the emirate into a sustainable, diversified economy, and the insights
offered by this research are pivotal in several areas.

3.8.1 Supporting Abu Dhabi vision 2030
By deepening the understanding of air pollution historical evolution

and offering a forecasting tool for air quality management, this research
aligns with the vision’s focus on environmental preservation. It aids in
devising more efficient strategies for air quality control, thus
contributing to the environmental protection efforts for future
generations. Given Vision 2030’s emphasis on the health and
wellbeing of its inhabitants, the findings related to historical
evolution in air pollutant levels are valuable for guiding public
health strategies, policies, and interventions aimed at minimizing
pollutant exposure, thereby fostering a healthier community.
Highlighting the effects of industrial activities and vehicular traffic
on air quality emphasizes the need for sustainable economic practices.
This knowledge supports the vision’s objective of promoting
environmentally responsible industries, contributing to economic
diversity and ensuring sustainability. Utilizing ARIMA models for
air quality forecasting embodies an innovative approach that
corresponds with the vision’s commitment to embracing cutting-
edge technologies and innovative solutions for managing
environmental challenges.

3.8.2 Enhancing sustainable development
goals (SDGs)

Additionally, this research aligns with various United Nations
Sustainable Development Goals (SDGs) ((FUND, 2015; Carlsen and
Bruggemann, 2022)), notably: SDG 3: Good Health and Wellbeing: By
offering insights that could help mitigate air pollution, this study aids in
enhancing public health, aligning with SDG 3’s objectives. SDG 11:
Sustainable Cities and Communities: The study’s contributions towards
improving air quality assist in creating more sustainable, safe, and
resilient urban environments, directly supporting SDG 11. SDG 13:
Climate Action: Effective air qualitymanagement is essential for climate
change mitigation. This research backs actions against climate change
by informing policy decisions in environmental governance. SDG 9:
Industry, Innovation, and Infrastructure: Applying predictive models
for air quality control matches SDG 9’s goals of developing resilient
infrastructure, encouraging sustainable industrialization, and fostering
innovation.

By directly engaging with these SDGs, the study not only aids global
sustainability initiatives but also positions Abu Dhabi as a frontrunner
in the 2030 Agenda for Sustainable Development. Incorporating the
findings of this research into policymaking and practical applications
can hasten progress towards achieving both Abu Dhabi Vision
2030 and the Sustainable Development Goals, highlighting Abu
Dhabi’s dedication to sustainability, innovation, and the wellbeing of
its population.

3.9 Future directions for enhancing air
quality forecasting research

The ongoing quest to refine methods for forecasting air quality and
deepen our understanding of pollution dynamics unfolds a vast array of
research opportunities. Building on the insights and recognizing the
constraints of our current investigations with ARIMA modeling, we

propose several promising research directions. These suggestions aim to
broaden the analytical framework, enhance its comprehensiveness, and
embrace interdisciplinary approaches to provide more profound
insights into air pollution management strategies.

Future research endeavors should take a more inclusive stance by
weaving air quality modeling with knowledge from environmental
science, urban planning, and public health domains. Such a
multidisciplinary approach would facilitate the incorporation of
external variables crucially affecting air quality, like meteorological
conditions (temperature, humidity, wind speed) (Jian et al., 2012; Li
et al., 2020), socioeconomic indicators (population growth, industrial
activity levels) (Arsov et al., 2020; Dadashova et al., 2021; Wang and
Chang, 2023), and urban transport dynamics (Kadiyala &Kumar, 2014;
Bell et al., 2015). Integrating these factors could enrich our
understanding of air quality influences, paving the way for a holistic
predictive and management model.

Implementing Geographic Information System (GIS)
methodologies could significantly improve spatial analysis
capabilities, identifying pollution hotspots and assessing the localized
effects of emission sources on air quality (Jain and Acharya, 2023;
Verma et al., 2023). This spatial precision could enhance targeted
management interventions and policy formulation. Besides, there’s a
consensus on the value of incorporating more extended data records
into our studies to provide a long-term view of air quality evolution.
Expanding our analysis timeline would likely yield more robust insights
into Abu Dhabi’s air pollution historical evolution and enhance the
predictive accuracy of our models. In addition, analyzing air quality in
other cities or regions that face similar challenges could offer valuable
comparative insights (Liu et al., 2018; Liu and You, 2022). Such studies
might reveal universal patterns or effective strategies applicable across
different contexts, enriching the global knowledge base on air pollution
management.

As well, the realm of machine learning also presents sophisticated
modeling options adept at deciphering complex, nonlinear data
relationships, such as neural networks, decision trees, and ensemble
methods (Chang et al., 2020; Guo et al., 2020; Kumar et al., 2021).
Future research should delve into these techniques for air quality
forecasting. Their capacity for processing vast datasets and
accommodating diverse predictive variables could significantly
bolster forecast precision and reliability. Importantly, machine
learning models possess the adaptability to reflect ongoing changes
in urban and environmental conditions dynamically. Furthermore, a
novel research pathway involves combining the temporal analysis
strengths of ARIMA with the nonlinear processing capabilities of
machine learning to create hybrid models (Chang et al., 2020;
Aggarwal and Toshniwal, 2021; Gunasekar et al., 2022). Such an
approach aims to overcome the linear constraints of ARIMA models
and imbue the forecasting process with the adaptability and nuanced
understanding provided by machine learning. This could lead to
superior accuracy and more detailed air quality predictions.

These proposed directions not only highlight our dedication to
advancing air quality forecasting but also underscore the importance of
innovative, cross-disciplinary efforts and the adoption of new
technologies. By tackling the identified limitations and exploring
these avenues, future research can significantly contribute to the
development of more effective, evidence-based air pollution
management strategies, ultimately safeguarding public health and the
environment in Abu Dhabi and beyond.
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4 Conclusion

This in-depth investigation into the historical evolution, spatial
distribution, and predictions of NO2, PM10, and PM2.5 levels
throughout Abu Dhabi has provided essential insights into the area’s
air pollution dynamics. Through a detailed examination of data from
19 monitoring locations over an 8-year span, the study not only charts
the changing landscape of air quality but also introduces a sophisticated
forecasting model to enhance proactive air quality control measures.

Key outcomes of this research include the notable reduction in
NO2 concentrations after 2020, the heightened instances of PM10 and
PM2.5 in 2022, and the significant seasonal fluctuations with July
experiencing the highest pollution levels. These patterns reflect both the
influence of policy measures and socio-economic factors on air quality
and are consistent with worldwide observations in urban air pollution
research. Spatial analyses further reveal the impact of specific emission
sources on air quality, emphasizing the necessity for policies tailored to
the local context. Additionally, the ARIMA model’s forecasting
accuracy provides a critical resource for predicting future air quality
historical evolution, enabling more informed preparation and response
strategies.

This research fills an important gap in the existing body of
knowledge by offering an extensive evaluation of air quality
fluctuations in Abu Dhabi, an area that has not been extensively
covered in international air pollution studies. The methodologies
applied, especially the forecasting with ARIMA models in R studio
and the approach to managing missing data, affirm the study’s
methodological soundness and its contribution to the academic field.

Beyond academic contributions, our extensive study, leveraging
Autoregressive Integrated Moving Average (ARIMA) models, has
revealed critical spatiotemporal patterns in NO2, PM10, and
PM2.5 levels across Abu Dhabi. This research provided a detailed
exploration of both the temporal and seasonal fluctuations in air
pollutants and the pronounced spatial variations in pollution across
the region. By offering predictive insights into when and where
pollution levels peak, our analysis serves as a strategic tool for
refining air qualitymanagement and enhancing public health initiatives.

Recognizing the seasonal highs in pollutants, particularly during
hotter months, highlights the urgent need for issuing health advisories
promptly and deploying preventive strategies to shield at-risk groups.
Identifying areas with consistently higher pollution through spatial
analysis suggests a need for targeted actions, such as improving green
cover, tightening emission regulations, and implementing traffic
management to curtail sources of pollution. The effective use of
ARIMA models in forecasting air quality illustrates the immense
value of statistical modeling in environmental science. These
forecasts are pivotal for crafting forward-looking measures to
combat air pollution, in line with Abu Dhabi’s ambitious
sustainability and health objectives.

Armed with these predictive insights, Abu Dhabi’s decision-
makers are better equipped to enact targeted interventions aimed at
preserving public health and the environment. This strategy
addresses not just the immediate challenges posed by air
pollution but also contributes to achieving the broader
sustainability ambitions outlined in both Abu Dhabi Vision
2030 and the Sustainable Development Goals (SDGs). With the
ability to foresee periods of heightened pollution, health authorities
can dispatch precise advisories to mitigate exposure to dangerous

pollutants, thereby protecting community wellbeing. The knowledge
acquired through this study can guide the creation of policies and
initiatives focused on reducing emissions from identified critical
areas and enhancing air quality and environmental health.
Incorporating air quality forecasts into urban planning can
inform the design and placement of infrastructure and green
spaces to lower pollution levels and promote a healthier urban
living environment.

This inquiry into Abu Dhabi’s air quality patterns lays the
groundwork for ongoing research and policy innovation. By
harnessing sophisticated forecasting techniques, it is possible
to anticipate shifts in air quality, enabling targeted measures
that safeguard the health of the city’s inhabitants and foster
sustainable urban development. This study underscores the
indispensable role of scientific investigation in informing
effective environmental policies and public health measures,
propelling Abu Dhabi towards realizing its Vision 2030 and
contributing to the global sustainable development agenda.
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