
Coarse to superfine: can
hyperspectral soil organic carbon
models predict higher-resolution
information?

Shayan Kabiri* and Sharon M. O’Rourke

School of Biosystems and Food Engineering, University College Dublin, Dublin, Ireland

Introduction: Modeling and mapping of soil organic carbon concentration and
distribution at the pedon scale is a current knowledge gap that can be addressed
by laboratory-based hyperspectral imaging and chemometric analysis of soil
cores. Despite the advancements in soil organic carbon models based on
hyperspectral images, it is not clear how these models will perform upon
input with images at higher resolutions than those of their training sets. This
study aims to measure the generalizability of a soil organic carbon model based
on a test set with higher resolution hyperspectral images than that of its
training set.

Methods: Organic carbon contents were measured at 10 cm intervals on eight
soil cores for use as the training set and at 1 cm intervals on a single core for use as
the test set. Three regressionmodels, namely, multilayer perceptron, partial least-
squares, and support vector regressions, were trained and tested with themedian
of each hyperspectral image for each of these intervals as the training and test
predictors. Permutation importance analysis was performed to explain
the models.

Results: The results show that although all three models had the same validation
R2 of 0.92 for cross-validation on the 10 cm data, multilayer perceptron
regression allowed the best generalization with a test R2 of 0.96 compared to
the partial least-squares regression (0.81) and support vector regression (0.86). It
was demonstrated that the multilayer perceptron model is more robust to soil
surface anomalies and that it predicts soil organic carbon on the test set by
learning the spectral features related to soil organic matter chromophore activity
in the 950–1,150 nm region along with clay mineralogy derived from peaks at
1,400, 1,900, 2,200, 2,250, and 2,350 nm.

Conclusions: This study shows that while the regression models based on
hyperspectral images perform well at the 10-cm-resolution cross validation,
multilayer perceptron regression shows superior generalization and
robustness for a higher 1-cm-resolution test set without much loss of
prediction power.
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1 Introduction

Understanding soil mechanisms and dynamics, especially those of
soil organic carbon and its sequestration, at smaller than the pedon
and subcentimeter scales is a major research subject in soil sciences
(O’Rourke et al., 2015). In recent years, hyperspectral imaging has
gained significant interest as one of the most popular methods of
acquiring inputs for soil organic carbon models at the subcentimeter
scale (O’Rourke et al., 2011; Steffens and Buddenbaum, 2013;
Tahmasbian et al., 2018; Sorenson et al., 2020; Xu et al., 2020).
However, in these studies, as is the case with many environmental
modeling practices, due to lack of object-specific test sets, it is not clear
howmuch of the predictive power demonstrated through leave-out or
cross-validation is retained when the same model is used to predict
soil organic carbon at a resolution higher than that of the training
responses (Meyer et al., 2019).

Several linear and non-linear regression models, including
partial least-squares regression (PLSR) (O’Rourke et al., 2011;
Tahmasbian et al., 2018), neural network regression (Sorenson
et al., 2020), and support vector regression (SVR) (Steffens and
Buddenbaum, 2013), have been used to model soil organic carbon
content from hyperspectral images. The models are often chosen on
the basis of cross-validation performance metrics, with little to no
attempts at interpreting the models produced, specifically in the case
of the non-linear models.

One class of neural networks called multilayer perceptron (MLP)
has been used for classification and regression tasks in datasets with
complex non-linear relationships (Murtagh, 1991). These models are
known for their generalization power as well as ability for feature
extraction and response prediction across various scales (Yuan et al.,
2020); however, they tend to not converge on small datasets. This can
be overcome by introducing numerous hidden layers to increase the
model complexity (Olson et al., 2018) and has been successfully

deployed on small datasets for environmental modeling (Nawal
et al., 2023). Compared to the linear models, MLP models are
usually considered to be black boxes in terms of the model
explanation (Benitez et al., 1997) as they are often used only as
predictive models without interpretation of their inner logic. This
difficulty is usually addressed by implementing model-agnostic
predictor importance analysis methods (Molnar et al., 2022).

The main aim of this study was to investigate the generalizability
of hyperspectral-image-based soil organic carbon models for test
data at higher resolutions than those used for training. This is an
important consideration in modeling soil organic carbon
concentration and distribution at various depths and is a
requirement prior to deployment of such methods for assessing
soil management practices in field experiments.

Hyperspectral images of eight soil cores were acquired with soil
organic carbon references at 10 cm intervals for use as the training set as
well as from a single core at 1 cm intervals for use as the test set. Models
based on MLP regression, PLSR, and SVR were trained, tuned, and
cross-validated on the training set before being evaluated on the test set
to demonstrate the predictive power for inputs of higher resolution.
Permutation importance, which is a model-agnostic predictor
importance analysis method, was used to explain the MLP model
and its possible mechanism of soil organic carbon prediction.

2 Materials and methods

2.1 Data acquisition

Nine soil cores were collected from UCD Lyon Research Farm,
Co., Kildare, Ireland (53°17’52” N 6° 32’08” W) (Figure 1). This
site is under temperate maritime climate, with no dry season and
an annual rainfall of 750–1000 mm (Lalor et al., 2004). Three soil

FIGURE 1
Sampling site location and approximate sampling points for the cores of three soil types: brown earth (BE), gleysol (G), and podzol (P).
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types were sampled on the basis of previous soil maps: brown
earth (BE), gray brown podzolic (P), and low-humic gley (G). The
brown earth soil originates from Silurian rock mixed with
limestone drift and old red sandstone, the podzolic soil
originates from a fine covering of glacial limestone drift laying
atop limestone rock, and the gley soil originates from unstratified
calcareous drift parent material resting on decalcified and
decalcifying calp limestone (Collins and Hames, 1970). All
sampling sites were managed as perennial ryegrass (Lolium
perenne) sward under rotational grazing with reseeding
approximately once every 8 years. Soil cores of dimensions
50 mm × 1,000 mm were extracted using a percussion drill
(Eijkelkamp, Giesbeek, Netherlands) with uPVC core liners.
The cores were split lengthwise into halves using a mechanical
saw to split the uPVC liners as well as a fine-toothed single-
handed saw to split the soil within. One of these splits was cut at
20 cm intervals for imaging, and the other split was used for
bulk sampling.

The cores were cut into 20 cm subcores using a hacksaw. Then,
hyperspectral images of these subcores were acquired using aHypspex
SWIR-384 device in the spectral range of 947–2,514 nm. The images
were then calibrated using a 100% reflectance spectralon.

Soil organic carbon concentrations were acquired from the
samples by the dry combustion method for 10-cm sections of
eight of the core splits and for 1-cm sections of one brown earth
soil core for use as training and test sets, respectively. This resulted in
78 and 89 data points for the training and test sets, respectively,
reflecting acquired soil core depths between 90 and 100 cm.

2.2 Statistics and modeling

2.2.1 Pretreatment
All of the 20-cm hyperspectral images were cropped by visual

inspection and stitched to obtain the whole core length. In cases
where the widths of the 20-cm images did not match, the largest
width was used as the core width while the other images were
upscaled using spline interpolation. All core images were spectrally
scaled to reduce the effects of uneven soil surfaces (Esquerre et al.,
2012; Kubat, 2021) following Eq. (1), with ρijk being the reflectance
at point (i, j) in the image for the spectral band k and ρij being the set
of reflectances at point (i, j) in the images across all bands. To
remove the background and shadows, k-means clustering (Hartigan
and Wong, 1979) was performed with two clusters for each core
image, and the pixels corresponding to the background cluster were
replaced with NAN (not a number) values. The rows in the images
that had more than 50% NANs were removed as these were most
likely areas at the beginning or end of the 20-cm subcores, and their
removal improved image stitching.

ρsijk �
ρijk −min(ρij)

max(ρij) −min(ρij)
(1)

2.2.2 Regression models
The median spectra for the 10 cm and 1 cm sections from the

training and test cores were calculated for use as predictors, and the
10 cm and 1 cm reference soil organic carbon concentrations were

used as the training and test responses, respectively. The 10 cm and
1 cm intervals were determined on the basis of image length to
account for the negative effects of core cutting and image stitching.

The three regression models, MLP regression (MLPR)
(Murtagh, 1991), PLSR (Geladi and Kowalski, 1986), and SVR
(Awad and Khanna, 2015), were tuned and cross-validated
(three-fold) on the 10-cm samples and tested on the 1-
cm samples.

In MLPR, an MLP neural network comprising an input, an
output, and several hidden layers in between was trained. The
input data were processed through the network by applying
weights and biases to the connections and passing the results
through activation functions in the hidden layers before
producing the outputs at the output layer. These activation
functions can potentially introduce non-linearities that capture
complex patterns in the data. During training, the weights and
biases of the hidden layers are optimized. The MLPR model was
tuned for the activation function, number of hidden layers,
solver, and initial learning rate. The number of hidden layers
was tuned for up to 10, as prescribed by Olson et al. (2018) for
creating MLPR models with small datasets.

PLSR combines the features of principal component analysis
(PCA) and multiple regression by finding latent variables that
explain the maximum covariance between the predictor and
response variables. This is particularly useful in cases where the
number of predictors exceeds the number of samples, as is often
the case with hyperspectral images. The PLSRmodel was tuned for the
number of components used.

SVR finds the relationship between the predictors and responses
by fitting a hyperplane in a high-dimensional space. The SVR model
was tuned for the kernel, kernel coefficient, and regularization
parameters C and ϵ.

For MLPR and SVR, the features were merged into clusters (Xu
and Lee, 2015) and tuned for the number of clusters to reduce the
computational cost.

2.2.3 Predictor importance analysis
A model-agnostic predictor importance analysis called

permutation importance (Altmann et al., 2010) was used on
the test set to determine the spectral regions that are most
important for predicting soil organic carbon. In each step of
this method, a predictor from the training set is randomly
shuffled and a new model is fitted to the training set to
measure its performance on the test set. The worsening of the
performance metric compared to that of the base model is
deemed as the importance of that predictor. High correlations
between predictors may cause the permutation importance to
underestimate the predictor importance (Nicodemus et al., 2010;
Molnar et al., 2022). To avoid this, cross-correlations were
calculated between the spectra for various lag steps, and n
clusters were randomly shuffled at each permutation, with n
being the lag step with the least cross-correlated predictors. For
the PLSR model, the coefficients of the linear model derived from
PLSR were also used as a secondary measure of predictor
importance, but these coefficients only apply to the training set.

All statistical analyses and modeling were conducted using
Python 3.11.7 within the Scikit-learn library (Pedregosa
et al., 2011).
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3 Results

3.1 Data description

The soil organic carbon concentrations within each core in the
training set had the same distribution and range (mean = 1.63,
median = 0.83, max = 5.99, min = 0.16, std. dev. = 1.60), and the

soil organic carbon values in the combined training and test set (mean =
1.62, median = 1.39, max = 7.66, min = 0.024, std. dev. = 1.70) were
from a statistically similar distribution (Kolmogorov–Smirnov, p >
0.05); however, there were more extreme high values of the soil organic
carbon concentrations in the test set (Figure 2).

A trend is also apparent between the reflectance and soil organic
carbon concentration. The absolute correlation between the reflectance

FIGURE 3
Reflectance, soil organic carbon content (green to red hue), and correlation coefficients (blue) of each spectral band with organic carbon (OC)
concentrations averaged over 10 bins for the (A) training and (B) test sets.

FIGURE 2
Distribution of organic carbon (OC) in (A) 10-cm core sections of each of the eight training cores and (B) 10-cm core sections of all training cores vs
1-cm sections of the test core BE2.
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and soil organic carbon is highest in the spectral region of
2,000–2,200 nm, with average r values of 0.8 and 0.9 for the training
and test sets, respectively (Figure 3).

The first four principal components (PCs) explain 95% of the
variations in the spectral data. The data points tend to separate based
on their soil types within the first three PCs, but these are not distinct
enough to completely separate the soil types (Figure 4).

Each spectral band is highly correlated to its adjacent bands.
This is highest for all adjacent bands with one step (r ~ 1.0), but
tends to decrease for correlations of four and sixteen steps between
the bands, with average r values of 0.95 and 0.81, respectively
(Figure 5). Thus, 16 was used as the batch size for the
permutation importance.

3.2 Soil organic carbon model

The MLPR, PLSR, and SVR models performed almost similarly
for cross-validation (R2 = 0.92, 0.92, and 0.91, respectively), but
MLPR performed better than SVR that performed better than PLSR
on the test set (R2 = 0.96, 0.86, and 0.81, in order), indicating that
MLPR is a much stronger model for predicting upscaled responses
(Table 1). PLSR and SVR specifically performed poorer in the lower
and middle ranges of soil organic carbon concentrations compared
to MLPR (Figure 6).

The MLPR model showed the best cross-validation performance
with 128 clusters of predictors, the rectified linear unit (ReLU) activation
function, eight hidden layers, an initial learning rate of 0.1, and the
limited-memory Broyden–Fletcher–Goldfarb–Shanno (LBFGS) solver.
The PLSR model showed the best cross-validation performance with
seven components. The SVR model showed the best cross-validation
performance with 64 clusters of predictors, a linear kernel, a kernel
coefficient of 0, and free parameters C and ϵ equal to 1 and 0.1,
respectively.

The predicted soil organic carbon maps for the surface of the test
core show that MLPR captures more details and that its median signal
for each row follows that of the reference soil organic carbon more

closely than PLSR and SVR; MLPR is also more robust to core-surface
anomalies. Further, SVR is only slightly better than PLSR at handling
core-surface anomalies (Figure 7).

The permutation importance analysis shows that 950–1,150 nm
was the most important region for MLPR even though no peaks
were present here. The second, third, fourth, and fifth most
important regions were around the peaks at ~2,250, ~2,200,
~1,400, and ~2,350 nm, respectively. For PLSR, the permutation
importance region was around the peak at ~2,350 nm, and the
region around the peak at ~1900 nm was the least important region.
SVR showed almost the same pattern as PLSR, but with greater
emphasis on the region around the peak at ~2,350 nm. PLSR
coefficients followed a similar pattern as MLPR permutation
importances but did not correspond to the PLSR permutation
importances. None of the four measures of predictor importance
were correlated in the coefficients between the soil organic carbon
and spectra, but the most important predictors for MLPR also had

FIGURE 4
(A) Percentage of variance explained for each principal component (PC) and (B) 3D plot of the first three PCs for the median hyperspectral images
obtained as 10-cm sections.

FIGURE 5
Correlation of each spectral band with its adjacent spectral band
for 1, 4, or 16 steps.
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high correlations with the soil organic carbon, while some of the
spectra having high correlations with the soil organic carbon were
not as important for MLPR (Figure 8).

4 Discussion

To the best of the authors’ knowledge, there are no studies on
the predictive abilities of soil organic carbon models based on
laboratory hyperspectral imaging with higher-resolution test
sets; hence, the present study constitutes a pioneering effort
to provide direct evidence that neural networks are effective at
predicting higher-resolution soil organic carbon for soil core
mapping. For the cross-validation performance, the ranges of
soil organic carbon concentrations and sample sizes vary greatly
between extant studies, but the validation R2 values range
between 0.71 (Tahmasbian et al., 2018) (PLSR) to 0.94
(Sorenson et al., 2020) (neural network regression). In the
present study, it is shown that predictions of higher ranges of
soil organic carbon content are less accurate than those for lower
ranges. This fact appears to be reflected in the differences
between model performances in these studies. The median
soil organic carbon contents for the six studies were
approximately 7% (O’Rourke et al., 2011), 5% (Tahmasbian
et al., 2018), 0.8% (current study), 0.5% (Sorenson et al.,

2020), 0.4% (Xu et al., 2020), and 0.4% (Steffens and
Buddenbaum, 2013), with validation R2 values of 0.75, 0.71,
0.92, 0.93, 0.98, and 0.97, respectively, clearly showing a pattern
of worsening performance with increase in the median soil
organic carbon content.

In terms of the cross-validation performances of different
types of regression models, the current study could not establish
any meaningful differences between PLSR and the other two
non-linear models. However, Xu et al. (2020) noted a clear
advantage with the non-linear methods (neural network,
cubist, support vector, and Gaussian process regressions) over
PLSR, with an average validation R2 of 0.90 for the non-linear
methods vs R2 of 0.77 for PLSR; however, there were no
meaningful differences between the performances of the non-
linear methods themselves. Similarly, Steffens and Buddenbaum
(2013) showed the advantage of SVR over PLSR, with R2 values
of 0.97 and 0.81, respectively.

Upon visual inspection, the maps produced by Steffens and
Buddenbaum (2013) show significant influences of surface
anomalies like cracks and shadows on the predicted soil organic
carbon. This is exacerbated in the SVRmodel compared to the PLSR
model, even with a better validation R2 (0.97 vs 0.81), in contrast to
the findings of the current study. However, this difference may only
be attributable to the different soil morphologies and pretreatment
regimes. Maps produced by the SVR model in Xu et al. (2020) were

TABLE 1 Cross-validation and test performances of themultilayer perceptron regression (MLPR), partial least-squares regression (PLSR), and support vector
regression (SVR) models. R2: coefficient of determination; RMSE: root mean-squared error.

Regression model R2 validation RMSE validation R2 test RMSE test

MLPR 0.92 0.43 0.96 0.33

PLSR 0.92 0.44 0.81 0.74

SVR 0.91 0.47 0.86 0.63

FIGURE 6
Actual vs predicted organic carbon values for the test set with the (A) multilayer perceptron regression (MLPR), (B) partial least-squares regression
(PLSR), and (C) support vector regression (SVR) models.
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also influenced by geometric anomalies. On the other hand, maps
reported by Sorenson et al. (2020) produced with a Bayesian
regularized neural network suffered minimally from the major
cracks on the surfaces of the cores. These findings, in addition to
the results of the present study, show the superior abilities of neural
networks in handling surface anomalies compared to
PLSR and SVR.

The most important predictor region for the MLPR model
was 950–1,150 nm. Although this region is usually associated
with the chromophore activity of iron oxides (Hunt et al., 1971),
it has been shown to be highly informative for soil organic
matter chromophore activity (Beck, 1975). In fact, it was
demonstrated that the increase in soil organic content
decreases the overall reflectance signal from the 800–1,000 nm
region to the extent of completely masking the signal of the iron
oxides (Heller Pearlshtien and Ben-Dor, 2020). A similar pattern
of decreased reflectance signal from this region through
increased soil organic carbon content was observed in this work.

The adsorption peaks at 1,400, 1,900, and 2,200 nm that are
important predictors of the MLPR model are often associated
with soil moisture, but it has been shown that these peaks remain
even for dried soil (Lesaignoux et al., 2013). In addition, the
adsorption peak at 1,400 nm is known to be associated with
metal-OH vibrations (Whiting et al., 2004) and soil clay content
(Tümsavaş et al., 2019), while the adsorption peak at 2,200 nm is
known to be associated with mineral hydroxyl (Moreira et al.,
2014) and kalonite (Hunt and Salisbury, 1970). The adsorption
peak at 1,900 nm is also known to be associated with
montmorillonite, a 2:1 clay (Grove et al., 1992), but this peak
did not hold the greatest importance for the MLPR model. In
addition to these three peaks, the peak at 2,250 nm has high
importance for the MLPR model and is associated not with the
water content but the clay mineral kalonite (Clark et al., 1990).
The peak at 2,350 nm that was important for MLPR and also the
most important for SVR and PLSR has been known to be
associated with clay minerals (Clark et al., 1990).

Based on the fact that soil clay mineralogy is highly
correlated with soil organic carbon content (Torn et al.,
1997), it appears that the MLPR model predicts soil organic
carbon in accordance with the clay mineralogy learned from the
peaks at 1,400, 1,900, 2,200, 2,250, and 2,350 nm, along with the
soil organic matter chromophore activity in the 950–1,150 nm
region. The PLSR coefficients followed a similar pattern, but the
PLSR model itself is unable to generalize these importances to
the test set, as demonstrated via the permutation importances.
The advantage of the MLPR here is that it can retain these
properties over a higher-resolution test set.

In conclusion, this study shows that MLPR is a more suitable
regression model for estimating higher-resolution carbon content
than PLSR or SVR and that it is more robust to anomalies on the soil
surface. The MLPR model may possibly predict soil organic carbon
content by learning the spectral features of the soil organic matter
chromophore properties and clay mineralogy.

FIGURE 7
(A) Test core-surface image with predicted 2D maps of organic
carbon as well as median predictions (blue lines) and organic carbon
references (red crosses) for each row for the (B,C) multilayer
perceptron regression (MLPR), (D,E) partial least-squares
regression (PLSR), and (F,G) support vector regression (SVR) models.
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FIGURE 8
Permutation importance of each spectral cluster for the (A) multilayer perceptron regression (MLPR), (B) support vector regression (SVR), and (C)
partial least-squares regression (PLSR) models as well as (D) PLSR coefficients against the average background reflectances (blue) over 10 bins for the
training set.
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