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Introduction: Land use land cover (LULC) change is an important factor driving
global change, influenced by the interaction between human activities and
natural ecosystems. The upper watershed of the Qingshui River is adversely
affected due to anthropogenic activities. Therefore, analyzing the driving factors
of land use changes in this area is crucial for ecological protection and sustainable
development.

Methods: Based on the long-term Landsat image data from 1990–2020, the
spatiotemporal change characteristics of the LULC rate and its driving factors in
the upper watershed of theQingshui River basin were analyzed using the land use
transfer matrix and dynamic degree of land use processes. The redundancy
analysis was performed to investigate the links between LULC changes, socio-
economic and climatic variables.

Results: From 1990–2020, the area under waters and woodland decreased by
−2.94 km2 and −451.44 km2, respectively. Meanwhile, grassland, arable land,
construction land, and unused land area increased by 278.71 km2, 115.72 km2,
46.48 km2 and 13.49 km2. In terms of the proportion area to the total land
(2334.10 km2), woodland accounted for 63.43–44.09% of the total land and
was mainly distributed in the east; arable land was 17.00–21.96% and was
largely distributed on both sides of the middle and lower parts of the basin;
construction land comprised 1.03–3.02% and was generally found in flat areas
near the downstream andwater areawas only 0.1–0.01%which primarily covered
the Qingshui River and its tributaries from 1990–2020. Construction and unused
lands showed the fastest rate of change, followed by water area and grasslands.
Accelerated urbanization, rapid socio-economic development, and the
farmland-to-forest policy were the main driving forces behind the change in
LULC in the upper reaches of the Qingshui River.

Discussion: The findings of this study can assist in planning strong management
strategies for ecological protection and socio-economic sustainable
development in the study area.
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1 Introduction

The land use land cover (LULC) changes are driven by both local
anthropogenic activities and natural factors. LULC changes are
dynamic and non-linear human-nature interactions that cause
major land surface transformations from one land use type to
another (Fu and Zhang, 2020). During the past 300 years, the
global LULC change trajectory has been characterized by
advances in agriculture and losses in forests (Mmbaga et al.,
2017). Mainly due to the conversion of forest areas into
agricultural land and urbanization (Leta et al., 2021). Thus, it has
been identified as a driver of global environmental change (Guder
et al., 2022). In the 1990s, the International Geosphere and
Biosphere Program (IGBP) and the Human Factors Program for
Global Environmental Change (IHDP) were established. In 1995,
they jointly put forward the growing concern of LULC (Moro et al.,
2022). The study on LULC change and its drivers is gaining scope
worldwide (Vu et al., 2022).

To understand the LULC dynamics, it is important to identify
the LULC triggering factors with the location over time (Leta et al.,
2021). Currently, there are two main categories used to analyze the
factors that influence LULC change: qualitative and quantitative.
The qualitative analysis method is limited to analyzing the effects of
different influencing factors on LULC change. It cannot
quantitatively express the degree to which different factors
impact LULC change (Cui et al., 2022). Even if the quantitative
method can clarify the degree to which different influencing factors
drive land use change. Both approaches ignore the relationship
between influencing variables and land use change in spatial location
(Li et al., 2020). So, it is challenging to precisely examine their
inherent mechanism of change potential. The geographic detector is
a statistical technique that identifies driving factors and detects
spatial distinction based on statistical principles (Fan et al., 2020).
This approach can represent the interaction between two
influencing elements and quantitively analyze the degree to
which each driving factor influences the independent variable
based on their spatial relationship (Han et al., 2021). Within the
field of LULC, pertinent researchers have employed geographic
detectors to carry out in-depth investigations and analyses about
the variables that influence changes in a specific LULC type, such as
changes in vegetation cover and urban growth (Cui et el., 2022).

Rapid economic development and urbanization largely changed
China’s LULC pattern. Various anthropogenic land uses have
changed the spatial patterns of natural ecosystems in most
regions. In some regions, land use change patterns are disturbing
the natural system, leading to serious ecological and environmental
problems (Yang et al., 2020). China’s vast territory and large
population indicate the importance of LULC research throughout
the country. Previous research studies have shown that all land use
types have undergone changes in the past 25 years in different
regions in China. Liang (2017) investigated the biodiversity changes
caused by LULC in Zhangye, China. Li andWang (2021) studied the
LULC change in the Yanhe River basin using the data from 1980 to
2005 and found that the number of forest and farmland areas
changed greatly. Abbas et al. (2021) analyzed the relationship
between LULC changes and their drivers in the Greater Bay Area
of China and found that urbanization, transportation infrastructure,
and agricultural practices were the primary drivers of LULC changes

in the region. Kong and Tian (2020) studied the Beijing-Tianjin-
Hebei region, and Shen et al. (2019) investigated the relationship
between LULC changes and their driving forces in the Yangtze River
Delta region.

The upper watershed area of the Qingshui River basin in the
Chongli district, Zhangjiakou City of Hebei Province, China, is
known for its scenic natural landscape and is characterized by
mountainous terrain, forests, grasslands and agricultural land. As
one of the host cities of the 2022 winter Olympics, the Chongli
district has undergone rapid economic development. The large-
scale development and utilization of water and land resources have
changed the spatial and temporal distribution of the local land type
and had undefined impacts on the ecological environment (He
et al., 2022; Du, et al., 2024). Therefore, monitoring LULC change
and its driving factor is important for future planning and
sustainable development in the area (Duan et al., 2023).
Analyzing the spatial and temporal land use change
characteristics in the upper watershed area of the Qingshui
River is an important and innovative topic. However, research
work is still limited, particularly focusing on this study area. This
study aims to quantitatively analyze the spatiotemporal change
characteristics of land use types and their driving factors in the
upper watershed area of the Qingshui River basin from
1990–2020 based on 10-year intervals. By examining changes in
LULC over the last 30 years, we identified the driving factors of
LULC, including population growth, economic development and
policies. The information can support land use planning and
management decisions that promote sustainable development
and conservation of natural resources.

2 Material and methods

2.1 Study area

The upper watershed area of the Qingshui River basin is in the
Chongli district, Zhangjiakou City of Hebei Province, China, within
coordinates of 40°46–41°17′N and 114°27–115°30′E. The area covers
about 2334.1 km2 (Figure 1). The river got its name from the
southern foot of the Huapi Ridge Scenic Area, which is around
2157 m above sea level and also known as “Zitian Mountain.” The
river begins at the foot of the mountain and flows down, joining the
gurgling springs that run out from the ditches on both sides. It has
traditionally been a source of water for residents of the Chongli
district (Zhang et al., 2021). Because mountains surround the
Chongli district and have a high altitude, the annual average
temperature is very low (3.3°C). Rainfall mainly occurs in the
rainy season from June to September, accounting for ~70% of
the whole year (He et al., 2022). The study area is known for its
scenic natural landscape and is characterized by mountainous
terrain, forests, grasslands, and agricultural land. The district has
been developing rapidly recently, focusing on winter sports and
tourism infrastructure. As of 2020, the population of the Chongli
district was ~85,000 people (Liu et al., 2017). In addition, the district
has invested in its transportation infrastructure, including the high-
speed railway line connecting Zhangjiakou and Beijing, which passes
through the Chongli district. This has not only facilitated the
district’s development and urbanization but also improved
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connectivity and accessibility for residents and visitors (Liu
et al., 2015).

2.2 Data sources

The research data mainly includes Landsat data downloaded
from the geospatial data cloud (www.gscloud.cn) with 10-year
intervals from 1990–2020 at a resolution of 30 m (Table 1). The
data were retrieved from May to June 2022. The digital elevation
model (DEM) was taken from the Data Center for Cold and Dry
Regions of the Chinese Academy of Sciences. The meteorological
data and socio-economic data were obtained from the statistical
bulletin and yearbook of Zhangjiakou City, Hebei Province, China.
To avoid cloud interferences, <10% of all images were captured
using sensors onboard the Landsat 5, 7, and 8. The preferred images
downloading times were the months of July and August because
these images experienced minimal effects from vegetation cover or
snowfall in the study region (Wang et al., 2021). Further, the changes
seen by Landsat generally correlated with changes in land use
patterns and realistic environmental conditions. To perform
radiometric calibrations and atmospheric correction, which can
improve data quality, the Fast Line-of-sight Atmospheric
Analysis of Hypercubes (FLAASH) algorithm was adopted. This
algorithm was created by Exelis Visual Information Solutions Inc.,
Boulder, CO, USA (Cooley, 2002).

2.3 Data processing

2.3.1 Maximum likelihood classification
The maximum likelihood classification algorithm is used to

classify the different land use types through a supervised
classification technique (Shahid et al., 2018). Maximum

likelihood classification is a popular technique used in
Geographic Information Systems (GIS) to classify remote sensing
data. It is based on the assumption that the spectral signature of each
class follows a normal distribution. Maximum likelihood
classification aims to find the most likely class for each pixel
based on the probability that the pixel belongs to each class
(Lilles et al., 2015). Also, the chord diagram was used to visualize
the land use change trajectory in the upper watershed of the
Qingshui River from 1990–2020, using different types of
connections and intensities indicated by color and line thickness.

2.3.2 Accuracy assessment
Table 2 shows the number of Ground truth points (GTP)

generated from each land use type in 1990, 2000, 2010, and
2020. To confirm the correctness of all these GTPs, Google Earth
was used for ground verification in the study area (Laghari et al.,
2023). The GTP was selected among image samples using a
confusion matrix generated by analyzing the land cover transfer
matrix of all classified images in ArcMap 10.2. Several measures,
including Producer Accuracy (PA), User Accuracy (UA) and
Overall Accuracy (OA), have been employed throughout this
process to evaluate land use classification accuracy. In the fields
of remote sensing (RS) and geographical information systems (GIS),
accuracy assessment is an important component in assessing the
performance of classification algorithms and image interpretation.
Accuracy assessment includes comparing the results of a
classification or interpretation process with reference data to
determine the correctness of the generated output.

Overall Accuracy is a measure of the total correctness of the
classification or interpretation results. It denotes the percentage of
correctly classified or interpreted pixels or objects over the entire
dataset (Qu et al., 2021). Producer Accuracy, also known as the
commission or omission error, quantifies the probability that a
reference class is correctly identified in the classification or

FIGURE 1
The geographical location with digital elevation model (DEM) of the study site upper watershed area of the Qingshui River basin in the Chongli
district, Zhangjiakou City of Hebei province, China.

Frontiers in Environmental Science frontiersin.org03

Wang et al. 10.3389/fenvs.2024.1388058

http://www.gscloud.cn
https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2024.1388058


interpretation. It measures the accuracy from the perspective of the
algorithm or interpreter (Bouaziz et al., 2017). User Accuracy, also
known as the User’s Error, denotes the probability that a pixel or

object classified or interpreted as a specific class is indeed that
reference class. It reflects the accuracy from the perspective of the
user of the classification or interpretation results (Qu et al., 2021).

TABLE 1 Satellite images and their information.

Years Satellite image no. Name of
satellite

Strip Line Date Spatial
resolution

(m)

Temporal
resolution
(days repeat

cycle)

Latitude
(°)

Longitude
(°)

1990 LT51240311990204HAJ00 Landsat 5 TM 124 31 1990/
7/23

30 16 115.5729 41.7701

LT51240311990220HAJ00 Landsat 5 TM 124 31 1990/
8/8

30 16 115.5753 41.7702

LT51240311990236HAJ00 Landsat 5 TM 124 31 1990/
8/24

30 16 115.5794 41.7720

LT51240321990236HAJ00 Landsat 5 TM 124 32 1990/
8/24

30 16 115.1153 40.3375

2000 LE71240312000192SGS01 Landsat 7 ETM
SLC-on

124 31 2000/
7/10

30 16 115.5672 41.7610

LE71240312000208HIJ00 Landsat 7 ETM
SLC-on

124 31 2000/
7/26

30 16 115.6079 41.7597

LE71240322000192SGS01 Landsat7 ETM
SLC-on

124 32 2000/
7/10

30 16 115.1064 40.3340

LE71240322000208HIJ00 Landsat 7 ETM
SLC-on

124 32 2000/
7/26

30 16 115.1467 40.3324

2010 LT51240312010243IKR00 Landsat 5 TM 124 31 2010/
8/31

30 16 115.5948 41.7719

LT51240322010227IKR00 Landsat 5 TM 124 32 2010/
8/15

30 16 115.1469 40.3351

LE71240312010187EDC00 Landsat 7 ETM 124 31 2010/
7/6

30 16 115.6239 41.7558

SLC-off

LE71240322010187EDC00 Landsat 7 ETM
SLC-off

124 32 2010/
7/6

30 16 115.1617 40.3287

LE71240322010203EDC00 Landsat 7 ETM
SLC-off

124 32 2010/
7/22

30 16 115.1612 40.3291

2020 LC81240312020225LGN00 Landsat
8 OLI_TRIS

124 31 2020/
8/13

30 16 115.6515 41.7596

LC81240322020225LGN00 Landsat
8 OLI_TRIS

124 32 2020/
8/13

30 16 115.1883 40.3325

LC81240312020193LGN00 Landsat
8 OLI_TRIS

124 31 2020/
7/12

30 16 115.6331 41.7594

TABLE 2 Ground Truth Points (GTP) were taken from each Landsat image to represent each land use category. The number values inside the table indicate
the year that the datasets were retrieved.

Land use type Image 1990 Image 2000 Image 2010 Image 2020

Woodland 60 54 60 58

Grass land 59 60 58 54

Arable land 60 58 53 60

Construction land 54 54 59 54

Unused land 58 60 55 59

Waters 53 59 61 58
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The accuracy of all metrics was more than 90%. The highest OA
was 97.39% in 2000. These results illustrate the accuracy of land type
classification and identification over time. They validate the reliable
performance of the classification model or user in correctly
allocating land types based on the specified metrics. Overall, the
accuracy rates across the years were consistently high, showing an
effective and reliable process of classifying and identifying different
land types (Table 3).

2.3.3 Land use transfer matrix
The land cover transfer matrix is frequently utilized to describe

the structure and direction of the dynamic change in land cover.
From the beginning to the end of a particular time, it describes the
area-by-area transitions between the various land cover categories in
a particular area (Zhao et al., 2020). It contains information not only
on the static area of a land type at a specific time in the region but
also on the types of land use changes to other LULC types or the
transformation of original LULC types to new LULC types (Liping
et al., 2018). GIS was used to determine the land use change,
followed by analyzing the obtained data using MATLAB software
for statistical and quantitative analysis of the change direction of
each land use type (Zhao et al., 2020). The mathematical expression
of the transfer matrix is expressed below:

Smj �
S11 S12
S21 S22

/
/

S1n
S2n

..

. ..
.

1 ..
.

Sn1 S2n / Snn

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (1)

Where S denotes the area, n denotes the number of transferred
LULC types, and m and j denote the LULC types at the beginning
and end of the study, respectively. The area of the first type that was
transformed into all other types, including itself, is shown in the first
row, with the other rows having the same meaning for their
respective types. The area of all other types, including the first
type transformed into the first type, is shown in the first column,

while the same is shown in the other columns for their particular
types. The matrix’s terms on the diagonal line point towards a
fixed value.

2.3.4 Dynamic degree of land use
The land uses dynamic degree is a popular framework for

analyzing the temporal change among land categories. It averages
the measurements from all categories and evaluates the annual net
change for each category (Huang et al., 2018). It represents the
annual variation rate of the land use type area, which is an important
indicator of land use change. It is used to assess the change rates of
land use types quantitatively and anticipate the future land use
change trend. Therefore, it refers to the change rate of land use types
in the study area during a time interval (Mohamed and Worku,
2019).) and is calculated according to the following formula:

S � Sb − Sa
Sa

×
1
t
× 100% (2)

Where S is the dynamic degree of a certain land use type in the
10-year time interval; Sa is the initial area of a land use type change;
Sa is the end of the change of a certain land use type; t represents the
study period; A positive S value indicates an increase, whereas a
negative S value indicates a decrease.

2.3.5 Redundancy analysis
Redundancy analysis (RDA) can investigate the link between

two tables of variables, Y and X. It is a non-symmetric method,
whereas canonical correlation analysis is symmetric. In RDA, the
components retrieved from X were chosen to ensure that they are as
closely connected to the variables of Y as possible. The components
of Y were then extracted so that they were closely connected to the
components of X as much as possible (Capblancq and Forester,
2021). RDA helps improve the authenticity of results through
multiple analyses and is often used to study the response
relationship between the microbial community and its living

TABLE 3 Based on chosen Ground Truth Points (GTP) from Landsat images accuracy assessments of recovered LULC changemaps for 1990, 2000, 2010 and
2020, respectively.

Year Metrics Woodland Grassland Arable land Construction land Unused land Waters

1990 Producer Accuracy (%) 98.33 98.27 96.61 96.29 96.61 98.11

User Accuracy (%) 98.33 96.61 95.00 96.29 98.27 98.11

Overall Accuracy (%) 97.10

2000 Producer Accuracy (%) 96.36 98.30 96.55 96.29 98.33 98.30

User Accuracy (%) 98.14 96.66 96.55 96.29 98.33 98.30

Overall Accuracy (%) 97.39

2010 Producer Accuracy (%) 96.66 98.25 96.15 96.61 96.43 96.77

User Accuracy (%) 96.66 96.55 94.34 96.61 98.18 98.36

Overall Accuracy (%) 96.82

2020 Producer Accuracy (%) 96.61 98.11 96.61 96.29 96.66 98.28

User Accuracy (%) 98.27 96.29 95.00 96.29 98.31 98.28

Overall Accuracy (%) 97.08
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environment. In this paper, the land use type of the study area was
regarded as the community, whereas the social, climatic, and other
factors of the study area were viewed as the environmental factors,
and the correlation between them was analyzed (Zhang et al., 2021).
A three-order diagram represents the analyzed data.

3 Results

3.1 Change characteristics of land use types

Figure 2 shows the Chonglin forest, which was mainly
distributed on the east bank of the upper reaches of the Qingshui
River basin. However, the grasslands were mainly distributed on the
west slopes. Furthermore, arable land was mainly distributed across
both banks of the middle and lower reaches of the upper Qingshui
River basin, and there was also a small area in the middle and upper
reaches. Although there was a small area of constructed land in the
flat areas of the upper and middle reaches, it was mainly found
concentrated in the flat areas of the lower reaches and close to the
water. The source of the water area was mainly the Qingshui River
and its tributaries. The unused land (vacant area without any

buildings and public utilities, etc.) was relatively small and
distributed around the constructed land. Figure 3 shows that
although woodland had the highest coverage (44.09%–63.43%), it
showed a decreasing trend overall. The second position was taken by
the grassland and arable lands, which accounted for 18.15%–30.09%
and 17.00%–21.96%, respectively, with an overall increasing trend.
Despite there being a relatively small proportion of construction
land (1.03%–3.02%) and unused land (0.26%–0.83%), both showed
an upward trend. Finally, the water area had the lowest proportion
(0.01%–0.13%) and showed a decreasing trend from 1990–2020.

3.2 Characteristics of land use type
transformation

3.2.1 Land use change rate
Figure 4 shows the dynamic degree of land use of the various

land use types in the upper reaches of the Qingshui River every 10-
year interval, thereby showing the change rate of different land use
types. From 1990–2020, the construction land, residential area, and
unused land changed the fastest, reaching 23.22% and 19.31%,
respectively, thus belonging to the first level. The second level

FIGURE 2
Land use type changes in the upper watershed of the Qingshui River from 1990 to 2020.
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comprised the water area and grassland, with 9.48% and 6.58%
change rates, respectively. Finally, the third level, comprising both
cultivated and woodland, had the lowest change rates of 2.92% and
3.05%, respectively. From 1990–2020, the rate of change in
woodland, arable land, construction land, and unused land
showed a trend of initially increasing and then decreasing.
Contrastingly, the water area showed a fluctuating trend of both
decreasing and increasing. This could be attributed to the effects of
climate change, including the effect of rainfall on river flow.

However, the grassland showed an ever-decreasing trend, with
the rate of change decreasing from 3.57% to 0.82%. The rate of
change for construction land and residential areas increased largely
from 0.39% to 6.38%, whereas the rates of change for woodland and
arable land only increased slightly from 1.02% to 1.2% and from
0.66% to 1.36%, respectively. However, the rate of unused land
change sharply increased from 2000 to 2010, i.e., rising from 3.06%
to 9.63%, followed by a decrease of 2.95% in the next 10 years.
Finally, the water area also decreased rapidly from 1990 to 2000,

FIGURE 3
Land use type quantity changes in the upper watershed of the Qingshui River from 1990 to 2020.

FIGURE 4
Rate of change of various land use types in the upper River basin.
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with a change rate of 8.06%. Although its change rate was 2.33%
from 2000–2010, it then sharply decreased with a change
rate of 6.52%.

3.2.2 Land use dynamics
Table 4 shows the land transfer matrix of the Qingshui River

basin in Zhangjiakou from 1990–2020. From 1990–2020, 511.55 km2

of woodland was converted to other land use types, while only
92.26 km2 was converted from other land use types to woodland.
Overall, the reduction in woodland area far exceeded as compared to
its increase. The reduced area was mainly converted into grassland
and farmlands, with a small part being converted into construction
and unused land. From 1990–2020, 151.06 km2 of arable land was
converted into other land use types, while 246.77 km2 was converted
from other land use types to woodland, thus showing an overall
increasing trend. The increased arable land is mainly attributed to the
reduced woodland, with a part of it being shared with grassland and
construction land. The increase in grassland area was mainly caused
by the conversion of forests and arable land. In the same period,
122.99 km2 of grassland were converted to other land use types, while
396.78 km2 were converted from other land use types to grassland,
indicating an overall increasing trend. The increase in grassland
mainly came from the conversion of forested land, with a smaller
portion coming from the conversion of cultivated and construction
land. In terms of construction land, 15.82 km2 of construction land
was converted to other land use types, whereas 56.97 km2 was
converted from other land use types to woodland, which showed
a substantial upward trend. The reduced construction land was
mainly occupied by grassland and arable land, with some
converted into woodland. This increase comes from the
conversion of arable land and partly from grassland. Woodland
was the main land use type converted into unused land, with arable
land being the main land use type converted into the water area.
Therefore, both land use types show an increasing trend. Figure 5
shows detailed trend changes in the land use types in the upper
Qingshui River basin every decade from 1990–2020. From the land
use type transformation trend, the mutual transformation between
the different land use types from 1990–2000 was dominated by
woodland and then mainly shifted to grassland, followed by arable
land. Furthermore, from 2000–2010 and from 2010–2020, mainly
woodland and grassland remained the decreasing land use types,
followed by arable land. The proportion of land use change during
1990–2000, 2000–2010, and 2010–2020 was 33.38%, 32.51%, and
10.02%, respectively, with the total area of land use change being

779.03, 758.80, and 233.95 km2. In these three intervals, the total area
of land use change decreased with increasing time, thus indicating
that the intensity of land use change showed a downward trend over
time, with the lowest intensity being from 2010–2020.

3.3 Analysis of the drivers of land use change

Table 5 shows the socio-economic and meteorological data of
the upper reaches of the Qingshui River. Although it shows that the
population of the upper reaches increased every 05-year interval
from 1990 to 2020, the growth rate remained relatively slow. The
gross domestic product (GDP) increased rapidly from 1990–2020,
especially from 2010–2015. The secondary industry had the largest
output from the overall perspective of the three industries in the past
30 years. In contrast, the tertiary industry output grew the fastest and
exceeded in 2020 compared to the secondary industry, indicating
that the overall economy of the upper reaches of the Qingshui River
basin began shifting towards the upper- and middle-income levels.
Especially after the successful bid for the 2015 winter Olympic
Games, the tertiary industry grew rapidly, reflecting the high degree
of local urbanization. The temperature in the upper reaches of the
Qingshui River basin showed an overall upward trend from
1990–2010, with the average increasing from 3.6°C in 1990°C to
4.6°C in 2015 and then falling to 3.2°C in 2020. For the annual
average precipitation, the range of change was large, with an average
of 300–700 mm. The relationship between the land use type and
environmental variables is shown by the RDA three-order diagram
(Figure 6), where the characteristic values of axis one and axis two
were 0.9937 and 0.0058, respectively. The population and
construction land, unused land, arable land, and grassland were
positively correlated. The policy of returning farmland to forests was
positively and negatively correlated with arable land and woodland,
respectively, which indicated that the socio-economic development
and implementation of this policy largely impacted the
transformation of land use types. It can also be seen from the
RDA three-order diagram that there was a negative correlation
between woodland and temperature change. Although the
temperature in the upper reaches of the Qingshui River basin
showed a slowly increasing trend in the past 30 years, the
temperature was still relatively low. Some studies have shown
that temperature is negatively correlated with vegetation growth.
Therefore, the low temperature leads to the slow growth of the
woodland, thus impacting its change.

TABLE 4 Land use transfer matrix from 1990 to 2020 (km2).

Woodland Grassland Arable land Construction land Unused land Waters Total

Woodland 969.07 289.19 186.06 21.42 14.87 0.01 1480.62

Grassland 65.35 300.72 51.35 5.12 1.17 0.00 423.71

Arable land 26.48 94.73 245.73 28.85 0.85 0.15 396.79

Construction land 0.41 7.70 7.52 8.25 0.19 0.00 24.07

Unused land 0.02 4.56 0.66 0.28 0.29 0.00 5.81

Waters 0.00 0.60 1.18 1.30 0.02 0.00 3.10

Total 1061.33 697.50 492.50 65.22 17.39 0.16 2334.10
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4 Discussion

4.1 Impact of LULC change on water body
and woodland

The watershed’s hydrological processes are largely influenced by
LULC changes. LULC change assessment is required to develop land

and water resources (Guder et al., 2022). Understanding LULC
changes over time is critical for water resource management and
land utilization planning (Gashaw et al., 2018). Our study showed
that in 2000, the area under the water body and woodland decreased
by 0.03% and 55.82%, respectively. While grassland, arable land,
construction land, and unused land area increased by 24.64%,
18.12%, 1.07%, and 0.33%. In 2010, the water body area

FIGURE 5
Land use change in the upper watershed of the Qingshui River from 1990 to 2020.

TABLE 5 Socio-economic and climatic parameters of the upper River basin.

Year Population
(ten

thousand)

GDP
(m)

Primary
industry

(m)

Secondary
industry (m)

Tertiary
industry

(m)

Prec.
(mm)

Temp. (°C) Returning farmland
to forestry

implementation

1990 12.00 20210.0 6002.0 9459.0 4061.0 388.40 3.60 Not Implemented

1995 12.00 21619.0 5642.0 12385.0 3592.0 651.80 3.80 Not Implemented

2000 12.30 29040.0 4752.0 16701.0 7587.0 392.00 3.90 Not Implemented

2005 12.30 73924.0 14824.0 36563.0 22537.0 450.60 3.60 Implemented

2010 12.50 131739.0 26419.0 66342.0 38978.0 333.90 4.30 Implemented

2015 12.70 369147.0 73399.0 208831.0 86917.0 458.20 4.60 Implemented

2020 13.10 313690.0 57806.0 85293.0 170591.0 518.10 3.20 Implemented
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decreased by 0.02% and the woodland area by 49.09%. In 2020, the
water and woodland areas further decreased by 0.01% and 44.09% of
the total land area, respectively. The areas under grassland, arable
land, construction land and unused land increased continuously
over time. These results are consistent with those of Tariq et al.
(2022), who found a larger impact of LULC change on water bodies
and woodlands due to population growth, urbanization, agricultural
expansion, and infrastructure development. Results are also
consistent with Yao et al. (2021), who analyzed LULC changes in
China over the past 4 decades. The study reported that water and
woodland declined largely. At the same time, construction land
increased rapidly in response to population growth and economic
development. The study identified the negative impacts of LULC
change on soil quality and water resources. Chen et al. (2018) found
that the net area of reclamation increased by 553.6, while the natural
water body declined by 574.3 km2 from 1960–2015. Zhai et al. (2021)
reported that during 2000–2019, the build-up area increased by
983 km2, and the water and woodland areas reduced by 182.52 and
23.92 km2, respectively. According to a recent global assessment
report by the Intergovernmental Science-Policy Platform on
Biodiversity and Ecosystem Services, around 75% of the Earth’s
land surface has been largely altered by human activities, resulting in
declines in biodiversity and ecosystem services all around the world
(Díaz et al., 2019). The present study finds that waters and woodland
are threatened by LULC changes. The flow diagram shows the
interaction and association among different variables (Figure 7).
According to the results of this study, from 1990–2000, 2000–2010,
and 2010–2020, the transition of land use types primarily involved
woodland, followed by grassland, and then arable land. Similar
results were found by Dadashpoor et al. (2019) in another
region. Furthermore, Lira et al. (2012) reported that forest cover
in Brazil declined by 30% and 50% from 1960–1980 and 1980 to
2000, respectively. Ellis and Porter-Bolland (2008) showed that the
contrasting annual deforestation rates in Mexico within the two
areas, i.e., the Campeche sites, were greater by 0.7% from
2000–2005 compared to Quintana Roo (−0.002%) from
2000–2004. Falcucci et al. (2007) found that the annual
decreasing rate of forest cover in Italy was 0.3% in the

1990–2000 period. In terms of quantity, our study showed that
woodland leads with 44.09%–63.43%, which indicated a general
downward trend. This was followed by grassland (18.15%–30.09%)
and arable land (17.06%–21.9%) types. The ratio of construction
land to unused land was relatively small (0.26%–0.83%), thus
indicating an overall upward trend. The ratio of water area to
land area was 0.01%–0.13%, which indicated a downward trend.
These results are consistent with previous findings of other study
regions (Tan et al., 2020). Mohan et al. (2011) studied the
urbanization dynamics and their effect on LULC in India and
found that water bodies declined by 52% in the 10-year Yirsaw
et al. (2017) studied the modelling of LULC and prediction of future
changes in the ecosystem service values in the coastal area of China
and found that water bodies reduced by 2.8% in 3 decades. In
addition, Kafy et al. (2022) studied changes in LULC to predict
the seasonal urban thermal features using machine learning
methods in Bangladesh and found that water bodies decreased by
1% from 1995–2020. The primary causes for the shift in land use
types in the upper reaches of the Qingshui River were the increasing
urbanization process and fast socio-economic growth. A similar
result was also found by Xu et al. (2019), which showed that the
fundamental cause for the impact on agricultural and construction
land was accelerated urbanization. Thus, the findings of this study
can serve as the scientific foundation for the environmental
conservation and the long-term development of the Qingshui
River basin and are consistent with those reported by Yang et al.
(2020). Therefore, sustainable land use practices and policies are
essential for mitigating the negative impacts of LULC changes on
ecological balance (He et al., 2022; Cui et el., 2022). The significance
of this study lies in its contribution to our understanding of the
complex interactions between land use, economic development, and
sustainability. Analyzing the spatiotemporal variation of land use in
the Qingshui Basin and identifying its driving factors provides
valuable insights for policymakers, stakeholders, and researchers
seeking to promote sustainable development in the region
and beyond.

4.2 Factors affecting of LULC dynamics

The LULC change drivers can alter the composition,
configuration (Pontius and Millones, 2011) and spatial distribution
of LULC (Quan et al., 2020), which can have important ecological,
social, and economic impacts (Lambin and Geist, 2008). The
relationship between LULC drivers and LULC changes is complex
andmultifaceted, and its variation depends on the specific context and
spatial scale. For example, the primary driver of LULC change globally
is the land use change associated with agriculture, while urbanization
and forest conversion may be more important drivers locally (Foley
et al., 2005). After China’s economic reform, its economy rapidly
developed, with population growth and urbanization accelerating, and
the construction of land area also increased annually. Previous studies
have also reported that land use change is closely related to urbanized
development (Zhang et al., 2023). The socio-economic factors, such as
GDP and population, are better at explaining the change in land use
types in the Hebei Province, while the natural factors, including
temperature, precipitation, and slope, were comparatively
dependent on the change in land use types (Wang et al., 2022).

FIGURE 6
RDA three-sequence diagram showing the interaction between
LULC dynamic, socio-economic and climatic parameter.
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Although the temperature in the upper watershed of the Qingshui
River basin showed a slowly increasing trend in the past 30 years, the
temperature was still relatively low. Some studies have shown that
temperature is negatively correlated with vegetation growth.
Therefore, the low temperature leads to the slow growth of the
woodland, thus impacting its change. Moreover, due to the
development of the city, the demand for domestic water and
production water increased, which reduced the water area (Yao
et al., 2021). The relationship between the land use type and
environmental variables in the Qingshui River Basin shows that
population and construction land, unused land, arable land, and
grassland were positively correlated. The policy of returning
farmland to forests was positively and negatively correlated with
arable land and woodland, respectively, which indicated that the
socio-economic development and implementation of this policy
largely impacted the transformation of land use types. Besides the
economic and social factors, the government’s policy implementation
can also cause land use changes in the short term. Previous studies
have shown that land use change is affected by agricultural production
systems and farming measures. Continuous societal development is
damaging the ecosystem, and the government is increasingly focusing
on protecting the ecological environment. The implementation of the
policy of returning farmland to forests has been effective. However, in
the upper watershed of the Qingshui River basin, the conversion of
woodland to arable land is still happening.

5 Conclusion

In this study, the assessment of changing land use types in the
watershed area of the Qingshui River in recent decades was conducted
via remote sensing and image processing approaches. Temporal

variations and spatial maps of different LUCC types from 1990 to
2020 were retrieved in every 10-year period interval. It was seen that
water bodies andwoodland are decreasing while other land use types are
increasing over time. Thus, LULC change could threaten the ecosystem
andmay lead to significant consequences in the upper watershed area of
the Qingshui River Basin in the future. As continuous societal
development is damaging the ecological environment, the
government is increasingly focusing on protecting the ecological
environment. The implementation of the policy of returning
farmland to forests has been effective. However, the conversion of
woodland to arable land is still happening, with a small area of arable
land with poor economic benefits being converted to grassland for the
development of tourism. It is essential to protect land and water
resources by planning construction and land development. This
manuscript presents findings to support ecological environment
governance, reveals the law governing land use change, and assists
local government in implementing appropriate measures to achieve
coordinated and sustainable development of the environment and
social economy.
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