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Mine water inrush disaster can quickly cause significant economic losses and
casualties because of its strong concealing and rapid burst speed. Quickly
identifying the source of mine water inrush is of great practical significance.
Comparedwith the traditional hydrochemical analysis method, the laser-induced
fluorescence (LIF) technology has fast reaction speed, high sensitivity, and strong
stability, which makes up for the shortcomings of the traditional method. As an
integrated algorithm, random forest (RF) has the advantage of high accuracy. A
combination of LIF technology and RF algorithm is proposed to identify mine
water inrush source rapidly. The experimental sampleswere collected from a coal
mine in Hainan City, Anhui Province, and a total of 525 sets of water samples to be
tested for experiments by mixing goaf water and sandstone water into A-G7
species according to different proportions. Moving average smoothing (MA),
Savitzky-Golay Smoothing (SG), First derivative (FD), and Second derivative (SD)
methods are used to preprocess the original spectral data to reduce the noise and
interference information existing in the original spectral data. By comparison, the
Moving average smoothing (MA) method has high classification accuracy and is
the final method for noise reduction. Then, the RF algorithm is used to delete the
less critical spectrum after noise reduction and select the characteristic
wavelength with the minimum classification error of 0. Finally, SVM, PCA-SVM,
MA-SVM, MA-PCA-SVM, and MA-RF algorithm recognition models were
established, respectively. Comparing the prediction accuracy of the test set,
the accuracy of the MA-RF algorithm in the five groups of models reached 100%,
which can quickly and accurately predict mine water inrush.
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1 Introduction

Currently, mine water inrush is one of the most threatening disasters in the coal mine
production process. The disaster has strong concealment and fast burst speed, easy to cause
substantial economic losses and heavy casualties. Zhang et al. (2009) Therefore, identifying
water inrush sources quickly and taking adequate preventive measures is the key to mine
water disaster control.

The chemical composition of groundwater is relatively complex, and water quality
analysis is the basic means of studying the chemical composition of groundwater. At
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present, the traditional methods of water inrushing source
identification include hydrochemical characteristics analysis Li
et al. (2014), isotope tracer Huang and Wang (2018), The water
chemical characteristics of the aquifers are analyzed with computer
drawn Piper three-line diagram. Fuzzy comprehensive evaluation
and systematic clustering analysis are applied to analyze, compare
and determine the water inrush source. The discrimination accurate
rate is about 80%.The method of hydrochemistry takes a long time,
which is also one of its drawbacks.

The traditional method dynamic change analysis of water
Parras-Berrocal et al. (2022), and methods based on GIS and
water quality and temperature Oseke et al. (2021). The variation
of groundwater level in different coal seams presents different
characteristics, with some dynamic changes being serrated and
others being wavy. Li et al. (2015) Conduct a systematic three-
dimensional search and identification of potential water inrush
layers in coal seams, and determine calculation parameters based
on GIS data and indoor experiments. Evaluate and compare the
water level stability under normal and abnormal working
conditions. Wu et al. (2011) Dynamic change analysis is greatly
influenced by the geological environment, with a long data analysis
cycle and low accuracy. GIS requires data processing and analysis
before monitoring and prediction, so the process is relatively long,
slow, and inefficient.

Based on previous research, some scholars have studied
identification method based on coupled principal component
analysis. According to the difference between the chemical
components of water sources, the identification index variables of
water inrush sources were determined. According to the difference
between the chemical components of water sources, the
identification index variables of water inrush sources were
determined. The correlation between the water source groups
was obtained through coupling principal component analysis.
The combination of covariance matrix and Fisher discrimination,
coupled with principal component analysis, can improve the
recognition rate of water inrush sources to 90% Huang and
Chen (2011) The combination of other machine learning and
optimization algorithms has been widely applied in the
identification of mine water inrush sources. For example,
recognition is based on models such as BP neural network Liu
et al. (2015), etc.,. These are all coupled with principal component
analysis and often use a single classifier. Considering that the
accuracy of recognition can continue to improve, further research
is needed on the model’s generalization ability and jumping out of
local optima. Based on these proposed studies, we consider
introducing LIF technology combined with RF algorithm models
to maximize accuracy.

Laser-induced fluorescence (LIF) technology refers to the
method of detecting the fluorescence emission after laser
irradiation of a sample. It has the advantages of fast response,
low interference, and high sensitivity. In recent years, LIF
technology has been widely used in various fields. Hu et al.
(2019) For example, Bukin et al. (2020) used LIF technology to
detect soil oil pollutants, and Ghasemi et al. (2017) applied LIF
technology to the medical field to conduct specific screening of
breast tumors. Si-ying et al. (2022) used LIF technology to study the
classification and recognition of Manuka honey adulterated with
syrup. It can be seen that the LIF technology in the food field is also

widely used. In the identification of mine water inrush source, there
are some applications and research results, but it still needs to be
improved and perfected.

Random forest (RF) is a supervised ensemble learning model for
classification and regression Mantas et al. (2019). Its essence is an
integrated learning algorithmwith the advantages of processing high
dimensional data, high accuracy, and reasonable decision rules.
Stevens, Stevens et al. (2015) conducted a study of regional
population distribution patterns and influence mechanisms using
RF models. Ceccato et al. (2021) used RF models to assess car-
sharing switching rates for traditional transportation modes. Zhu
et al. (2017) conducted rapeseed pest detection based on the RF
model. Paing et al. (2020) established RF models for classifying
benign and malignant lung nodules. RF algorithms are widely used
in various industries, such as big data analytics, bioinformatics,
financial risk control, and healthcare.

In this paper, firstly, the original spectral data is preprocessed
using MA, SG, FD, and SD methods. Choose the MA method with
the best classification accuracy as the final denoising method. Then,
the RF algorithm is used to remove the spectra with lower
importance after denoising, and the feature wavelengths with the
minimum classification error of 0 are selected. Finally, five algorithm
recognition models were constructed, including SVM, PCA-SVM,
MA-SVM, MA-PCA-SVM, and MA-RF. The MA-RF algorithm
with the highest accuracy was selected to quickly and accurately
predict mine water inrush.

2 Materials and methods

This paper aims to identify the source of mine water inrush.
Firstly, the fluorescence spectrum of the mine water source is
obtained by the LIF system, and then the original fluorescence
spectrum is pretreated. Then RF is used to identify the fluorescence
spectrum of mine water source, and finally, the type of mine water
source is identified. In particular, a desktop computer configured
with Intel(R) Core(TM) i7-10700K was used as the data processing
platform, and Matlab R2021a was used to complete the fluorescence
spectrum analysis.

2.1 Experimental materials

Goaf water is acidic, corrosive, and usually rich in high
concentrations of harmful gases such as hydrogen sulfide. Goaf
water is the most important and harmful source of water inrush in
coal mines. This experiment mainly takes goaf water mixed with
sandstone water as the research object. The experimental material
was goaf water and sandstone water from a coal mine in Huainan
City, Anhui Province, in July 2022. The goaf water and sandstone
water were mixed at different volume ratios. 75 water samples were
selected from each group to form the following sample set: 1) Group
A: Mixed water with a volume ratio of goaf water and sandstone
water of 4:1. 2) Group B: mixed water with a volume ratio of 3:
1 between goaf water and sandstone water. 3) Group C: mixed water
with a 2:1 volume ratio of goaf water and sandstone water. 4) Group
D: mixed water with a 1:1 volume ratio of goaf water and sandstone
water. 5) Group E: mixed water with a volume ratio 1:2 of goaf water
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and sandstone water. 6) Group F: mixed water with a volume ratio of
goaf water and sandstone water of 1:3. 7) Group G: mixed water with
a volume ratio of 1:4 of goaf water and sandstone water.

In order to ensure that the experimental data is more accurate
and reliable, the water samples collected at the site are placed in a
dark room, sealed, and stored away from light. According to the
different mixing ratios, a total of 525 sets of spectral data were
obtained as experimental samples.

2.2 Lif spectroscopy acquisition

The structure of the multispectral acquisition system adopted in
this paper is shown in Figure 1. The main components of the system
include laser, spectrometer, fluorescence probe, and a computer
equipped with spectral acquisition software. A 405 m semiconductor
laser (Beijing Huayuan Toda Laser Technology Co., LTD.) was used
to excite the fluorescence of the mine water source. The
spectrometer is a USB200+ mini-spectrometer (Ocean Optics,
United States), which is equipped with a 2048-dimensional linear
CCD for fluorescence spectra measurement. The immersion micro-
fluorescent probe model FPB-405-V3 (Guangdong Koskai
Company) can be inserted into the sample to obtain fluorescence
signals. Spectra Suite software is installed on the computer for the
acquisition, display, and saving of fluorescence spectra. The
algorithm simulation is run in Matlab R2021a environment.

The fluorescence spectrum of mine water source is collected in
the same environment to reduce the interference of external factors
on the fluorescence spectrum. During the experiment, the power of
the laser was set to 100 mW, the spectrum acquisition range of the
spectrometer was set to 340–1,021 nm, and the integration time was
set to 1 ms. After the equipment was ready, the fluorescence spectra
of mine water source samples were collected by the LIF system, and
75 fluorescence spectra of seven kinds of mine water sources were
obtained, totaling 525 mine water fluorescence spectra. In the
process of establishing the mine water source identification
model, 60 samples of each mine water sample are randomly
selected as the training set and the rest as the test set. That is,

the training set contains a total of 420 mine water fluorescence
spectrum samples, and the test set contains a total of 105 mine water
fluorescence spectrum samples. In addition, in the process of
establishing the fluorescence spectrum identification model of
mine water source, ten-fold cross validation is introduced to
make the classification model more reliable.

2.3 Pretreatment of fluorescence spectra

Due to the interference of system noise and external noise in the
collection process of laser-induced fluorescence spectrum, the
original fluorescence spectrum of mine water source collected
contains useless noise interference information, which has a great
impact on the experimental results. Therefore, it is necessary to
preprocess the original fluorescence spectral data. Common spectral
preprocessing methods include Moving average smoothing (MA),
Savitzky-Golay smoothing (SG) Schettino et al. (2016), First
derivative (FD)Jin et al. (2012) and Second derivative (SD)
Czarnecki (2015). These methods are used to denoise the
fluorescence spectral data. According to the evaluation index of
the selected classification model, the prediction ability of the original
spectrum and the denoised spectrum is compared, and the
appropriate denoising method is selected.

2.4 Random forest for fluorescene
spectrum analysis

Random forest consists of many decision trees. It is a supervised
algorithm for classification and regression, also known as Classified
And Regression Tree (CART), which was proposed by Breiman
Parcha et al. (2007). The random forest algorithm process is shown
in Figure 2. In the calculation process, the binary tree segmentation
rule is used to divide the trained sample set into two subsample sets
each time, and each non-leaf node has two branches. The subsample
set repeats the action until it can no longer split. The randomness of
the random forest is reflected in the fact that when training each tree

FIGURE 1
Schematic diagram of LIF spectral system.
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from the full sample size of N, a dataset that may have repetitions of
the same size of N is selected. We call it Bootstrap sampling. At each
node, a subset of all features is randomly selected to calculate the
optimal segmentation method Goehry et al. (2021). Bagging is a put-
back sampling technique based on Bootstrap. According to the
sampling probability, about 36.79% of the original data will not
be selected by Bootstrap sampling and will not participate in the
establishment of a decision tree. These data constitute the out-of-bag
(OOB) data set Kotsiantis (2011). This part of data can be used to
evaluate the performance of the decision tree and calculate the
prediction error rate of the model, which is called out-of-bag error.
The algorithm of each single decision tree has low precision and is
prone to overfitting. If the accuracy is improved, multiple decision
trees need to be gathered together to form a random forest
model. The structure of its prediction model is
R � h(x,), k � 1, 2, 3, . . .K, where k represents the number of

decision trees, θ1, θ2, θ3, are each random vector independent of
each other and in the same direction. The independent variable x is
determined, and the final prediction is decided by voting Quadrianto
and Ghahramani (2014).

In the random forest model, the feature importance can be
measured by the OOB error. For each decision tree, the
corresponding out-of-bag data error is recorded as errOOB1.
Then, randomly add noise interference to the feature x of all
samples of the OOB data, calculate the error of the data outside
the bag again, and record it as errOOB2. If there are N trees in the
random forest, The importance of feature x W is expressed as W �
∑(errOOB2 − errOOB1)/N Gupta et al. (2022). Suppose the
accuracy rate outside the bag is greatly reduced after noise
interference is added. In that case, the feature has a significant
influence on the classification result, and the feature is of high
importance.

FIGURE 2
Random forest algorithm process.
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3 Results and discussion

3.1 The original fluorescene spectrum of
mine water source

In order to ensure that no other factors affect the results of the
experiment, the experiment was conducted in a laboratory without a
light source and at a constant temperature. The fluorescence spectrum
data of mine water source was collected by micro-optical fiber and
fluorescence spectrometer. After laser irradiation, the fluorescent
substances in mine water source absorb light energy, stimulate and
release energy, produce fluorescence, and form fluorescence spectrum.
The spectrum peaks between 420 and 650 nm and differences in this
range are concentrated. The original fluorescence spectrum is shown in
Figure 3. Figure 3A shows the original fluorescence spectra of all mine
water samples, and Figure 3B shows the fluorescence spectra of one
sample randomly selected from each type of A-G goaf water and
sandstonewatermixed samples. Themorphology andwave peaks of the
original fluorescence spectra are very similar, and there are crosses
between different spectra. The spectral differences are small, so it is
difficult to observe and distinguish the differences between

experimental samples. Therefore, the original fluorescence spectral
data should be preprocessed.

3.2 Selection of spectral
pretreatment method

In order to eliminate noise interference in the original fluorescence
spectrum, reduce errors, and retain useful information in the
fluorescence spectrum, MA, SG, FD, and SD were used to
preprocess the original fluorescence spectrum data of mine water
samples. Respectively, the preprocessed fluorescence spectra are
shown in Figure 4.

The four groups of diagrams in Figure 4 show that the fluorescence
spectra of MA and SG preprocessed spectra have many advantages,
although there are still overlapping parts. Compared with the original
fluorescence spectra, they are more dispersed, with less noise
interference, and the water samples are easier to distinguish. While
the FD and SD processed data are redundant, with large noise
interference, which affects the accuracy of the spectral data.

The classification accuracy and training time of the four
preprocessing methods were obtained by RF classification. The
results were shown in Table 1. The classification accuracy of MA
reached 99.24%, and the training time was 0.3434s. The classification
accuracy of SG is 99.05%, and the training time is 0.3431s. Bothmethods
have improved the classification accuracy of 98.10% and the training
time of 0.3660 of the original spectrum. Overall, the pretreatment effect
ofMA is the best. The data also showed that the classification accuracy of
FD and SDwere 80% and 61.52%, and the training timewas 0.3975s and
0.3884s, which showed poor processing effect.

3.3 Random forest analysis of
fluorescence spectra

Random forest is an ensemble learning algorithm that improves
classification and regression accuracy by combining multiple decision
trees. In the random forest, we need to adjust the parameters, and the
first is to set the minimum number of leaves. Each decision tree divides
the data set into smaller subsets through continuous segmentation, each
subset corresponds to a node in the tree and the leaf node is the final
subset Karabadji et al. (2023). According to the setting of the minimum
number of leaves, each node must have a certain number of samples in
the subset after segmentation to continue downward segmentation.
Otherwise, it will become a leaf node. How to set the minimum
number of leaves greatly affects the classification and regression
results of random forest. If the minimum number of leaves is set too
large, the depth of the decision tree will be shallow, resulting in an
underfitting phenomenon. If the minimum number of leaves is set too
small, the depth of the decision tree will be large, and overfitting will
occur Santra et al. (2020). Out-of-bag (OOB) data can be used as
generalization error to evaluate themodel. After training, RF’s out-of-bag
error rate is shown in Figure 5. The minimum number of leaves is set to
6, the number of trees is set to 24, and the out-of-bag error rate is reduced
to 0, achieving 100% identification accuracy and ensuring the stability
and reliability of results.

There are 2048 attributes in the original fluorescence spectral
data, each of which contains different spectral information, and the

FIGURE 3
The original fluorescence spectrum of mine water sample.
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importance of different attributes to spectral analysis is obviously
different. Non-critical attributes with low importance will affect the
establishment of the classification model for mine water inrush
samples and thus fail to achieve a good prediction effect. Based on
random forest, the feature importance is analyzed. As shown in
Figure 6, the importance of most attributes is 0. After MA
preprocessing, some attributes eliminate interference information
and make their importance prominent. The fluorescence spectrum
with wavelengths between 420 and 620 nm has obvious
characteristics, and the feature importance is between 0.1–0.3.

The RF classification model can select features from their
importance through threshold selection for model optimization
Hwang et al. (2023). Try to remove unimportant features at lower

levels to optimize the accuracy and efficiency of the model. When the
threshold is 0.25, the number of selected feature wavelengths is 2, the
minimum classification error is 1.71%, the number of trees is 60, and
the training time is 0.202s. Although the training time is short, the
minimum classification error value is too large.When the threshold is
set to 0.10 and 0.05, the number of selected feature wavelengths is 281,
and the number of decision trees is 18, the minimum classification
error can reach 0. Then, the training time is 0.3790s and 0.3951s,
respectively. Overall, when the threshold is 0.1, the classification effect
is good, and the training time is short.

A total of seven groups of A-G samples mixed with different
volume ratios of goaf water and sandstone water were trained. Since
the test set and training set were generated randomly, the results

FIGURE 4
Fluorescence spectra after different pretreatments.

TABLE 1 Classification result of different preprocessing methods under decision tree.

Original spectra MA SG FD SD

Classification accuracy (%) 98.10 99.24 99.05 80.00 61.52

Training time(s) 0.3660 0.3434 0.3431 0.3975 0.3884
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FIGURE 5
RF classification errors under different minimum number of leaves.

FIGURE 6
Characteristic importance of fluorescence spectra at different wavelength positions.
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would be different each time. The RF prediction model of a certain
run was fitted, and the results are shown in Figure 7. After MA
preprocessing, the RF model threshold was set to 0.10, and the
number of characteristic wavelengths was 281. The predicted results
were good, and the predicted values were basically consistent with
the actual values. This is consistent with the results under different
feature importance thresholds in Table 2.

3.4 Comparison with traditional

In order to verify the evaluation effect and reliability of the RF
algorithm model for mine water inrush prediction, Support Vector
Machine (SVM) Ding et al. (2017), Principal Component Analysis
(PCA) Zhou et al. (2020), and Moving average smoothing (MA)
algorithm are used to identify mine water inrush independently or
combined with algorithm modeling. In the experiment, the training
data was randomly selected, and the experiment was repeated three
times independently. The experimental results are the average of
three times, as shown in Figure 8.

In Figure 8, when only SVM algorithm is used to identify mine
water inrush, the spectral data has the interference of redundant
information, and the recognition accuracy is the lowest 98.1%.
With the combination of PCA-SVM algorithm, the recognition
accuracy has been improved, reaching 99.05%. After MA
preprocessing, the MA-SVM and MA-PCA-SVM algorithms
reduce the noise interference in the spectrum and greatly
improve the recognition accuracy, reaching 99.81%. Finally,
the prediction and evaluation performance of MA-RF
algorithm is the best, and the accuracy reaches 100%. It has
the highest accuracy and stable results.

4 Conclusion

This study proposes a laser induced fluorescence method for
identifying mine water sources, which combines the identification
model of random forests. Firstly, a LIF spectral acquisition system is
established, and different spectral data are obtained by laser
irradiation of water inrush samples. The original samples were

FIGURE 7
Actual category and predicted category of the test set.

TABLE 2 The results of different feature importance thresholds.

Thresholds Number of wavelengths Minimum classification error (%) Number of trees Training time s)

0.25 2 1.71 60 0.2022

0.20 23 0.19 18 0.2341

0.15 85 0 37 0.2861

0.10 281 0 18 0.3790

0.05 281 0 18 0.3951
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collected from sandstone water and goaf water in a coal mine in
Huainan, and the two types of water were mixed in different
proportions to form a total of seven water samples. The laser
induced fluorescence spectra of the seven water samples were
identified and analyzed.

Then, smooth preprocessing of spectral data using different
processing methods. Moving average smoothing (MA),Savitzky-
Golay Smoothing (SG), First derivative (FD), and Second
derivative (SD) methods are used to preprocess the original
spectral data to reduce the noise and interference information
existing in the original spectral data. By comparison, the Moving
average smoothing (MA) method has high classification accuracy
and is the final method for noise reduction. Based on the feature
importance analysis of RF for fluorescence spectra at different
wavelength positions, when the threshold is set to 0.1, the
minimum classification error is 0. When the number of
characteristic wavelengths is selected, and the best classification
effect is obtained. Finally, compared with SVM, PCA-SVM, MA-
SVM, and MA-PCA-SVM, the MA-RF algorithm reaches 100%
recognition accuracy. The other numerical values are represented as
98.1%, 99.05%, 99.81%, 99.81%.

The experimental analysis shows that it is feasible to use RF
combined with laser-induced fluorescence technology for
prediction and evaluation of mine water inrush. Compared
with traditional hydrochemical analysis, principal component
analysis, and dynamic water level analysis methods,Laser-
induced fluorescence technology can achieve non disturbance,
real-time in-situ measurement, and fluorescence spectroscopy
analysis has advantages such as high sensitivity and fast speed.
The RF recognition model constructed using MA preprocessed

spectral data has the best recognition effect on water samples.
This is due to the different effects of the four preprocessing
methods on spectral data. SG mainly eliminates the influence of
large scale differences in spectral data, MA is used to eliminate
random noise and improve signal-to-noise ratio, while FD and
SD mainly reduce the influence of uneven distribution; The MA
preprocessing method performed the best in this work. The MA-
RF classification model has good performance in identifying
water sources. Compared to the other three SVM models,
PCA-SVM, MA-SVM, and MA-PCA-SVM, the training
accuracy is the best. It is providing new exploration and
improvement for artificial intelligence in identifying water
sources in mines.

Going forward, three critical areas need to be explored
further. First, in the subsequent experiments, we will
continuously expand the research on coal mining areas and
the categories of aquifer water samples, and improve the
model database. Because the water source identification model
for coal mines requires a large number of representative aquifer
water samples as the foundation, in order to make the model have
the best adaptability and reliability. Second, given that the
hydrochemical analysis method has accumulated a lot of
experience, in practical analysis, comprehensive water source
identification research can be carried out by adding online
measurement of pH value, conductivity, etc., as well as
measuring water pressure and inflow as characteristic values,
and conducting water source warning research based on various
data. Finally, we should investigate more effective methods for
determining the weights of weighted classifiers to enhance the
predictive performance of the model.

FIGURE 8
Comparison with traditional recognition methods.
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