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Freshwater biodiversity has been declining in urban areas, which may threaten
ecosystem functions. Although many studies have demonstrated a positive
correlation between biodiversity and ecosystem functioning (BEF) in terrestrial
and marine ecosystems, little is known about the BEF relationship in freshwater
environments, especially in highly urbanized regions where water pollution is a
major concern. Eutrophication in urban water bodies may trigger algae blooms,
decreasing the evenness or functional divergence (FDiv) of phytoplankton
communities, thus negatively affecting ecosystem functioning. Through an
annual field investigation, we clarified the relationship between phytoplankton
diversity and ecosystem functioning, represented as resource use efficiency
(RUE), in an urban river in northern China. Results indicated that evenness in
the phytoplankton community contributes most to driving ecosystem
functioning compared to environmental factors. The relative abundance of
dominant Bacillariophyta was positively correlated with the resource use
efficiency of phytoplankton (RUEpp) but negatively correlated with the
resource use efficiency of zooplankton (RUEzp). Both phytoplankton evenness
and functional divergence were negatively linked to RUEpp but positively to
RUEzp. Our findings suggest that the reduction of phytoplankton evenness and
functional divergence may seriously threaten resource use efficiency (RUE), and
its potential mechanism can provide a crucial reference for water quality
protection and sustainable water resource utilization in the basin.
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1 Introduction

Environmental pressures resulting from intensified human activities severely threaten
biodiversity and ecosystem structure, with freshwater ecosystems being particularly affected
(Yi et al., 2014; Newbold et al., 2015; Zhao et al., 2019; Wang J. et al., 2021; Moi et al., 2022;
Polazzo et al., 2022). One major threat is eutrophication (Rosset et al., 2014), which disrupts
the natural balance of nutrients crucial for the stability of aquatic ecosystems (Huisman
et al., 2018). Excessive nutrient inputs can trigger algal bloom outbreaks, reduce planktonic
biodiversity (Wang et al., 2022), alter community structure (McQuatters-Gollop et al., 2009;
Bužančić et al., 2016; Wang H. et al., 2021), reduce ecological niche differentiation, and
intensify interspecific competition, thereby affecting ecosystem functions (Amorim and
Moura, 2021). These blooms, often dominated by species such as Cyanobacteria,
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Chlorophyta, and Bacillariophyta, increase water turbidity and pH,
resulting in anoxia and organism mortality (Visser et al., 2016).
Furthermore, the intensity of the bloom also increases
phytoplankton nutrient utilization but blocks the energy transfer
from primary producers to zooplankton (Grey et al., 2000), which is
not conducive to the acquisition of nutrients by zooplankton and
negatively affects ecosystem functioning (Tian et al., 2017).

The relationship between biodiversity and ecosystem
functioning (BEF) has long been a central theme in ecology.
Considerable evidence suggests that biodiversity is critical for
maintaining ecosystem functioning, and a loss of biodiversity
reduces the capacity of ecosystems to provide multiple services
(Cardinale et al., 2012; Naeem et al., 2012; Hagan et al., 2021;
Mitchell et al., 2024), i.e., biodiversity positively influences
ecosystem functioning (Cardinale et al., 2011; Tilman et al., 2014;
Oliver et al., 2015; Soliveres et al., 2016; Slade et al., 2017). However,
this relationship may also exhibit a non-linear pattern influenced by
interspecific interactions and environmental heterogeneity
(Cardinale et al., 2011; Thompson et al., 2017). Most of the early
research on BEF relationships has focused on terrestrial ecosystems
(Soliveres et al., 2016; Schuldt et al., 2018), particularly terrestrial
plants, while aquatic ecosystems have received less attention (Daam
et al., 2019). Globally, the biodiversity of freshwater systems is
declining faster than that of terrestrial and marine systems
(Vaughn, 2010; Zhang et al., 2019), and its loss will seriously
threaten ecosystem stability and productivity.

The BEF relationship of phytoplankton was first proposed by
Ptacnik et al. (2008), who used resource use efficiency (RUE) to
indicate ecosystem functioning. RUE quantifies ecosystem
functioning by measuring the ratio of resources acquired by
organisms to the amount of biomass they transform and serves
as a better indicator of the level of resource use by organisms
(Hodapp et al., 2019). As one of the most important primary
producers in river ecosystems (Varol, 2019), phytoplankton
communities reflect their fundamental and critical role in
material cycling, pollutant degradation, water self-purification,
and ecosystem stability (Yang et al., 2022). Due to their tiny
unicellular size and extreme sensitivity to environmental changes
(Feio et al., 2009), phytoplankton are susceptible to both abiotic
factors, such as nutrient salinity and water temperature, as well as
biotic factors, such as grazing and interspecific competition.
Consequently, they are considered ideal aquatic ecological
indicator organisms (Wojciechowski et al., 2017). In the context
of China’s rapid urbanization and industrialization, changes in
phytoplankton diversity significantly reflect the response and
adaptation of river ecosystems to environmental stress. In
particular, increased nutrients from industrial wastewater and
urban runoff cause eutrophication of water bodies, affecting
phytoplankton community structure and function, reducing
water quality, and threatening the overall aquatic biodiversity
(Mustapha et al., 2013; Barakat et al., 2016). Therefore,
monitoring and analyzing changes in phytoplankton diversity not
only assesses the health of ecosystems but also provides a critical
scientific basis for developing effective environmental management
strategies.

While numerous studies have confirmed the overall positive
correlation between BEF, most have focused solely on taxonomic
diversity metrics such as species richness (Duffy et al., 2017;

Amorim and Moura, 2021). In contrast, evenness metrics, which
reflect the uniformity of species distribution within communities,
and functional diversity metrics, which describe the functional traits
of species, have received limited attention. Recent studies have
concluded that the relationship between phytoplankton evenness
and ecosystem functioning (measured by resource use efficiency)
generally shows a negative effect in highly disturbed ecosystems,
i.e., dominant species with superior resource utilization capabilities
outcompete others (Filstrup et al., 2019; Otero et al., 2020).
Furthermore, evenness is considered a sensitive indicator of
changes in biodiversity, often reflecting the impacts of
anthropogenic activities or environmental changes better than
species richness and eliciting rapid responses in ecosystem
functioning (Chapin III et al., 2000; Wilsey and Potvin, 2000;
Filstrup et al., 2014; Hodapp et al., 2015). In contrast, species
richness ignores the effects of differences in relative abundance
among species on interspecific interactions and overemphasizes the
importance of rare species (Zhang et al., 2012; Filstrup et al., 2014),
which does not adequately represent the diversity associated with
ecosystem functioning. In particular, changes in evenness often
occur with little or no change in species richness, i.e., species
tend to decline in number before going extinct, and evenness can
capture such species declines (Wilsey and Potvin, 2000; Hillebrand
et al., 2008). Consequently, the effects of evenness on ecosystem
functioning warrant further in-depth investigation (Wilsey and
Potvin, 2000).

Field and experimental studies have demonstrated that
functional diversity is a highly effective predictor of ecosystem
functioning, making it a critical aspect of contemporary
biodiversity research (Griffin et al., 2009; Abonyi et al., 2017). In
this context, the functional diversity indices proposed by Villéger
et al. (2008), which comprehensively assess functional traits such as
growth forms, habitat preferences, and resource use strategies, have
received widespread recognition in the international scientific
community (Eisenhauer et al., 2019). Compared to traditional
research focused on taxonomic diversity, this species trait-based
method of analysis more accurately reflects the actual functional
roles of species within ecosystems. This approach highlights the
functional differences among species and addresses the problem of
traditional biodiversity indices that treat the contributions of each
species equally (Cadotte et al., 2011), making it a promising tool for
biological monitoring and ecosystem management. In particular, in
the study of phytoplankton, by analyzing the relationship between
their functional diversity and ecosystem functions, we can better
understand the critical contributions of these microorganisms to
primary productivity and nutrient cycling in water bodies. This will
further elucidate the complex response mechanisms of aquatic
ecosystems to environmental change, providing a solid
foundation for the formulation of scientific ecological
conservation and management strategies.

Currently, studies of aquatic biodiversity tend to focus on
biodiversity effects within individual trophic levels, with less
attention paid to vertical biodiversity effects across multiple
trophic levels (Duffy et al., 2007). This approach may overlook
potential trophic connectivity effects during urbanization, resulting
in a lack of understanding of the role of individual taxa in food webs
and their impact on ecosystem functioning (Eisenhauer et al., 2013;
Li et al., 2021; Moi et al., 2021). Organisms drive ecosystem
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functioning at multiple trophic levels, and considering trophic
complexity is critical to understanding the role of biodiversity at
different trophic levels (Li et al., 2020). Primary producers can have
different effects on ecosystem functioning within and across trophic
levels (Filstrup et al., 2014). Results that consider only a single
trophic group are likely to underestimate the importance of
biodiversity and fail to effectively reflect the complexity of river
and lake ecosystems (Weijters et al., 2009; Soliveres et al., 2016; Li
et al., 2020). Therefore, it is necessary to integrate data frommultiple
trophic levels and horizontally explore the ecosystem functions of
communities at different trophic levels to improve our
understanding of the ecological health of rivers.

The Xiaoqing River, situated in northern China, is a highly
urbanized area where intensive human activities have led to
eutrophication of the water and the outbreaks of algal blooms.
This makes it an ideal ecosystem to empirically test the relationship
between biodiversity and river ecosystem functioning (Wang and
Yin, 2023). We used phytoplankton taxonomic diversity (evenness)
and functional diversity (functional divergence) as indicators of
biodiversity, and resource use efficiency of phytoplankton (RUEpp)
and zooplankton (RUEzp) communities as measures of ecosystem
functioning. As one of the most important primary producers in
river ecosystems, the diversity change of phytoplankton can reflect
the response of rivers to environmental stress, while RUE can

comprehensively reflect the level of resource utilization by
biomes, and the correlation analysis between the two can help to
elucidate the intrinsic mechanism underlying the biodiversity-
ecosystem functioning relationship. We tested the following
research hypotheses: (1) Phytoplankton evenness would be
negatively correlated with RUEpp but positively correlated with
RUEzp. (2) Functional divergence (FDiv) of the phytoplankton
community would be negatively correlated with RUEpp but
positively correlated with RUEzp. (3) The increase of dominant
species caused by algal blooms would lead to an increase in RUEpp
and a decrease in RUEzp.

2 Materials and methods

2.1 Study area

The Xiaoqing River, with a length of approximately 240 km,
originates in Jinan City (He et al., 2018), Shandong Province,
northern China (Figure 1). It spans five cities in Shandong
Province (Jinan, Binzhou, Zibo, Dongying, and Weifang) (Jiang
et al., 2017), with a watershed area of approximately 10,336 km2

(Zhang et al., 2020). This area has a temperate monsoon climate,
with an average annual mean temperature of 14.7°C and an average

FIGURE 1
Sampling locations of the Xiaoqing River in northern China.
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annual precipitation of 1,043.4 mm. The Xiaoqing River is mainly
used for flood control, irrigation, and navigation (He et al., 2020).
However, with the rapid economic and social development of Jinan
City, the land use in the basin has changed significantly (Liu et al.,
2019), leading to the worsening of eutrophication in the Xiaoqing
River and severe damage to the ecosystem (Zhang et al., 2023). In the
present study, we monitored ten fixed sites along the Jinan section of
the Xiaoqing River on a monthly basis from April
2020 to March 2021.

2.2 Collection and measurement of
environment parameters

A portable multi-parameter water quality monitor
(AZ86031) was used in the field to measure water temperature
(WT), water depth (D), pH, dissolved oxygen (DO), transparency
(Trans), turbidity (Tur), suspended solids (SS) and conductivity
(EC) at each sampling site (Jiang et al., 2017). We collected 2 L of
water samples at a depth of 0.5 m below the surface. The water
samples were stored in a cold, dark environment, transported to
the laboratory for further analysis, and then divided into two
subsamples: one for water chemistry analysis and the other for
quantitative phytoplankton analysis. The following indicators
were determined according to the national environmental
protection standards issued by the Ministry of Environmental
Protection: ammonia nitrogen (NH3

−-N), nitrate nitrogen
(NO3

−-N), nitrite nitrogen (NO2
−-N), and phosphate (PO4

3–-
P) were determined by ultraviolet spectrophotometry, the
permanganate index (CODMn) was determined by the
permanganate method (GB11892-89), total nitrogen (TN) was
determined by UV spectrophotometry using alkaline potassium
persulphate digestion, and total phosphorus (TP) was
determined by the ammonium molybdate spectrophotometric
method (Zhou et al., 2022). Chlorophyll-a content was
determined by the hot ethanol method: the samples were
extracted with 90% ethanol solution after filtration, and the
supernatant was taken after a water bath, shaking,
centrifugation, and the chlorophyll-a concentration was
determined spectrophotometrically (Chen and Gao, 2000).

2.3 Plankton sampling and analysis

The collected phytoplankton quantitative samples were
placed in 1 L plastic bottles, labeled, and fixed in the field by
adding 1%–1.5% (v/v) of Lugol’s reagent. After 24 h of
sedimentation, the samples were concentrated to 100 mL
(Zhang et al., 2021). Quantitative samples of zooplankton
were collected with a water sampler at different water levels in
each section, with 50 L of mixed water samples filtered through a
25# plankton mesh (64 μm mesh diameter) (Lu et al., 2021). The
filtered samples were then preserved in 100 mL sample bottles
with 4% formaldehyde solution.

Referring to the relevant diagrams (Wang, 1961; Jiang, 1979;
Zhu and Chen, 2000; Hu and Wei, 2006; Wang, 2020),
phytoplankton and zooplankton samples were identified and
analyzed to the lowest possible taxonomic level (i.e., species level

when possible) using the field-of-view method under a 400x light
microscope (SOPTOP, EX20). Density and biomass of
phytoplankton and zooplankton in quantitative samples were
calculated based on the identification results (Supplementary
Appendix S1, S2), where biomass was derived from density
multiplied by the average individual weight (biomass = density
x weight).

The density of phytoplankton (i.e., the number of
phytoplankton per liter of water, Np) was calculated as follows:

Np � Cs

FsFn
×
V

v
× Pn

Where:
Np is the number of phytoplankton per liter of water;
Cs is the area of the counting frame (mm2);
Fs is the area of one field of view;
Fn is the number of fields of view counted;
V is the volume of 1 L of water sample after sedimentation and
concentration (100 mL);
v is the volume of the counting frame (0.1 mL);
Pn is the number of individual phytoplankton counted in Fn

fields of view.

The density of zooplankton (i.e., the number of zooplankton per
liter of water, Nz) was calculated as follows:

Nz � Vs × n

V × Va

Where:
Nz is the number of zooplankton per liter of water;
Vs is the volume after sedimentation (100 mL);
N is the number of individuals obtained;
V is the sampled volume (50L);
Va is the volume of the counting frame (1 mL).
The Technical Specification for Classification andMonitoring of

Algal Blooms, issued by Guangdong Province in December 2020,
indicates that the common phylum of water blooms, including
Cyanobacteria and Bacillariophyta, can be classified into five
categories. The results of the phytoplankton density
calculations conducted in this study indicate that the present
study area can be defined as Class III Bacillariophyta bloom
(density >5 × 106cells/L).

2.4 Phytoplankton taxonomic and
functional diversity

In this study, taxonomic diversity and functional diversity were
used to investigate BEF relationships in the Xiaoqing River across
different seasons. Measures of phytoplankton taxonomic diversity
included species richness and evenness. Species richness was
quantified as the number of species in a community, while
evenness was a measure of the uniformity in the distribution of
individual species abundances within a community. A higher value
of evenness indicates a more balanced distribution of individuals
among species and a more stable community. Evenness is calculated
as J′ = H′ /ln S, where H′ is the Shannon-Wiener diversity index and
S is the number of species in the sample.
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With reference to previous studies (Litchman and Klausmeier,
2008; Otero et al., 2020; Zhou et al., 2022), we selected ten
categories of traits related to phytoplankton morphology, growth
and reproduction, and habitat characteristics, including algal size,
morphology, motility, reproduction, nitrogen-fixing capacity, and
habitat suitability traits. These traits are closely related to
phytoplankton resource acquisition, predator avoidance, and
reproduction (Table 1). Phytoplankton trait data and density data
were then used to calculate functional richness (FRic), functional
evenness (FEve), and functional divergence (FDiv) of the
phytoplankton community in the “FD” package of the R language.
Among the indices, FRic refers to the volume ofmultidimensional space

occupied by all species in the functional space of the community. It
reflects the degree of utilization of ecological space, with a larger index
indicating a higher degree of utilization. (2) FEve is defined as the
uniformity of the distribution of functional traits of organisms in a
community in an ecological space. The larger the index, the more
comprehensive the utilization of effective resources, and the higher the
efficiency of resource utilization. (3) FDiv reflects changes in biological
characteristics within a community, as well as the degree of ecological
niche differentiation and the degree of competition for resources. A
higher FDiv indicates a higher degree of complementarity among the
organisms within the community, accompanied by a weaker degree of
competition.

TABLE 1 Trait classification of phytoplankton.

Traits Categories

Algae size <20um,20-200um,>200um

Algae morphology Unicellular, chain or filamentous, colonial

Motability Yes/no

Silica Yes/no

Mode of reproduction Vegetative reproduction, sexual propagation, asexual propagation

Ability to fix nitrogen Yes/no

Accessory pigment composition Chlorophyll-b, Chlorophyll-c, phycobilin

Habitat PNL and MNL, ENL, mixed aquifer, hydrostatic, high current

Tolerances Solarization, Low light, and low nutrition, nutrient stratification, stir, cleanse, high BOD

Sensitivities Mixing, stratification, cleanse, pH, nutritional deficiency, predation, high light

TABLE 2Multiple regression analysis models based on predictor variables (numerous environmental factors and biodiversity indexes) and response variable
RUEpp. The “Contribution” column in the table quantifies the contribution of a single explanatory variable to the multiple linear regression model of the
dependent variables RUEpp.

Variable P VIF values Contribution (%) Estimate Std. Error

WT 0.401 1.517 0.401 0.089 0.105

D 0.920 1.284 0.005 0.010 0.097

Trans 0.116 1.782 1.666 0.180 0.114

DO 0.197 1.697 1.070 −0.144 0.111

NO2
−-N 0.201 1.561 0.963 0.137 0.107

NO3
−-N 0.011 1.47 3.632 0.26 0.103

TP <0.001 1.889 8.664 −0.411 0.117

CODMn 0.003 1.598 5.436 0.326 0.108

TSS 0.860 1.411 0.016 0.018 0.100

Evenness <0.001 1.307 66.933 −1.143 0.097

FDiv <0.001 1.354 7.591 −0.385 0.101

FEve 0.007 1.333 3.900 −0.276 0.100

FRic 0.621 1.322 0.124 0.049 0.099

Table Notes: WT: water temperature; D: water depth; Trans: transparency; DO: dissolved oxygen; NO2
−-N: nitrite nitrogen; NO3

−-N: nitrate nitrogen; TP: total phosphorus; CODMn:

permanganate index; TSS: suspended solids; Evenness: evenness; FDiv: functional divergence; FEve: functional evenness; FRic: functional richness.
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2.5 Resource use efficiency

We used resource use efficiency (RUE) to quantify the ratio of
realized resources to potential productivity as a metric for river
ecosystem functioning (Hodapp et al., 2019). Total phosphorus (TP)
was used as a proxy for potential phytoplankton productivity, while
phytoplankton biomass represented the realized resources.
Phytoplankton resource use efficiency (RUEpp) was expressed as
the ratio of phytoplankton biomass to TP concentration. On the
other hand, zooplankton resource use efficiency (RUEzp) was
calculated as the ratio of zooplankton biomass (realized resource)
to phytoplankton biomass (potential productivity) (Ptacnik et al.,
2008; Filstrup et al., 2014; 2019). The specific equations are
as follows:

RUEpp � phytoplankton biomass/TP

RUEzp � zooplankton biomass/phytoplankton biomass

2.6 Statistical analyses

Two multiple linear regression models were constructed using
the “lm” function in R to assess the impact of the predictor
variables—environmental factors and biodiversity—on the
response variables, specifically RUEpp and RUEzp. Sixteen
environmental variables and five biodiversity indicators were
included in the models: water temperature (WT), water depth
(D), transparency (Trans), turbidity (Tur), pH, electrical
conductivity (EC), dissolved oxygen (DO), ammonia nitrogen
(NH3

−-N), nitrite nitrogen (NO2
−-N), nitrate nitrogen (NO3

−-N),
total nitrogen (TN), total phosphorus (TP), phosphate (PO4

3–-P),
permanganate index (CODMn), suspended solids (TSS),

chlorophyll-a (Chl-a), species richness, evenness, functional
divergence (FDiv), functional evenness (FEve), and functional
richness (FRic). The analysis quantified the overall explanatory
power of these variables on RUE and determined the relative
contribution of each predictor, calculated as the square of its
regression coefficient divided by the sum of the squares of all
regression coefficients (Johnson and Lebreton, 2004). The
Shapiro-Wilk normality test of normality indicated a non-normal
distribution of RUEpp and RUEzp, which prompted a logarithmic
transformation. All variables were standardized using Z-scores prior
to regression analysis. The vif function of the “car” package assessed
multicollinearity through variance inflation factor (VIF) values, and
Pearson correlation coefficients were calculated to assess
relationships between variables, facilitating the identification and
resolution of multicollinearity.

Based on the Bray-Curtis distance calculated for plankton
community composition, we used Principal Coordinate Analysis
(PCoA) and PERMANOVA in the “vegan” package in R to test
whether there were significant multivariate differences in
phytoplankton and zooplankton community structure and
assembly between seasons. The post hoc function pairwiseAdonis
was used for multiple comparisons between seasons in the
PERMANOVA analysis (Sun et al., 2023). One-way ANOVA was
used to assess variability in RUE between seasons, while the Kruskal-
Wallis test was used to assess differences in relative phytoplankton
abundance between seasons. Results were presented as box plots.
Watershed boundaries and stream systems were depicted using
digital elevation modeling in ArcGIS version 10.8. The
calculation of phytoplankton evenness and species richness was
conducted in the R language “vegan” package, and the
phytoplankton functional richness (FRic), functional evenness
(FEve), and functional divergence (FDiv) were implemented in
the package “FD”. We used Pearson’s correlation analyses to

TABLE 3Multiple regression analysis models based on predictor variables (numerous environmental factors and biodiversity indexes) and response variable
RUEzp. The “Contribution” column in the table quantifies the contribution of a single explanatory variable to the multiple linear regression model of the
dependent variables RUEzp.

Variable P VIF values Contribution (%) Estimate Std. Error

WT 0.098 1.517 3.892 0.278 0.166

D 0.267 1.284 1.473 −0.171 0.153

Trans 0.460 1.782 0.903 −0.134 0.180

DO 0.190 1.697 2.770 −0.234 0.178

NO2
−-N 0.821 1.561 0.074 0.038 0.169

NO3
−-N <0.001 1.471 19.483 −0.622 0.164

TP 0.826 1.889 0.084 −0.041 0.186

CODMn 0.753 1.598 0.148 0.054 0.172

TSS 0.625 1.411 0.311 0.079 0.160

Evenness <0.001 1.307 71.535 1.191 0.159

FDiv 0.188 1.354 2.295 0.213 0.161

FEve 0.778 1.333 0.101 −0.045 0.159

FRic 0.418 1.322 0.823 0.128 0.157

Table Notes: WT: water temperature; D: water depth; Trans: transparency; DO: dissolved oxygen; NO2
−-N: nitrite nitrogen; NO3

−-N: nitrate nitrogen; TP: total phosphorus; CODMn:

permanganate index; TSS: suspended solids; Evenness: evenness; FDiv: functional divergence; FEve: functional evenness; FRic: functional richness.
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determine the relationship between dominant algae and RUE, and
the direction and strength of the BEF relationship, with predictor
variables standardized for Z-scores before analysis. Pearson’s
correlation analyses, one-way ANOVA, Kruskal-Wallis tests,
correlation heatmaps, and box plots were implemented in the
Origin 2023 software, with significance levels set at p < 0.05, and
the rest of the analyses were performed in R language (4.3.1).

3 Results

3.1 Contribution of environmental factors
and biodiversity

After calculating the VIF values and the correlation coefficients
between the variables, we found that the VIF values of all
21 variables were less than 10. Therefore, we addressed
multicollinearity based on the correlation coefficients by
discarding one of the variables with correlation coefficients
higher than 0.5 to ensure the model’s robustness (Appendix S3).
The removed variables included turbidity (Tur), pH, electrical
conductivity (EC), ammonia nitrogen (NH3

−-N), total nitrogen
(TN), chlorophyll-a (Chl-a), and species richness (Richness). The

results of the multiple linear regression showed that the adjusted R2

of the RUEpp and RUEzpmodels were 0.658 and 0.499, respectively,
indicating that the models were able to explain a considerable
portion of the variation in the data. The higher the contribution,
the more the independent variable explains the variation in the
dependent variable. In the models, evenness had the most significant
explanatory effect on both RUEpp and RUEzp, with contributions as
high as 66.933% and 71.535%, respectively, which were statistically
highly significant (p < 0.001). Among the functional diversity
indicators, functional divergence made the largest contribution,
with the degree of explanation for RUEpp being particularly
important. Additionally, TP contributed the most to RUEpp
among environmental factors, while NO3

−-N contributed the
most to RUEzp (Tables 2, 3).

3.2 Differences in plankton community
composition and RUE across seasons

The plankton community composition collected from the
Xiaoqing River during the four seasons tended to cluster
separately. The phytoplankton and zooplankton community
compositions differed significantly among seasons (R2 = 0.113,

FIGURE 2
Principal coordinate analysis (PCoA) and PERMANOVA tests for phytoplankton and zooplankton communities in four seasons based on Bray-Curtis
distance. Different graph colors represent different seasons: A is spring, B is summer, C is autumn, and D is winter, and p < 0.05 is considered significant.
The horizontal and vertical axes represent the first and second principal coordinates and their contribution to community differences.

Frontiers in Environmental Science frontiersin.org07

Ma et al. 10.3389/fenvs.2024.1389220

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2024.1389220


p < 0.001; R2 = 0.117, p < 0.001), and the pairwise differences in
phytoplankton community composition among all four seasons
were also significant (p < 0.05), indicating that structure of
phytoplankton and zooplankton assemblages was significantly
affected by seasonal changes (Figure 2).

Significant differences were observed in RUEpp and RUEzp
across seasons (Figure 3), with RUEpp being significantly higher in
spring than in the other seasons. However, RUEzp was higher in
summer and autumn compared to winter. In addition, the relative
abundance of Bacillariophyta was significantly higher than other
phyla in all four seasons, and they dominated the phytoplankton
community (Figure 4), followed by the Chlorophyta and
Cyanobacteria, whereas the species of Chrysophyta, Xanthophyta,
Cryptophyta, Euglenophyta, and Dinophyceae accounted for a
smaller total proportion. As the relative abundance of
Bacillariophyta increased, RUE showed an increasing trend (R2 =
0.111, p < 0.001), while RUEzp was negatively correlated (R2 = 0.164,
p < 0.001) (Figure 5). This finding indicates that the increase in the
Bacillariophyta population significantly contributed to RUEpp,
while it significantly reduced RUEzp.

3.3 Effect of taxonomic diversity on resource
use efficiency

RUEpp showed a decreasing trend with increasing evenness
in all seasons except autumn (spring: R2 = 0.672, p < 0.001;
summer: R2 = 0.372, p < 0.001; winter: R2 = 0.671, p < 0.001). In
contrast, RUEzp exhibited an increasing trend with increasing
evenness in spring, summer, and winter (spring: R2 = 0.488, p <
0.001; summer: R2 = 0.208, p = 0.006; winter: R2 = 0.557, p <
0.001) (Figure 6). These results suggest that the dominant
phytoplankton species (e.g., Bacillariophyta) exhibit specific
physiological characteristics and thus utilize resources more
efficiently, but the acquired resources were not effectively
transferred to the next trophic level.

3.4 Effect of functional diversity on resource
use efficiency

Except in winter, RUEpp showed a significant negative
correlation with FDiv (spring: R2 = 0.258, p = 0.002; summer:
R2 = 0.216, p = 0.005; autumn: R2 = 0.167, p = 0.014), whereas
RUEzp was significantly positively correlated (spring: R2 = 0.183, p =
0.010; summer: R2 = 0.167, p = 0.014; autumn: R2 = 0.221, p = 0.005)
(Figure 7). These results suggest that the higher the degree of
divergence in phytoplankton functional traits, the lower the
RUEpp, whereas zooplankton feeding on a more functionally
diverse phytoplankton assemblage exhibited a higher RUE.

4 Discussion

Although most BEF-related studies have focused on single
sampling and single taxa, our study investigated the BEF
relationship across trophic levels under different seasons. Our
results demonstrated that the increase in the relative abundance
of dominant species caused by Bacillariophyta blooms significantly
impacted the RUEpp and RUEzp. Meanwhile, phytoplankton
evenness negatively affected RUEpp but positively affected
RUEzp. Similar correlation trends were also reflected in the
functional divergence index. We evaluated the roles of
environmental factors and biodiversity in explaining variations in
RUE, among which evenness emerged as the most significant
contributor.

The results of the multiple linear regression modeling showed
that evenness had a significant effect in both RUEpp and RUEzp
models and was the main factor explaining the variation. This is in
agreement with Hodapp et al. (2015) who found that evenness was a
key driver of phytoplankton productivity and RUE compared to
environmental factors such as temperature and light. In
communities with lower evenness, a few dominant species have a
competitive advantage and are able to use resources more efficiently

FIGURE 3
Box plots depicting the Resource Use Efficiency (RUE) of phytoplankton (A) and zooplankton (B) across spring, summer, autumn, and winter. One-
way ANOVA was employed to assess the seasonal differences in RUE. To further determine specific differences between seasons, the Least Significant
Difference (LSD) post-hoc test was performed. Different lowercase letters above each season indicate statistically significant differences (p < 0.05).
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due to their higher physiological or chemical adaptations (Hodapp
et al., 2015). In contrast, higher phytoplankton evenness may mean
that zooplankton have a more diverse food source, which not only
provides richer nutrients, but also improves zooplankton growth
and reproductive efficiency (Wang et al., 2024).

In the RUEpp model, NO3
−-N and CODMn had positive effects

on resource use efficiency, while total phosphorus (TP), evenness,
functional divergence and functional evenness all had negative
effects. High phosphorus levels in eutrophic waters can make
nitrate a limiting factor, and as nitrate levels increase, resource
use efficiency can be improved by supporting more phytoplankton
growth (He et al., 2021). Meanwhile, higher CODMn values indicate
the presence of more biodegradable substances in the water body,
which may release additional nutrients (e.g., nitrogen and
phosphorus) during degradation that can be used by
phytoplankton to further improve resource use efficiency (Reinl
et al., 2022). The possible reason for the negative correlation of
functional divergence is that under eutrophication conditions,

functional convergence of algae reduces ecological niche
occupancy and ecosystem resources cannot be fully utilized
(Zhang et al., 2019; Dunck et al., 2019). In contrast, in the
RUEzp model, NO3

−-N had a significant negative effect on
RUEzp, except for phytoplankton evenness, which had a
significant positive effect. We hypothesize that the possible
reason is that elevated nitrate-nitrogen concentrations usually
contribute to the occurrence of algal blooms, in which some
harmful algal species bloom and may not be consumed by
zooplankton. In addition, algal blooms can cause rapid changes
in water quality (e.g., oxygen depletion and toxin release) that stress
zooplankton populations and reduce their growth and reproductive
success (He et al., 2021).

Principal coordinate analysis revealed significant seasonal
variations in the composition of phytoplankton and zooplankton
communities. This finding indicates that the structure of riverine
organisms is largely influenced by seasonal differences, such as
temperature and flow. The results of the one-way ANOVA

FIGURE 4
Box plot showing the relative abundance of phytoplankton phyla under four seasons: spring (A), summer (B), autumn (C), and winter (D), where Cya
represents the Cyanobacteria, Bac means the Bacillariophyta, Chl means the Chlorophyta, and Others means the total relative abundance of the
Chrysophyta, Xanthophyta, Cryptophyta, Euglenophyta, and Dinophyceae. Significant differences are indicated by different lowercase letters (p < 0.05).
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showed that RUEpp and RUEzp also exhibited seasonal differences.
Among the variables, RUEpp exhibited a significantly higher value
in spring than in other seasons. This indicates that phytoplankton
growth activity was higher in the spring, probably due to increased
light and temperature, which significantly increased resource use
efficiency. Furthermore, the higher RUEzp observed in summer may
be attributed to the availability of phytoplankton as a food source,
which in turn facilitates the growth and reproduction of
zooplankton. For the study of algal bloom conditions in the
Xiaoqing River, Bacillariophyta dominated the phytoplankton
community during the sampling period and formed high-density
algal blooms (density >5 × 106 cells/L) several times. The strongest
bloom was found in spring, which could reach up to class Ⅳ,
followed by classⅢ in summer, and the weakest degree of bloomwas
found in autumn and winter. Compared with Chlorophyta and
other higher aquatic plants, Bacillariophyta have a more efficient
photosynthetic rate, faster exponential growth rate, and more robust
salinity tolerance, which allows them to fully utilize water resources.
In contrast, zooplankton feeding strategies favor algae such as
Chlorophyta, which are more palatable, and avoid Bacillariophyta
(Vincent and Bowler, 2020). Possible mechanisms include the
release of substances by Bacillariophyta that can inhibit
zooplankton predation (Malej and Harris, 1993), their hard
siliceous shells, and the production of toxic aldehydes, which are
also important predation avoidance mechanisms (Miralto et al.,
1999). Furthermore, studies of eutrophic lakes have found that when
blooms occur, RUEpp often increases while RUEzp decreases
(Filstrup et al., 2014; Gao et al., 2022). If bloom algae with
higher RUE and competitive advantages are well adapted to
environmental conditions, they may produce greater RUEpp;
simultaneously, zooplankton may reduce predation on these
dominant species with lower nutrient quality (Hassett et al.,
1997), thereby decreasing RUEzp.

The positive correlation between phytoplankton species
richness and RUE has been widely demonstrated in the
assessment of ecosystem functioning (Ptacnik et al., 2008;

Striebel et al., 2009). However, evenness tends to have a better
effect on ecosystem functioning than species richness, because it
captures changes in the abundance of each species rather than just
the loss and gain of species (Filstrup et al., 2019). Meanwhile,
under dramatic environmental change, evenness can better reflect
the rapid changes in the external environment, and higher
evenness means that the abundance of species in the
community tends to be more balanced and the whole tends to
be more stable (Otero et al., 2020). Most current studies have
focused more on the relationship between primary producer
diversity and RUE and less on the RUE of herbivores and even
higher trophic levels. Therefore, a comprehensive understanding
of the effects of biodiversity requires the integration of both
horizontal and vertical dimensions of biodiversity, especially
when specific taxa with unique traits dominate primary
producers (Duffy et al., 2007). Our results consistently showed
that phytoplankton evenness is significantly correlated with
RUEpp and RUEzp across seasons (although the strength of the
correlation may be differ) and exhibits opposite trends, which is
consistent with the findings of Filstrup et al. (2014) in eutrophic
lakes. These findings can also be explained by ecological
stoichiometry, i.e., when RUEpp is high, RUEzp decreases due
to reduced trophic quality (Hassett et al., 1997). Notably, in
contrast to other seasons, we found that the relationship
between phytoplankton evenness and RUE was not significant
in the autumn, speculating that this finding may be related to the
large amount of tree litter input to the river from the riparian zone.
As an essential source of carbon, nitrogen, and phosphorus, leaf
litter can significantly increase phytoplankton biomass and
chlorophyll content and promote photosynthesis (Zhang et al.,
2018). However, large amounts of leaf litter can also form a cover
on the water surface that reduces light transmittance, diminishes
the amount of light available to phytoplankton in the water
column, and reduces photosynthetic efficiency (Domingues
et al., 2014). Some light-loving taxa, such as Microcystis and
Scenedesmus, are reduced, while shade-tolerant species, such as

FIGURE 5
Relative abundance of dominant algae about phytoplankton resource use efficiency [RUEpp; (A)] and zooplankton resource use efficiency [RUEzp;
(B)]. The predictor variable was the relative abundance of Bacillariophyta, and the response variable was transformed to a natural logarithm before
analysis, and p < 0.05 was considered a significant difference.
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Cryptomonas and Euglena, are benefitted (Reynolds et al., 2002;
Padisák et al., 2009). Furthermore, leaf litter accumulation may
lead to localized stagnation of the water column, affecting mobility,
nutrient transport, and light distribution, disrupting vertical

migration of phytoplankton, and ultimately limiting their
distribution and growth (Li et al., 2013).

Individual ecology-based classification of phytoplankton
functional groups can more accurately characterize habitats,

FIGURE 6
Relationship between taxonomic diversity and ecosystem function in Xiaoqing River in each season. The response variables were phytoplankton
resource use efficiency (RUEpp) and zooplankton resource use efficiency (RUEzp), and the explanatory variable was phytoplankton evenness. Green
shading represents 95% confidence intervals, and the response variables were transformed to natural logarithms before analysis.
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reveal dynamic relationships between phytoplankton functional
groups and the aquatic environment, and predict changes in
ecosystem function (Abrantes et al., 2006; Borics et al., 2021).
Our results are consistent with the hypothesis that FDiv has

some explanatory power in predicting ecosystem functioning. Its
response pattern is consistent with taxonomic diversity (evenness),
i.e., FDiv has a negative correlation effect on RUEpp and a positive
correlation on RUEzp, indicating that FDiv well reflects the

FIGURE 7
Relationship between functional diversity and ecosystem function in Xiaoqing River in each season. The response variables were phytoplankton
resource use efficiency (RUEpp) and zooplankton resource use efficiency (RUEzp), and the explanatory variable was phytoplankton functional divergence
index. Green shading represents 95% confidence intervals, and the response variables were transformed to natural logarithms before analysis.
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distribution of species in the functional trait space and their effects
on RUE. The higher the FDiv of phytoplankton, the weaker the
competition for resources among species, the more fully utilized the
ecological niche space, and the higher the primary productivity
generated, so that RUEzp exhibited an upward trend (Ptacnik et al.,
2010). Several studies have demonstrated that functional diversity
can be a better predictor of ecosystem properties because adding or
subtracting species with similar functions has little effect on
ecosystem functioning (Carmona et al., 2016; Abonyi et al., 2017;
Gross et al., 2017; Ye et al., 2019). Due to the heterogeneity of
ecosystem habitats and resources, communities with similar
functions cannot achieve maximum resource utilization. In
contrast, communities with greater functional differences can
improve RUE and enhance ecosystem functioning (Cadotte et al.,
2011). Therefore, the functional characterization approach is
considered a more promising tool in stream ecosystem
biomonitoring and management (Abonyi et al., 2017; Breton
et al., 2017; Leruste et al., 2018). The present study demonstrated
that both taxonomic and functional diversity were significantly
correlated with ecosystem functioning. However, the model fit
for taxonomic diversity was slightly better than that for
functional diversity. This observation contradicts the results of
previous studies, and this discrepancy may stem from the fact
that our ability to quantify traits remains limited, and the trait
profiles covered need to adequately capture slight differences in
species at specific ecological niches. For instance, differences in light
requirements, which may be a key trait in determining species’
efficient use of heterogeneous resources within the environment,
may need to be better captured, thus reducing the percentage of
variance explained by functional diversity in RUE. Furthermore,
trait-mediated effects due to interactions among taxa must be
considered, which may limit the applicability of currently used
traits (Klais et al., 2017).

Our study supports a bottom-up ecosystem regulatory
mechanism in which resource use drives competition among
species at the primary producer level, with more competitive
populations gaining a resource advantage and dominating the
community, i.e., selection effects. At the herbivore level, resource
heterogeneity and differences in food selectivity drive changes in
trophic transfer efficiency (Filstrup et al., 2019), and such
interactions across trophic levels form a more complex and
rich BEF relationship. In this study, only two groups of
organisms were involved, and we should consider expanding
the scope of the study based on field observations to investigate
the BEF mechanism of organisms at higher trophic levels.
Considering the advantages of studying BEF relationships
based on functional traits, our results improve the quantitative
description of phytoplankton functional traits in subsequent
studies. This study contributes to a more comprehensive
identification of various ecologically relevant traits for a more
comprehensive assessment of river ecosystem functioning
(Abonyi et al., 2017; Kremer et al., 2017). Furthermore, the
findings of this study will provide theoretical guidance for the
protection and management of eutrophic waters. Specifically, we
propose the implementation of measures to control nutrient
inputs, maintain the structural stability of phytoplankton
communities, and strengthen ecosystem monitoring and
assessment. These measures aim to slow down the

eutrophication process, maintain the functional balance and
diversity of primary producer communities, and thus improve
the resource use efficiency and ecological service function of the
whole ecosystem. These protection strategies should be further
refined and a comprehensive eutrophication water management
plan should be formulated and implemented with the ultimate
goal of curbing eutrophication and realizing the improvement
and restoration of the aquatic ecosystem.

5 Conclusion

In summary, this study has established the patterns and
mechanisms between biodiversity and ecosystem function in
natural phytoplankton communities under eutrophic
conditions. The results verified our preliminary hypothesis
that both phytoplankton evenness and FDiv significantly affect
RUE and have opposite patterns at the different trophic levels.
Due to the increase of dominant species caused by algal blooms,
the abundance of each species tends to be unbalanced, the
occupation of the trophic ecological niche decreases, and it
becomes difficult to effectively transfer and utilize resources to
the upper trophic level. When the dominant harmful algal
blooms declined, a relative equilibrium state was reached
among the species, the whole ecological niche was gradually
utilized more comprehensively, and the ecosystem function
was enhanced. Therefore, in order to effectively manage and
protect the health of water bodies, we suggest controlling the
input of nutrients and slowing down the eutrophication process;
taking measures to restore and maintain an appropriate
phytoplankton community structure and avoiding the absolute
dominance of a single species; and strengthening the monitoring
and assessment of the structural and functional indicators of
phytoplankton communities and formulating corresponding
protection management and strategies. This study provides
important insights into the study of ecosystem functioning
across trophic scales. It supports the view that increased
ecological niche utilization can improve resource use
efficiency, providing an important reference for subsequent
studies of BEF mechanisms at higher trophic levels.
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