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Deep learning has revolutionized numerous fields, notably image classification.
However, conventional methods in agricultural pest recognition struggle with the
long-tail distribution of pest image data, characterized by limited samples in rare
pest categories, thereby impeding overall model performance. This study
proposes two state-of-the-art techniques: Instance-based Data Augmentation
(IDA) and Constraint-based Feature Tuning (CFT). IDA collaboratively applies
resampling and mixup methods to notably enhance feature extraction for rare
class images. This approach addresses the long-tail distribution challenge
through resampling, ensuring adequate representation for scarce categories.
Additionally, by introducing data augmentation, we further refined the
recognition of tail-end categories without compromising performance on
common samples. CFT, a refinement built upon pre-trained models using IDA,
facilitated the precise classification of image features through fine-tuning. Our
experimental findings validate that our proposed method outperformed previous
approaches on the CIFAR-10-LT, CIFAR-100-LT, and IP102 datasets,
demonstrating its effectiveness. Using IDA and CFT to optimize the ViT model,
we observed significant improvements over the baseline, with accuracy rates
reaching 98.21%, 88.62%, and 64.26%, representing increases of 0.74%, 3.55%,
and 5.73% respectively. Our evaluation of the CIFAR-10-LT and CIFAR-100-LT
datasets also demonstrated state-of-the-art performance.
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1 Introduction

Crop production is significantly influenced by factors including the availability of water,
soil quality, light, temperature, and climatic conditions (Ren et al., 2019). Additionally, pests
pose a considerable threat, causing diseases, leaf and fruit damage, and overall yield
reduction. Specifically, among crops, the total global potential loss due to pests varied
from about 50% in wheat to more than 80% in cotton production. The responses are
estimated as losses of 26%–29% for soybean, wheat, and cotton, and 31%, 37%, and 40% for
maize, rice, and potatoes (Oerke, 2006). Consequently, effective pest management is
imperative for crop health and productivity optimization (Wu et al., 2019). Traditional
pest identification methods suffer from drawbacks such as subjective human observation,
inconsistent results, reliance on extensive reference materials, and the potential oversight of
small or concealed pests (Liu et al., 2020). These limitations impede accuracy, require labor-
intensive efforts, and hinder efficient identification. To address these problems, there is a
crucial need for a more efficient approach. Advanced approaches have also been proposed
in the agricultural domain, such as ResNet variants (Dewi et al., 2023; Zhang et al., 2023)
and data augmentation (Patel and Bhatt, 2021; Qian et al., 2023). And several quantitative
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techniques have been explored for data-driven decision-making in
pest and disease recognition. Spinelli et al. (2004) assessed a near
infrared (NIR)-based technique for detecting fire blight disease in
asymptomatic pear plants under greenhouse conditions, utilizing
quantitative NIR spectroscopy to measure spectral reflectance and
identify disease presence before visible symptoms appeared. Huang
and Apan (2006) collected hyperspectral data using a portable
spectrometer under field conditions to detect Sclerotinia rot
disease in celery, employing hyperspectral imaging for precise
analysis of spectral signatures to differentiate diseased and
healthy tissues. Shafri and Hamdan (2009) used airborne
hyperspectral imaging to detect ganoderma basal stem rot disease
in oil palm plantations, providing high-resolution, quantitative data
on spectral properties, which enabled early and accurate disease
detection through detailed spectral analysis. These researchers have
developed methods to address the recognition of specific scenarios
or certain crop pests and diseases, achieving high accuracy and
automation in pest identification. However, due to the prevalent
long-tail distribution phenomenon in pest image data, applying
these models often results in inadequate generalization ability and
low recognition accuracy. Therefore, based on simple pre-trained
models, in long-tail distribution datasets, our methods enhance the
model’s performance by ensuring adequate representation for scarce
categories and improving feature extraction and
classification accuracy.

In recent years, the advent of large-scale labeled datasets,
increased computational power, and innovations in algorithms
and architectures have enabled deep learning to excel in
automated feature extraction and high accuracy, making it widely
applicable in image recognition. Several researchers have introduced
deep learning into pest recognition, addressing specific challenges in
the field. For instance, Samanta and Ghosh (2012) applied neural
networks with CFS for tea pest classification, achieving perfect
accuracy. Salih et al. (2020) used CNNs for accurate tomato
disease classification with deep learning. Sethy et al. (2020)
applied CNNs for rice disease classification, outperforming
traditional methods with deep learning. Zhang et al. (2023) and
Dewi et al. (2023) have optimized ResNet architectures to address
issues encountered in pest recognition. Image classification allows
computers to automatically understand features within an image,
identify objects or scenes depicted within it, and assign them to
appropriate categories. Researchers, such as Coulibaly et al. (2022a),
have proposed deep convolutional neural networks based on CNN
algorithms for insect pest recognition. In (Ren et al., 2019; Liu et al.,
2020), ResNet variants were designed for insect pest recognition,
integrating explainability features and demonstrating exceptional
performance on certain datasets. In their work, this process typically
includes several steps: data collection, data preprocessing, model
construction, feature extraction, model training, model evaluation,
hyperparameter tuning, and model optimization. However, during
pest image data collection, there is often a disparity in the number of
samples, with some pests being abundant and others scarce, leading
to a long-tail distribution in the dataset. To address this, researchers
often employ data augmentation techniques such as rotation and
cropping during preprocessing. However, these methods only
increase the quantity of existing samples without fundamentally
changing the original dataset. Although these methods improve
model accuracy on long-tail datasets to some extent, their

effectiveness is limited. Moreover, these researchers tend to focus
on optimizing models to solve the pest recognition problem. When
applying these optimized models to long-tail distribution datasets,
the models often do not perform as well as expected. To achieve
better recognition accuracy on long-tail distribution datasets, this
paper introduces an integrated data augmentation technique that
combines resampling, self-attention mechanisms, and hybrid
methods. Additionally, a phased approach to training models
is proposed.

When handling images with a long-tailed distribution, models
often struggle to classify the tail-end categories, yielding suboptimal
fits. Although correcting feature representation methods can
enhance model performance, the effectiveness of such methods
appears limited (Yang et al., 2021; Wang et al., 2023). Therefore,
an alternative approach should enhance the model’s classification
accuracy and generalization capabilities by modifying the mapping
correlation between image features and their corresponding classes
post-feature correction.

This study addresses the challenges posed by the long-tailed
distribution of pest images by introducing Instance-Based Data
Augmentation (IDA) and Constraint-Based Feature Tuning
(CFT). IDA exhibits resemblances to Mixup (Zhang et al., 2018).
While Mixup enhances classification performance, the generated
interpolated samples often lack naturalness. Mixup does not address
long-tailed sample distributions, limiting its ability to improve
minority class representations.

On the contrary, IDA addresses this issue by incorporating
resampling and self-attention mechanisms. This approach employs
resampling to address data scarcity, particularly for
underrepresented tail-end categories. This rebalancing strategy
effectively mitigates bias caused by an uneven sample
distribution, resulting in a more equitable and representative
dataset. Additionally, integrating self-attention mechanisms
enables the model to discern intricate relationships among
samples. Moreover, integrating self-attention mechanisms allows
the model to capture the underlying data structures, enhancing
classification performance across all categories. Consequently, IDA
fine-tunes classification results and alleviates the generation of
unnatural interpolated samples. CFT endeavors restrict the
adjustment of model parameters post-feature extraction. Selective
optimization of a limited subset of parameters can bolster image
feature classification, elevate the model’s generalization prowess,
and prevent overfitting.

To achieve an efficient pest classifier, we trained the model on
the IP102 dataset (Wu et al., 2019), a large-scale benchmark dataset
for insect pest recognition with a natural long-tailed distribution. To
alleviate the data imbalance issue, a weighted loss function has been
employed to address imbalanced learning among various types (Lin
et al., 2017; Li et al., 2020). Researchers have explored various
techniques such as resampling, adversarial augmentation, and
ensemble learning.

The contributions of this study are summarized as follows.

1. We refined the feature mapping process within large-scale
neural networks to neutralize the adverse effects of data
imbalance. This advancement strengthened the network’s
capability to learn from and recognize underrepresented
categories.
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2. We introduced an IDA technique integrating resampling, self-
attention mechanisms, and mixup approaches. This
comprehensive method effectively tackles class imbalance,
diversifies datasets, and augments overall model performance.

3. We proposed CFT, optimizing the MLP parameters while
locking others. This optimization improved image feature
classification by focusing on enriching MLP performance.

4. The effectiveness of our proposed method is validated on the
IP102 dataset, attaining state-of-the-art performance in pest
identification within this dataset.

2 Literature review

2.1 Insect pest recognition

Insect pests pose significant threats to crop yields, making early
pest identification crucial for maximizing the quality and yield of
agricultural products to avert economic losses. Insect pest
recognition methods can be categorized into handcrafted and
deep learning techniques.

Handcrafted methodologies for insect pest recognition, such as
SIFT (Lowe, 2004) and HOG (Dalal and Triggs, 2005), have been
widely utilized for insect pest identification (Samanta and Ghosh,
2012; Rani and Amsini, 2016). Although these methods are effective,
they come with their own set of limitations. SIFT struggles with scale
variations, while HOG’s performance is hampered by images with
complex backgrounds, leading to their replacement by deep learning
approaches to handle diverse image conditions.

The advancement of deep learning, particularly CNNs, has
revolutionized various fields including plant diseases
identification (Vaswani et al., 2017; Salih et al., 2020; Sethy et al.,
2020), plant recognition (Dyrmann et al., 2016), and insect pest
recognition (Ren et al., 2019; Wu et al., 2019). CNNs are crucial for
insect classification tasks. However, existingmethods are insufficient
for accurately detecting rice pests with variable shapes or similar
appearances. To address this issue, Li S. et al. (2022) proposed a self-
attention feature fusion model for rice pest detection (SAFFPest),
significantly improving the identification compared to previous
methods. Furthermore, several CNN variants have been
developed for insect pest recognition. For instance, Ung et al.
(2021) investigated various CNN-based architectures, integrating
attention mechanisms, feature pyramid networks, and fine-grained
models. Nanni et al. (2022) proposed a technique for insect
classification using CNNs along with innovative variants of the
Adam optimization algorithm. Coulibaly et al. (2022b)
introduced a CNN-based method for identifying and localizing
insect pests by integrating techniques for enhancing model
interpretability, leveraging visualization maps to highlight key
color and shape features captured by the CNNs. The above-
mentioned strategies yielded promising outcomes across diverse
large-scale pest-related datasets, demonstrating improvements
through adjustments to neural network architectures and the
integration of novel modules. However, in practical scenarios,
pests display natural long-tail distributions rather than
conforming to pre-recognition based on relatively balanced
datasets. Wu et al. (2019) assembled a substantial dataset
named IP102 for insect pest recognition, comprising over

75,000 images distributed across 102 categories, characterized
by a natural long-tailed distribution, as shown in Figure 1.

Meanwhile, models such as Alexnet (Krizhevsky et al., 2012),
GoogleNet (Szegedy et al., 2015), VGGNet (Simonyan and
Zisserman, 2015), and ResNet (He et al., 2015) have been utilized
on IP102 dataset, albeit with suboptimal performances in respective
domains. Li W. et al. (2022) addressed this issue by employing
advanced deep learning techniques to train YOLOv5 and Faster-
RCNN ResNet50 on the IP102, mitigating low detection and
recognition accuracy, particularly in scenarios of detecting
multiple complex sample types. Ren et al. (2019) proposed a
Feature Reuse Residual Network (FR-ResNet) and assessed its
efficacy on the IP102 reference dataset. Experimental findings
revealed that FR-ResNet could achieve favorable performance
improvement in insect pest classification. Yang et al. (2021)
devised a Convolutional Rebalancing Network to classify rice
pests and diseases using field image datasets, enhancing
classification performance on long-tailed datasets. Wang et al.
(2023) introduced a deep learning architecture that combined
ConvNeXt and Swin Transformer models to address classification
challenges in long-tailed pest datasets, surpassing the performance
of existing methods. Most current approaches aim to improve the
recognition accuracy of long-tailed distribution datasets, and there is
no effective technique based on data augmentation and optimization
of feature concealment.

2.2 Data augmentation for image
classification

Data augmentation has emerged as a pivotal strategy for
bolstering the performance of machine learning models,
particularly in scenarios where training data is scarce. Several
data augmentation techniques have been introduced to artificially
broaden the dataset’s variability and enhance the model’s overall
generalization capabilities.

For image-based augmentation, various techniques such as
rotation, flipping, scaling, and cropping (Simard et al., 2003;
Wan et al., 2013; Sato et al., 2015) have been extensively utilized
to generate modified versions of original images. Horizontal and
vertical flips simulate different perspectives, while rotations mimic
changes in object orientation. These transformations effectively
expand the dataset, enabling the model to better handle
variations encountered in real-world scenarios. Regarding color
augmentation, adjusting brightness, contrast, saturation
(Krizhevsky et al., 2012), and hue to modify the color
characteristics of images has proven beneficial. These adjustments
mimic diverse lighting conditions and contribute to a more
comprehensive understanding of the data.

In recent years, cutout (Devries and Taylor, 2017) and cutmix
(Yun et al., 2019) have significantly advanced data augmentation
techniques. Cutout involves masking random patches from images,
prompting the model to focus on other relevant features. CutMix
blends portions of different images, compelling the model to learn
from mixed information. These methods promote better
generalization of the model while mitigating overfitting. To
enhance data augmentation strategies, studies (Cubuk et al., 2019;
2020) have employed the search algorithm to determine the optimal
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policy and used a smaller proxy task to overcome the expense of the
search phase. Generative adversarial networks (Goodfellow et al.,
2014) are also used to generate additional effective data as data
augmentation (Antoniou et al., 2017; Mun et al., 2017; Perez and
Wang, 2017; Zhu et al., 2017).

In the field of pest control, researchers have also adopted data
augmentation techniques to enhance their models’ performance. For
instance, Kusrini et al. (2020) implemented mathematical
operations to images, exploring various combinations of these
operations. Patel and Bhatt (2021) tackled class imbalance by
incorporating augmentation parameters such as horizontal flip
and 90-degree rotation. Additionally, Qian et al. (2023)
introduced an innovative automatic data augmentation method
to dynamically search for suitable augmentation strategies. These
studies utilized data augmentation to improve the accuracy of pest
identification. However, their applications were limited to datasets
of specific types of pests or diseases.

While these methods contribute to general data enhancement,
pest control presents unique challenges due to its sensitivity to
biological features (Sethy et al., 2020), adaptability to environmental
changes (Wu et al., 2019), and a natural long-tail pattern
distribution. Unlike conventional computer vision tasks that
emphasize shapes and textures, pest identification considers
insect physiology, pose variations, and appearance changes in
different growth stages. This distinctiveness underscores the
necessity for a deeper understanding of insect biology to devise
effective data augmentation. Generic computer vision methods may
not be optimal in this context, highlighting the importance of our
proposed research.

2.3 Pre-training and fine-tuning

A pre-trained model is utilized due to its capacity to extract both
fundamental and complex features during training on extensive
datasets (Poth et al., 2021). This versatility renders pre-trained
models invaluable for transfer learning, furnishing a foundation
of adaptable features across various domains.

When the dataset aligns with the pre-trained model’s dataset,
fine-tuning emerges as a viable strategy, particularly in transfer
learning. Fine-tuning finds broad application in natural language
processing and computer vision. Compared to training a model
from scratch, fine-tuning offers an intuitive solution and yields
substantial enhancements across computational efficiency, training
duration, model efficacy, and precision. In natural language
processing, researchers often leverage pre-trained language
models such as BERT (Devlin et al., 2019) or GPT (Radford
et al., 2018). These models, trained on extensive text corpora,
capture nuanced representations of language structures and
contexts. Through fine-tuning, model parameters can be tailored
to suit diverse tasks such as text classification (Zheng et al., 2020a),
sentiment analysis (Bataa and Wu, 2019), or named entity
recognition (Liu et al., 2021), catering to the specific
requirements across different domains.

In computer vision, CNNs excel as image feature extractors
through pre-training on large-scale image classification tasks. Fine-
tuning is commonly employed for tasks such as object detection (Dai
et al., 2021) and image segmentation (Chaitanya et al., 2020),

adapting the model to specific target tasks and achieving more
precise image recognition and understanding.

In pest recognition, both pre-training and fine-tuning are
pivotal. Transfer learning was applied by Kasinathan and Reddy
(2019) to fine-tune pre-trained models, facilitating efficient
classification of insect types in major crops. Additionally, Liu
et al. (2022) combined transfer learning and fine-tuning to devise
two transfer strategies within CNN for pest identification,
significantly enhancing classification performance and effectively
managing forest pests.

However, earlier studies predominantly relied on datasets with
fewer categories or balanced distributions, limited to specific
scenarios or regions, hindering widespread real-world
applicability. The developed models failed to yield optimal results
with real long-tail distributions. Given the limitations, our research
focuses on enhancing the universal applicability of pest detection in
real-life scenarios.

3 Methodology

This section introduces the pre-trained model utilized for pest
identification and network architecture. Then, the IDA approach
employed with long-tailed distribution of image data is elucidated.
Subsequently, we discuss the CFT technique. Finally, a detailed
description of the loss function employed during the network
training is provided. In this manuscript, the symbol “I” symbolizes
the input image. The flowchart of method is shown in Figure 2.

3.1 Build pre-trained vision encoder

In recent years, the adoption of pre-trained vision models has
surged within the field of computer vision. Leveraging well-
established architectures such as ResNet and ViT (Dosovitskiy
et al., 2020), pre-trained models have become pivotal in
developing robust and high-performing solutions for various
visual tasks. Initially trained on large-scale datasets, these models
excel in capturing complex image features and patterns, leading to
significant improvements in model generalization and performance
on downstream tasks. Pre-trained models consistently outperform
models trained from scratch due the former’s adept feature
extraction capabilities refined during pre-training. Pre-trained
models inherently grasp fundamental visual concepts, including
edges, textures, and shapes, contributing to their robustness
across various tasks.

ResNet and ViT are two prominent architectures of pre-trained
models. ResNet’s deep structure, characterized by residual
connections, effectively addresses the vanishing gradient problem,
making the model a versatile feature extractor. Conversely, ViT
utilizes attention mechanisms to process images by breaking them
into smaller patches and flattening them for transformer-based
processing, showcasing significant potential in the visual domain.
Drawing upon the strengths of pre-trained models, the research
community often relies on ResNet and ViT as foundational
components for various visual tasks. Fine-tuning these models
expedite the development of task-specific models. Therefore, by
harnessing the knowledge encoded within pre-trained models,
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particularly ResNet and ViT, diverse visual challenges can be
addressed, yielding enhanced performance and efficiency.

Therefore, we adopted these two models for feature extraction
from the images in Eqs (1) and (2).

f � ResNet I|θ1( ). (1)
f � ViT I|θ1( ). (2)

where f represents the image features acquired after the model’s
extraction process of ResNet or ViT with predetermined parameter
set θ1 that influence the model’s internal operations; ResNet
signifies a Residual Neural Network, a specialized deep learning
architecture; ViT denotes the Vision Transformer model, a
prominent architecture for computer vision tasks; θ2 represents
the model parameters of the Multi-Layer Perceptron (MLP). We
calculate the probability distribution using Eq. (3).

p � MLP f|θ2( ) (3)
where p denotes the probability distribution, comprising the
predicted probabilities, from the model for each possible class.
These probabilities indicate the model’s confidence in assigning
the input to different classes. Finally, we employed the argmax
function to compute the argument at which a function yields its
maximum value, as shown in Eq. (4).

ŷ � argmx p( ). (4)
ŷ denotes the predicted class label in the final outcome. This
methodology aims to enhance classification accuracy.

3.2 IDA

This study explored three approaches: class rebalancing,
information augmentation, and model enhancement, to bolster
model performance on long-tailed distribution data.

Input: Graph dataset D � {G1,G2, . . . ,GM}, batch size N,
number of classes c

Output: Augmented dataset Daug

1 Daug ← D
2 Class weights w � {w1, w2, . . . , wc}
3 Sampling weights ws � 1/w
4 foreach epoch do
5 Sample mini-batch DB � {Gi}Ni�1 from D based on

sampling weights ws

6 Sample pairs of indices (i, j) from {1, 2, . . . , N}
7 foreach (Gi,Gj) in DB do
8 Generate random mixing coefficients λij with Eq. 7
9 Obtain new sample with Eq. 5
10 Generate new label with Eq. 6
11 Add new sample to Daug

12 end
13 end

Algorithm 1. IDA.
The IDA technique employs data resampling strategies to

balance category distribution and the Mixup approach, as
outlined in Algorithm 1. We utilized the Beta distribution to
determine a mixing coefficient λ. When λ approaches 0, the

resulting feature f* retains a larger proportion of x, while for λ

close to 1, f* bears a stronger resemblance to x*:

f* � λ · x + 1 − λ( ) · x* (5)
l* � λ · l + 1 − λ( ) · l* (6)

Where x and x* signify the original and modified image data,
respectively, where the latter is obtained by shuffling; l and l* denote
the original and modified labels of the original and modified images,
respectively; λ ∈ Beta(α, α), for α ∈ (0,+∞):

λ ~ B x|α, α( ) � Γ2 α( )
Γ 2α( ), where Γ x( ) � ∫

+∞

0
tx−1e−tdt (7)

When α � 1, the Beta distribution degenerates into a uniform
distribution.

IDA augments the information content of tail-end categories
and overcomes sample diversity constraints, enhancing model
generalization and addressing challenges in long-tailed
distribution data.

3.3 CFT

The images’ data features become mixed, causing category
feature mismatches, making them difficult to differentiate. In
Figure 3 blending two sampled images creates new image
features and labels. However, the classifier primarily relies on
the blended features being from the original images rather than
the new labels. Despite utilizing ResNet and ViT models, efficient
mapping data features to categories was not achieved. Our
approach in CFA recognized the complexity of disentangling
spatial data features within images and prioritized optimizing the
mapping relationship between data features and categories.

To achieve this goal, we adopted a two-stage process. In the first
stage, two pre-trained models were employed to augment the
model’s knowledge and facilitate image feature extraction.
Following training, the best-performing model was selected for
the second stage. In the second stage, we fixed most parameters
of this best-performing model, focusing on enhancing and fine-
tuning the MLP layer. The model was then retrained to efficiently
map extracted features to their respective categories.

We employed the L2 regularization, and through Eq. (8)
updated θ2, minimizing the loss function, denoted as ‘Loss’
(Section 3.4).

θ2′ � θ2 −
∂ Loss + ε

2Σiθ
2
2( )

∂θ2
(8)

3.4 Loss function

In tasks involving multi-class classification, cross-entropy (De
Boer et al., 2005) is frequently employed, as shown in Eq. (9).

H P,Q( ) � −∑
i

P i( ) · log2Q i( ) (9)

where i indexes the various classes or outcomes; P(i) and Q(i)
signify the true and predicted probability distributions, respectively.
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3.4.1 First stage: optimizing entire model
parameters

Lstg1 � λ ·H y, ŷa|θ1, θ2( ) + 1 − λ( ) ·H y, ŷb|θ1, θ2( ) (10)

We used Eq. (10) to calculate the loss in the first stage. Where Lstg1

comprises the pre-trained model’s parameters θ1 and MLP model’s
parameters θ2, with both components jointly optimized during the

initial stage; y denotes the true labels associated with the input data; ŷa

and ŷb signify the predicted labels obtained from the model’s output
corresponding to the original data or component and the shuffled or
augmented data component, respectively.

During the initial model training phase, the objective was to
optimize parameters across the entire model, entailing adjusting the
weights of the complete model aligned with the task’s data
distribution. However, this process risked compromising some
generic features learned by the pre-trained model.

3.4.2 Second stage: feature-specific fine-
tuning with locked pre-trained part

Lstg2 � λ ·H y, ŷa|θ2( ) + 1 − λ( ) ·H y, ŷb|θ2( ) (11)

We used Eq. (11) to calculate the loss in the second stage. Where
Lstg2 denotes the MLP model’s parameters θ2, optimized solely
during the second stage, indicating that only the MLP component
underwent refinement.

FIGURE 1
Distribution of categories and quantities in IP102.

FIGURE 2
In Stage 1, we implemented the IDAmethod for data augmentation, followed by the construction and training of a pre-trainedmodel. In Stage 2, we
employed CFT to adjust the correct mapping of features to categories. Post-data augmentation using the IDA method, we fixed most parameters in the
pre-trained model and solely trained the MLP layer to achieve the mapping from features to categories.

FIGURE 3
Augmented images obtained through IDA when λ = 0.5.
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In the subsequent stage, we adopted a different
approach by fixing certain components of the pre-trained
model, typically the convolutional layers responsible for
image feature extraction. Our focus then shifted solely to
optimizing the MLP connected downstream. This strategy

allowed retraining the generic feature representations using
the pre-trained model from extensive data. Subsequently, the
MLP underwent fine-tuning to effectively map image features to
specific category labels, meeting the requirements of the
particular task.

FIGURE 4
Comparison of t-SNE visualizations with and without data resampling during fine-tuning of ResNet-18.

FIGURE 5
Comparison of t-SNE visualizations with and without data resampling during fine-tuning of ResNet-50.

FIGURE 6
Comparison of t-SNE visualizations with and without data resampling during fine-tuning of ViT.
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This two-stage method harnessed the advantages of the pre-
trained model while tailoring the model’s adaptability to task-
specific data. This transfer learning strategy is widely employed
in computer vision, enhancing model performance even with
limited data availability.

3.5 Implementation details

We utilized PyTorch 2.0.0 and cuDNN 11.7 to implement our
model, conducting model training on a single NVIDIA GeForce
RTX 4090 GPU with 24 GB of memory and a batch size of 76. The
Adam optimizer (Kingma and Ba, 2014) with a base learning rate of
0.0001 and gradient clipping at 1.0 were employed for all the
baselines. The model architecture comprises a pre-trained model
backbone with the final classification layer removed, a dropout layer
with a dropout probability of 0.5 for regularization, and a fully
connected linear layer for classification, corresponding to the
number of target classes. During forward propagation, input
images are processed through the pre-trained model backbone to
extract features, which are then flattened into a one-dimensional
vector. Dropout regularization is applied, and the resulting features
are passed through the fully connected layer to generate the final
classification output.

Furthermore, we configured a weight decay of 0.0001 to mitigate
overfitting and set the random seed to one for reproducibility. These

settings ensure consistent outcomes across different runs. In IDA,
adjusting alpha to 0.1 yielded promising model performance. In
Stage 1, we conducted training for 10 epochs, fine-tuning the model
with a learning rate of 0.0001. In Stage 2, we enhanced model
training by extending the duration to 100 epochs and fine-tuned the
learning rate to 0.00001.

3.6 Research questions

This section analyzes the experimental outcomes to demonstrate
the efficacy of our proposed IDA and CFT approaches.

• RQ1: How does the resampling approach impact the
clustering effects of pre-trained models when visualizing 2D
t-SNE feature embeddings of samples from the ‘head’ and ‘tail’
segments of the IP102 dataset?

• RQ2: How does the L1 loss vary when different subsets
(‘head’ and ‘tail’) of the IP102 dataset are considered,
using ResNet18, ResNet50, and ViT as base models
with the IDA?

• RQ3: How does CFT influence the accuracy and F1 score of
ResNet-18, ResNet-50, and ViT models on segmented
portions (‘head’, ‘mid’ and ‘tail’) of the IP102 dataset,
revealing notable enhancements, particularly in the
tail segment?

TABLE 1 The classification performance of various classifiers using IDA or CFT methods under different evaluation metrics on the IP102 dataset.

Acc F1 Pre Rec GM

AlexNet 0.4180 0.3410 - - 0.2700

GoogleNet 0.4350 0.3270 - - 0.2130

VGGNet 0.4820 0.3870 - - 0.3090

ResNet-18 0.5146 0.5367 0.6359 0.5146 0.4266

ResNet-18(Resample) 0.5675 0.5691 0.5861 0.5675 0.5339

ResNet-18(Reweight) 0.5270 0.5443 0.6188 0.5270 0.4565

ResNet-18(Resample + IDA) 0.5846 0.5655 0.5611 0.5846 0.5555

ResNet-18(Resample + IDA + CFT) 0.5935 0.5876 0.5898 0.5935 0.5659

ResNet-50 0.5507 0.5614 0.6237 0.5507 0.4927

ResNet-50 (Resample) 0.5687 0.5638 0.5877 0.5687 0.5330

ResNet-50 (Reweight) 0.5572 0.5641 0.6090 0.5572 0.4932

ResNet-50 ((Resample + IDA) 0.5906 0.5762 0.5853 0.5906 0.5534

ResNet-50(Resample + IDA + CFT) 0.6200 0.6323 0.6542 0.6200 0.5883

ViT 0.5853 0.5938 0.6492 0.5853 0.5091

ViT (Resample) 0.6039 0.5665 0.5583 0.6039 0.5710

ViT (Reweight) 0.5924 0.5985 0.6410 0.5924 0.5356

ViT ((Resample + IDA) 0.6304 0.5886 0.5719 0.6304 0.6005

ViT (Resample + IDA + CFT) 0.6426 0.6179 0.6037 0.6426 0.6174

The bold values means the performance of the approach.
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We investigated the performance enhancement effects of
resampling, IDA, and CFT on pre-trained models separately.
In addition, we computed performance metrics including
accuracy (Acc), precision (Pre), recall (Rec), F1-score (F1),
and geometric mean (GM) for each model. GM evaluated the
model’s performance in handling class imbalance, with higher
GM values indicating better balance and robustness with
imbalanced data.

4 Results

4.1 Experimental results

This study enhanced image classification accuracy on the
IP102 dataset by leveraging pre-trained ResNet-18, ResNet-50, and
ViT models (Table 1). In the subsequent Ablation Study, we explored
our model’s capability in macro clustering and recognizing tail classes.

Then, we employed the IDA + CFT approach using pre-trained
ResNet-18, ResNet-50, and ViT models on the CIFAR-10-LT and
CIFAR-100-LT datasets, variants of the CIFAR-10 and CIFAR-100
datasets, respectively, with long-tailed class distributions. Our
experimental results indicated that our proposed approach
enhanced the models’ classification performance. We achieved
optimal performance with ViT pre-trained models as the base
and employing our proposed method (Table 2). Our
proposed method architecture outperforms pre-trained models
on CIFAR-10-LT and CIFAR-100-LT. Moreover, our evaluation
of the CIFAR-10-LT and CIFAR-100-LT datasets has demonstrated
state-of-the-art performance.

Based on pre-trained ResNet-18, ResNet-50, and ViT models,
we implemented the resample and reweight methods, training
and evaluating the models. Our findings indicate improvements
in accuracy, F1-score, precision, recall, and G-Mean across all
three models. The resampling approach exhibited a superior
enhancement in performance due to its ability to balance
sample distribution among classes. This mechanism mitigated
the impact of class imbalance during model training and
facilitated more effective learning and classification of samples
from each class.

Overall, implementing the resampling and reweighting
approaches boosted the performance of the three models in
image classification tasks. Based on the pre-trained ResNet-18
model, we combined the resampling method with IDA in our
experiments, yielding significant improvements in model
performance. Incorporating IDA and the resampling
method notably improved accuracy, F1 score, recall, and
G-Mean, albeit with a slight decrease in precision. Furthermore,
integrating CFT with the aforementioned approach further
enhanced performance across various metrics.

Similarly, utilizing the pre-trained ResNet-50 model, we
conducted experiments employing the resample + IDA + CFT
approach, significantly enhancing model performance.
Compared to the ResNet-50 and ResNet-50 (resample)
models, we achieved approximately a 7% increase in accuracy
and a 6% increase in precision, respectively. Furthermore,
integrating the CFT method into the aforementioned approach
yielded further improvements across various metrics.
Incorporating this method yielded an additional 3% increase
in precision. Moreover, the CFT method rectified the trade-off in

TABLE 2 Top-1 accuracy (%) on CIFAR-10-LT and CIFAR-100-LT with different imbalance factors [100, 50, 10].

Method CIFAR-10-LT CIFAR-100-LT

IF = 100 50 10 IF = 100 50 10

CB-Focal (Cui et al., 2019) 74.60 79.30 87.10 39.60 45.20 58.00

BBN (Zhou et al., 2020b) 79.82 82.18 88.32 42.56 47.02 59.12

LogitAjust Menon et al. (2020) 80.92 - - 42.01 47.03 57.74

RISDA (Chen et al., 2022) 79.89 79.89 79.89 50.16 53.84 62.38

MiSLAS (Zhong et al., 2021) 82.10 85.70 90.00 47.00 52.30 63.20

GLMC (Du et al., 2023) 94.18 95.13 95.70 57.11 62.32 72.33

ResNet-18 61.06 69.21 75.99 35.63 38.33 49.30

ResNet-18 (IDA) 64.82 71.39 77.90 37.68 41.04 50.90

ResNet-18 (IDA + CFT) 67.05 73.09 80.85 38.51 41.54 51.25

ResNet-50 66.50 72.78 80.65 38.50 41.84 52.00

ResNet-50 (IDA) 66.54 74.24 82.64 39.48 43.30 53.76

ResNet-50 (IDA + CFT) 69.50 74.92 84.12 40.73 44.62 56.22

ViT 95.17 96.14 97.47 73.04 78.40 85.07

ViT (IDA) 96.12 97.17 98.01 77.00 81.81 87.05

ViT (IDA + CFT) 96.75 97.57 98.21 80.00 84.13 88.62

The bold values means the performance of the approach.
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precision made by the IDA method, leading to a 7% increase in
precision compared to not using the CFT method. Utilizing the
pre-trained ViT model, we employed the resample + IDA + CFT
method, similar to the approach with ResNet-50. An
accuracy of 64.26% and a G-mean of 61.74% was observed.
Unlike ResNet-50, where all metrics improved, our approach
with ViT yielded similar results as ResNet-18, enhancing
accuracy, F1-score, recall, and G-mean while
compromising precision.

4.2 Effectiveness of resampling

We partitioned the IP102 dataset into two segments: ‘head’ and
‘tail’. Within each segment, we randomly selected five categories and
conducted random sampling to obtain five samples per category,
resulting in 50 samples. In Figures 4–6, we visualized the distribution
of these samples on the IP102 dataset using 2D t-SNE feature
embeddings.

By comparing the results of utilizing the resampling method
with not using it on pre-trained models, we discerned
differences by plotting t-SNE graphs. Our findings exhibit
more pronounced clustering effects in models using the
resampling approach, with particularly significant
improvements observed in the ViT model.

4.3 Effect on IDA

After using the previously mentioned approach of segmenting
the IP102 and generating 50 samples, we employed the IDA method
to encompass three scenarios: head combined with head, head
combined with tail, and tail combined with tail. We visualized
the L1 loss in these scenarios as bar graphs (Figure 7).

The head and tail data combination yielded the best
performance in terms of L1 loss. Across ResNet18 and
ResNet50 models, the tail and tail data combination consistently
outperformed the head and head data combination in terms of
L1 loss. Overall, the ResNet-50 model exhibited the lowest average
L1 loss among the three combinations.

4.4 Effect on CFA

We partitioned the IP102 dataset into three segments: ‘head’,
‘mid’ and ‘tail’. Within each segment, we randomly selected five
categories and conducted random sampling to obtain five samples
per category, resulting in 75 samples. Utilizing the resampling and
IDA as the base model, we evaluated the impact of CFT on the
model’s accuracy and F1 score. Figures 8–10 illustrate that the CFT
positively affected the accuracy and F1-score of the head segment in
both the ResNet-50 and ViT models. Moreover, the CFT method

FIGURE 7
Fine-tuned ResNet-18 model shows that post-IDA, L1 loss performs best with head and tail combination, and worst with head and head
combination. Fine-tuned ResNet-50 model shows that post-IDA, L1 loss performs best with head and tail combination, and worst with tail and tail
combination. Fine-tuned ViTmodel exhibits that post-IDA, L1 loss performs best with head and tail combination, and worst with tail and tail combination.

FIGURE 8
Fine-tuned ResNet-18 model’s accuracy and F1-score with and without utilizing CFT.
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significantly improved the tail segment for both models.
Additionally, the ViT model demonstrated enhancements across
all three categories, with the most noticeable performance boost
observed in the mid portion of the data.

5 Case study

We segmented the dataset into three segments: ‘head’, ‘mid’ and
‘tail’. Within each part, we sampled five categories and selected five
images per category, totaling 75 images. To determine the specific
distribution probabilities of these images across categories, we
employed the ViT (Resample + IDA + CFT) methodology. The
specific sampling probability distribution is shown in Figure 11.

In the three scenarios, a relatively simple background or a
significant contrast between insect colors and the background
facilitated easier target object detection, leading to more accurate
classification and recognition.

However, when the color of the target object closely resembled
that of the background or when blurriness was present, the model’s
recognition capability was compromised. The similarity in colors
can blurred the boundaries between the target object and the
background. In such instances, the model exhibited

diminished recognition capability or even failed to identify the
target accurately.

6 Discussion

Previous studies on pest image recognition often suffer from the
long-tail distribution problem, leading to insufficient samples for
rare pest categories and subsequently affecting the overall
performance of the models. Many researchers have proposed
various methods to address this issue, but these methods largely
focus on variations of neural network architectures (Ung et al., 2021;
Coulibaly et al., 2022b; Nanni et al., 2022), introducing new
architectures to tackle the problem. These approaches often have
specific prerequisites, such as recognizing certain pests (Sethy et al.,
2020; Li S. et al., 2022) or targeting pest recognition in specific
scenarios (Sankaran et al., 2015). The pest species identified in these
studies are typically on a smaller scale. However, our proposed
method is based on the IP102 large-scale dataset for pest
recognition, which presents a natural long-tail distribution,
making it more representative of real-world conditions.

IDA integrates resampling techniques to ensure equitable
representation for underrepresented categories, thereby alleviating

FIGURE 9
Fine-tuned ResNet-50 model’s accuracy and F1-score with and without using CFT.

FIGURE 10
Fine-tuned ViT model’s accuracy and F1-score with and without using CFT.
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bias stemming from imbalanced sample distributions. Additionally,
it incorporates self-attention mechanisms to discern intricate
relationships among samples, thereby enhancing classification
performance across all categories. On the other hand, CFT
focuses on optimizing a limited subset of model parameters
post-feature extraction, particularly enriching the performance
of the MLP layer for more precise feature classification and
generalization.

The overall model performance improvement can be attributed
to IDA’s ability to rebalance the dataset, providing fairer
representation for tail-end categories without compromising the
performance of common samples. Moreover, the selective
optimization of model parameters by CFT post-feature extraction
aids in preventing overfitting and enhancing the model’s ability to
generalize features to actual labels, particularly benefiting
minority classes.

Using ViT pre-trained models as baselines on the IP102 dataset,
we observed a 5.73% improvement in accuracy, a 2.41%
improvement in F1 score, and a 10.83% improvement in GM. In
CIFAR-10-LT (IF = 50) and CIFAR-100-LT (IF = 50), our models
achieved Top-1 accuracies of 97.57% and 84.13%, respectively.
Compared to the latest research results, our models demonstrate
state-of-the-art performance.

7 Conclusion

This study introduces two cutting-edge techniques, IDA and
CFT, to tackle the challenges posed by long-tail image

classification tasks in the realm of pest distribution research.
Traditionally, such studies have been hindered by the long-tail
distribution issue, resulting in insufficient samples for rare pest
categories and thereby impacting overall model performance.
While previous approaches have mainly focused on neural
network architecture variations to address this issue, our
proposed methods are rooted in data augmentation and
feature mapping.

The combined use of IDA and CFT yielded superior accuracy
and F1 score, particularly for the tail-end classes. Our
experimental results on the IP102 dataset revealed significant
improvements in long-tail image classification tasks by
integrating IDA and CFT. In particular, leveraging ResNet-18,
ResNet-50, and ViT as baseline pre-trained models,
implementing IDA and CFT approaches increased accuracy by
7.89%, 6.93%, and 5.73%, respectively. Our experiments
indicated that the IDA and CFT methods bolstered overall
accuracy without compromising the accuracy of classes with
abundant samples by elevating accuracy across the dataset in
the tail and head sections. These methods have the potential to
substantially enhance the robustness and accuracy of models in
real-world applications.

We envision that integrating IDA and CFT will promote
advancements in image classification and provide valuable
insights for addressing complex and imbalanced data
challenges across diverse domains. Our research lays the
groundwork for developing more accurate and reliable
recognition systems, particularly involving long-tail
distributions in image data.

FIGURE 11
The specific sampling probability distribution of the head, mid, and tail parts.
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