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Compared with surface temperature, the near-surface temperature is more
related with human health. However, extensive researches have been
conducted on the UHI effect globally using surface temperature considering
its accessibility. In this study, a comparative analysis of near-surface and surface
urban heat islands in the Yangtze River Delta Region is investigated. This study first
proposed a spatialization method suitable for air temperature in highly urbanized
areas with complex land cover. Based on this method, a dataset of 1-km gridded
air temperature is developed, and an in-depth analysis of the changes of near-
surface and surface heat island is further carried out. Results show that both the
near-surface urban heat island intensity (NSUHII) and surface urban heat island
intensity (SUHII) are rather strong over the past 20 years, presenting similar spatial
distributions as well. However, in the rapidly expanding urban areas especially
during summer and winter seasons, the difference in magnitude and time
variations (R) between NSUHII and SUHII are pronounced. Hence, adaptions
and mitigation strategies on NSUHI and SUHI should be developed and
implemented separately in such occasions, which is especially important for
developed areas such as Yangtze River Delta Region.
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1 Introduction

Primarily triggered by climate change and the intricate interplay between land surface
and atmospheric systems, the heat island effect in urban landscapes takes shape (Krayenhoff
et al., 2018; Lu et al., 2023). Climate change has led to an imbalanced distribution of water
and heat, leading to a surge in extreme high-temperature occurrences in certain regions.
Concurrently, as urbanization rapidly advances, urban spaces and their populations expand
exponentially, accompanied by profound shifts in land-use patterns (Aliyazıcıoğlu et al.,
2021; Topaloglu, 2022; Morsy and Hadi, 2022). These changes, by manipulating surface
albedo and water evaporation, disrupt the equilibrium of surface heat budgets,
encompassing both the sensible and latent heat exchanges between land and
atmosphere, as well as vertical water vapor transport. Consequently, these alterations
reshape meteorological variables like temperature and humidity within the lower
atmospheric stratum. Ultimately, this gives rise to a remarkable phenomenon where
urban temperatures significantly outstrip those in neighboring rural areas, thus giving
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birth to the urban heat island effect (UHI) (Manley, 1959; Parry&
Chandler, 1966; Oke, 1982; Zhang et al., 2023). Featured by
significant spatio-temporal variations and substantial side effects,
the UHI effect imposes an obvious impact on regional climate,
energy consumption, air pollution and human health
(Shahmohamadi et al., 2011; Zhang et al., 2023). In addition,
extreme weather events have become increasingly frequent under
the context of climate change, which further exacerbate the UHI
effect (Shi et al., 2021; Lou et al., 2023). Hence, it is crucial to
accurately describe and quantify the UHI effect for the urban
sustainable development.

In recent years, extensive researches have been conducted on the
UHI effect globally (Ramakreshnan et al., 2019; Han et al., 2020; Hu
et al., 2023). Traditional UHI studies primarily use the air
temperature data observed at meteorological stations (referred to
as near-surface UHIs) (Liu et al., 2021). The observed air
temperature data have the advantages of high temporal
resolution and high precision, which are widely regarded as the
“ground truth” by scholars from various fields (Wang et al., 2016;
Abbas and Ismael, 2020). However, sparsely distributed
meteorological stations struggle to meet the research needs for
various types of UHI effects, leading to uncertainties in the
calculation of UHI effects.

Satellite remote sensing enables fast observation of UHI with
spatio-temporal continuity. Currently, the UHI studies mostly focus
on the LST-related surface heat island effect (Chen et al., 2016; Peng
et al., 2016;Wang et al., 2021). The spatial and temporal variations of
SUHI have been documented, the SUHI intensity varies greatly by
cities, seasons according to previous studies (Imhoff et al., 2010; Yao
et al., 2018; Meng et al., 2023). In addition, the long term trends of
SUHI and associated drivers have been also investigated. Yao et al.
(2018) pointed out significant increasing trends of SUHII in China
and increased non-agriculture population and decreasing vegetation
were important reasons for increased SUHII. Wang et al. (2021)
pointed out anthropogenic factors are considered the most
important ones in determining SUHI in the Yangtze River Delta.

With respect to human health and comfort, the near-surface
temperature is more direct than surface temperature because human
skin is directly in contact with the atmosphere rather than the land
surface (Anniballe et al., 2014; Nanayakkara et al., 2023). However,
there are still some gaps in studies of near-surface urban heat island,
mainly because the near surface temperature cannot be retrieved by
remote sensing method. Most of current studies on near-surface
urban heat island are based on sparsely distributed meteorological
stations, which may have some uncertainties (Shi et al., 2024).

Numerous studies have revealed a mutual interaction between the
air temperature and the LST from the energy balance perspective (Liu
et al., 2020; Luo et al., 2023; Yao, 2020). However, this interaction is
relatively complex considering the physical differences and natural
environments between them, which lead to discrepancies when
describing the urban thermal effects, and may cause uncertainties
for evaluating the impact of urbanization on environment. Weak
relationships were reported in both vegetated, barren lands (Xiong
et al., 2017) and urban area, especially during the daytime (Yang et al.,
2020; Yao et al., 2021). Up to now, there is still a lack of research on
comprehensively analyzing the spatio-temporal variation differences
between near-surface heat island effects and surface heat island effects
within the same study area from different perspectives.

The objective of this study is to investigate and analyze the
characteristics of the near-surface UHI and surface UHI in the
Yangtze River Delta region based on grid scale air temperature using
machine learning method and remote sensing land surface
temperatures. The remainder of this paper is organized as
follows. Section 2 provides a detailed introduction to the study
area, data information and methods used in this study. Section 3
analyzes the accuracy of remote sensing estimation of air
temperature, and further investigates the spatial distributions,
interrelationships and variation trends of near-surface UHI
intensity (NSUHII) and surface UHI intensity (SUHII). Section 4
discusses the strengths and limitations of this study. Finally, the
main conclusions are summarized in Section 5.

2 Materials and methods

2.1 Study area

The Yangtze River Delta (YRD) region is located in the east of
China and has an area covers 358,000 square kilometers (Figure 1A).
It is one of the three major urban agglomerations (the Beijing-
Tianjin-Hebei, the Yangtze River Delta, and the Pearl River Delta) in
China (Liu et al., 2017). The overall terrain in the northern part of
the study area mainly consists of plain areas, while many
mountainous areas are located in the southwestern and southeast
part of the study area. The climate over the study area is dominated
by the East Asian monsoon with four distinct seasons.

It consists of three provinces (Jiangsu, Zhejiang and Anhui) and
one municipality (Shanghai), with a total of 41 cities (Figure 1B).
Mega-cities including Shanghai, Hangzhou, Nanjing and Suzhou are
located in this region, with a permanent population accounting for
nearly 1/6 of the entire country and an economic aggregate
constituting nearly 1/4 of the national total (Sun et al., 2019).

During the urbanization process, this region has undergone
dramatic changes in land cover (Jin et al., 2021), where the UHI
effect has also become increasingly intense and more severe. In
addition, relevant studies have indicated that this region has
experienced significant warming trend (Shi et al., 2021). Under
the combined influences of climate warming and the rapid
expansion of urban areas, the variations of thermal environment
in this region have imposed a profound impact on both the
ecological environment and social economy (Wang et al., 2021;
Yang and Pan, 2011). Hence, it is crucial to study the spatio-
temporal variation characteristics of the thermal environment in
this region.

2.2 Data

The maximum air temperature data for the 2001–2018 period
are obtained from 199 national ground meteorological stations,
which are provided by the National Meteorological Information
Center of China Meteorological Administration. This dataset was
subjected to strict quality control procedures including spatial and
internal consistency checks, identification of outliers, and manual
revision of erroneous data (Chen et al., 2021). The locations of
meteorological stations are shown in Figure 1B.
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Terra Moderate Resolution Imaging Spectroradiometer
(MODIS) is a sensor onboard Terra and Aqua platforms. The
MOD11A2 product is an 8-day composite dataset with a spatial
resolution of 1 km (Niu et al., 2020; Su et al., 2013; Wang et al.,
2023). In this study, we obtained daytime LST, nighttime LST, clear_
sky_days and clear_sky_nights data from MOD11A2. In addition,
we calculate the rate of clear day (RD) and night (RN) from clear_
sky_days and clear_sky_nights data, which are defined as the
percentage of days and nights with clear sky. The surface
reflectance from MOD09GA product provides the daily reflectance
of bands 1–7 with 500-m spatial resolution. It is considered to derived
the normalized difference vegetation index (NDVI) and the modified
normalized difference water index (MNDWI) in this study, which are
input parameters to estimate the air temperature are calculated using
this data. The MCD12Q1 land cover type products combined Terra
and Aqua data at yearly intervals and with 500-m spatial resolution
(Yang and Huang, 2021; Hua and Chen, 2013).

The global nighttime light data during 2001–2018 is obtained
from the National Polar-orbiting Partnership (NPP)/Visible-
Infrared Imaging Radiometer Suite (VIIRS) data provided by the
United States National Oceanic and Atmospheric Administration
Earth Observation Group (Li et al., 2020). In addition, to calculate
the solar radiation, which is an input parameter for remote sensing
estimation, elevation data from the Shuttle Radar Topography
Mission (SRTM) is also used. The data specifics used in this
study are shown in Table 1.

2.3 Methods

2.3.1 Air temperature estimation
The core principle of remote sensing estimation for air

temperature is to use the relationship between station-observed
air temperatures and corresponding independent variables at a
certain grid point to predict the air temperature values on this
grid. Specifically, the monthly-averaged maximum air temperature
from meteorological observation stations is selected as the
dependent variable for the estimation models. Eight different
types of land surface factors (LSTD, LSTN, RD, RN, NDVI,
MNDWI, DEM, extraterrestrial solar radiation) are chosen as
independent variables in the remote sensing estimation process
of air temperature.

Extraterrestrial solar radiation is an important parameter for
evaluating solar energy resources, which refers to the solar
radiation that can be received by the earth’s surface without
considering the influence of the atmosphere. Here we use the
distributed modeling of extraterrestrial solar radiation over
rugged terrains proposed by (Zeng et al., 2005) and to
calculate monthly average extraterrestrial solar radiation in
study area. Extraterrestrial solar radiation on the slope is
determined by geography, topographic features and
astronomical factors (solar declination, hour Angle). The
daily extraterrestrial solar radiation is calculated as follows
(Eqs 1–9):

FIGURE 1
Study area (A) and the spatial distribution of meteorological stations (B).
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Ws � T

2π
I0E0 usinδ ωss − ωsr( ) + vcosδ sinωss − sinωsr( )[

+wcosδ cosωss − cosωsr( )] (1)
Ws is extraterrestrial solar radiation, T is the length of 1 day

(1,140 min), I0 is solar constant (0.082 MJ·m−2·min−1), E0 is
correction coefficient of sun-earth distance. u, v, and w are the
feature factors related to terrain. δ is the declination of the sun, ω is
the hour angle (positive to the west and negative to the east from
noon in true solar time), ωsr and ωss are the sunrise and sunset hours
respectively.

u � sinφ cos α − cosφ sin α cos β (2)
v � sinφ sin α cos β + cosφ cos α (3)

w � sin α sin β (4)

The declination of the sun and correction coefficient of sun-
earth distance E0 can be calculated as follows:

δ � 0.006894 − 0.399512 cos τ + 0.072075 sin τ − 0.006799 cos 2τ
+ 0.000896 sin 2τ − 0.002689 cos 3τ + 0.001516 sin 3τ

(5)
E0 � 1.000109 + 0.033494 cos τ + 0.001472 sin τ + 0.000768 cos 2τ

+ 0.000079 sin 2τ
(6)

Where τ is the daily angle and expressed in radians and can be
calculated by days Dn.

τ � 2π Dn − 1( )/365 (7)
ωss � arccos − tanφ tan δ( ) (8)

ωsr � −ωss (9)
Furthermore, four machine learning methods of the Multiple

Linear Regression (MLR), Back-Propagation Neural Networks

(BPNN), Support Vector Machine (SVM) and Random Forest
(RF) are used to fit the relationship between the dependent variable
and independent variables at the station scale. 10-fold cross-
validation method is used to assess the fitness of selected
predictors by comparing the observed and estimated air
temperatures. Subsequently, the four models output four
datasets of 1-km gridded monthly-averaged maximum air
temperature by taking the 1-km independent variable data as
the input. Since this study mainly focus on the comparison
between near-surface and surface urban heat islands, detailed
information about the air temperature estimation process will
not be discussed in this study.

2.3.2 Urban heat island evaluation
To compare and analyze the similarities and differences between

near-surface and surface heat island, NSUHII and SUHII are
employed. The NSUHII and SUHII are used to quantify the
near-surface and surface UHI effect, as follows (Eqs 10, 11):

NSUHIIi � ATi − 1
n
∑n
j�1
ATbj (10)

SUHIIi � LSTi − 1
n
∑n
j�1
LSTbj (11)

Where NSUHIIi and SUHIIi refer the near-surface and surface
urban heat intensity in pixel i, ATi and LSTi refer the air temperature
and LST in pixel i, n is the total number of rural background effective
pixels. ATbj and LSTbj represent the air temperature and LST of the
corresponding rural background, respectively (Liu et al., 2017).

The appropriate selection of suburban farmland background is
the key to calculate urban heat island intensity. For different cities in
large urban agglomerations, it is not advisable choosing the same
rural background to calculate the temperature difference between

TABLE 1 Data and related information used in this study.

Variable Source Parameter Time
period

Spatial
resolution

Temporal
resolution

Data use

Maximum air
temperature

Ground station AT 2001–2018 / 1 day Input parameter of remote sensing
estimation

Daytime LST MOD11A2 LSTD 2001–2018 1 km 8 days Input parameter of remote sensing
estimation\Comparison with AT

Nighttime LST MOD11A2 LSTN 2001–2018 1 km 8 days Input parameter of remote sensing
estimation

Clear_sky_days MOD11A2 Rate of clear
Day (RD)

2001–2018 1 km 8 days

Clear_sky_nights MOD11A2 Rate of clear
night (RN)

2001–2018 1 km 8 days

Surface reflectance MOD09GA NDVI, MNDWI 2001–2018 0.5 km 1 day Input parameter of remote sensing
estimation\identification of the

rural background

Land cover MCD12Q1 / 2001–2018 0.5 km 1 year Identification of the rural
background

Elevation (DEM) The Shuttle Radar
Topography Mission

(SRTM)

extraterrestrial solar
radiation

2008 90 m / Input parameter of remote sensing
estimation\identification of the

rural background

Nighttime light Composite NPP/VIIRS
data

/ 2001–2018 30 m 1 year Identification of the rural
background
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urban and rural areas to get the urban heat island intensity (Shi
et al., 2021). We use the method proposed by (Liu et al., 2017) to
determine the farmland background pixels of each city by
combining four criteria: land cover, NDVI, night light index and
elevation difference relative to urban central areas. 1) In terms of
land cover type, the rural area is selected as the background pixel
according to the land cover type of farmland; 2) The annual
maximum NDVI ≥0.7 is used as the ideal value to determine the
rural background; 3) The night light index ≤15 identifies areas
unaffected by human activity; 4) The altitude difference from the
city <50 m is preferred to reduce the terrain effect on the heat island
intensity. The spatial distributions of land cover type of 2018, annual
maximum NDVI of 2018, night light index of 2018 and altitude
difference from the city are shown in Supplementary Figure S1.

2.3.3 Trend analysis
The non-parametric statistics of Theil-Sen slope (Sen, 1968) is

used to determine the linear trend of NSUHII and SUHII during
2001–2018. It is a more robust estimator than the least-square

method because it is insensitive to outliers and extreme values,
which leading to the robust performance in time series variation
trend estimation (Svilicic et al., 2016). The TS estimator is expressed
as Eq. 12:

TSslope � median
xj − xi

tj − ti
( ) (12)

where median denotes the median function, xi and xj are the data
values at times i and j, respectively, and ti and tj are the
corresponding time series with lengths of n and i < j < n,
respectively.

3 Results

3.1 Accuracy analysis of estimation results

Figure 2 shows the density scatter plot between estimated air
temperature data and the referenced air temperature data.

FIGURE 2
10-fold cross-validation accuracies of air temperature estimation based on MLR (A), BPNN (B), SVM (C) and RF (D) methods.
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Apparently, the linear relationship of these four scatter plots are
close to 1:1 lines and the variation ranges of air temperature are
similar. However, the outliers of RF method seems to be least
among the other three methods, indicating the relatively higher
estimated accuracy. The 10-fold cross-validation accuracies of
the 1-km gridded air temperature data estimated using four
methods (Figure 2) also demonstrate that the RF model
outperforms three other models with highest correlation
coefficient, least MAE and RMSE. In addition, the spatial
distributions of RF-based estimation also indicate that the
results are more reasonable than other three methods
(Supplementary Figure S2).

Based on the observations from 199 meteorological stations, the
accuracy of the 1-km gridded air temperature data estimated using
the RF is assessed, as shown in Figure 3. It can be seen that the MAEs
and RMSEs are relatively smaller over the entire study area.
Particularly, the MAEs and RMSEs in the majority areas of
Jiangsu Province are relatively smaller than in Zhejiang Province.

This may be attributed to the uniform underlying surface in Jiangsu
Province where most areas are relatively flat plains, which is
conducive to improving the accuracy of the RF-based estimation
model. While the larger MAEs and RMSEs in the southern part of
Zhejiang Province are mainly associated with its complex terrains
due to numerous mountain ranges. The R values between the
estimations and the observations at all stations in the study area
are quite high, with the values exceeding 0.995 at most stations. It
indicates a good consistency in the temporal variations of air
temperature between the estimations and the observations.
Consequently, the 1-km gridded air temperature data derived
from RF model proves to be an ideal choice for studying the UHIs.

3.2 Spatial distributions of NSUHII and SUHII

Using the 1-km gridded air temperature data from air
temperature estimation and daytime LST data from the 8-day

FIGURE 3
Spatial distributions of maximum air temperature estimation accuracy based on random forest: (A) MAE, (B) RMSE, (C) R.
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composite (MODIS) LST product, monthly average NSUHII and
SUHII can be derived. Figure 4 illustrates the spatial distributions of
NSUHII and SUHII in the study area during 2001–2018. In general,
both NSUHII and SUHII are rather strong in the study area over the
past 20 years, presenting similar spatial distributions. Higher UHI
effect are observed over the YRD core cities such as Shanghai,
Nanjing, Taizhou, indicating that both the air temperatures and near
surface temperatures in these areas are higher than those of
farmland background areas. Noticeable cool island effect is found
in mountainous areas, demonstrating the relatively lower
temperature compared with those of farmland background areas.
However, the SUHII exhibits higher intensity and a broader range of
both heat and cool island effects than the NSUHII. The highest
NSUHII is recorded in Shanghai City, reaching up to 2.8°C while the
highest value of SUHII is found in Taizhou City with SUHII value up
to 4.8°C. In addition, the cool island effect of surface temperature is
more pronounced over water bodies compare with near surface
temperature.

Previous studies have demonstrated that the LST and air
temperature are both representations of thermal environment,
which impact each other through the land-atmosphere
interaction. To better understand the relationship between the
SUHII and NSUHII, this study calculates the annual mean
differences and monthly correlation coefficient (R) between the
two. Figure 5A reveals that in most areas, the annual mean
SUHII is higher than the annual mean NSUHII, with the major
differences ranging from 0°C to 2°C. The instances where the
NSUHII is significantly higher than the SUHII (−2~ −6°C) are
mainly observed in areas with water bodies as the dominant land
cover. The reason may be that the cooling effect of water bodies on
the LST is relatively direct and pronounced, while the air
temperature above water bodies is regulated by the process of
latent heat exchange through evaporation, which is relatively

indirect and slow. It is also evident that pixels with the SUHII
significantly higher than the NSUHII are mainly located in the
central urban areas of the core cities in the YRD region (Shanghai,
Wuxi, Hangzhou, etc.). Due to the rapid urbanization in these
regions, the impervious surfaces are rapidly expanded, which also
leads to a great difference between the SUHII and NSUHII. The
largest differences between the two are found in summer, while their
values are relatively similar in winter, as shown in Supplementary
Figure S3. The seasonal variation is also related to the increase in
total radiation in summer. The increase in radiation results in the
enhanced radiation absorbed by impervious surfaces, leading to a
significant LST increase. However, the increase in radiation has no
significant impact on the air temperature increase, thereby causing a
larger difference between the two in summer.

Figure 5B displays the spatial distribution of R between annual
mean SUHII andNSUHII in the study area from 2001 to 2018. In terms
of the R between annual mean SUHII and NSUHII, it is found that the
SUHII andNSUHII are positively correlated inmost regions, with the R
values being rather high (R > 0.6). The R values larger than 0.9 are
primarily in the southern part of the study area, mainly caused by the
higher values in spring (Supplementary Figure S4). In contrast, the R
values are smaller (0 < R < 0.3) in the core cities of the YRD region,
indicating that there is a certain degree of correlation in the temporal
variation between the SUHII and NSUHII in this region, but there are
still some differences. The correlations are the weakest in winter, while
strongest in spring (Supplementary Figure S4). It is attributed to the fact
that the atmospheric circulation that affects the energy transfer between
the surface and near-surface is relatively weaker in winter, resulting a
weaker interaction between SUHII and NSUHII. While in summer, the
temperature background field is too dominant, diminishing the
influence of LST on air temperature. In contrast, the temperature
background field is weaker in spring, and the temperature
fluctuations are pronounced, resulting in the strongest values.

FIGURE 4
Spatial distributions of NSUHII (A) and SUHII (B) during 2001–2018.
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3.3 Temporal variations in NSUHII and SUHII

To better understand the variation characteristics in the long-
term time series of NSUHII and SUHII as well as the differences in
between, the Theil-Sen slopes of NSUHII and SUHII during
2001–2018 are calculated in the study area, as shown in Figure 6.

Positive (negative) trends indicate that the warming rate of air
temperature in pixels is higher (lower) than that of
corresponding pixels under agricultural background.

In the study area, the variation trends of NSUHII present an
uneven distribution, with most regions showing relatively weak
warming trends (0–0.03°C/yr). Specifically, the warming trends in

FIGURE 5
(A) Spatial distribution of differences between the annual mean SUHII and NSUHII during 2001–2018. (B) Spatial distribution of correlation
coefficients between the annual SUHII and NSUHII from 2001 to 2018.

FIGURE 6
Spatial distributions for Theil-Sen slopes of annual average NSUHII (A) and SUHII (B) from 2001 to 2018.
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most of the northern part are slightly higher than those of farmland
background areas. Regions with a rapid increase (0.03–0.09°C/yr) in
NSUHII are scatteredly distributed in a few areas of each city.
Particularly, the areas with rapid increases (>0.09°C/yr) in NSUHII
are mainly located in parts of Chizhou and Taizhou Cities in the
central and southern parts of the study area, suggesting that the
warming rates in these areas are significantly higher than those of
farmland background areas. Areas with a cooling trend are mainly
found in mountainous regions, with the trend values
exceeding −0.06°C/yr.

Compared with the NSUHII, the urban heat island
phenomenon is more pronounced in terms of surface

temperature than near-surface temperature. The variation
trends of SUHII are more significant in urban, mountainous
and aquatic areas, resulting in greater spatial distribution
differences. Approximately half of the study area exhibits an
increasing trend in UHI effects, regions with increasing trends
higher than 0.06°C/yr are mainly located in the northern, middle
and part of the southern area. The SUHII with the highest
warming trend is found in Hefei City, reaching 0.42°C/yr,
while the fastest cooling trend is observed in the Taihu region
of Suzhou City, reaching −0.24°C/yr. The large variation trends in
the SUHII may be associated with changes in vegetation cover.
During 2001–2018, as the urbanization accelerates, some

TABLE 2 Information of three typical urban areas (2023).

City Urban size Population (million) City area (square kilometers) Urban built-up area (square kilometers)

Shanghai Mega city 24.7589 6,340 860.2

Wuxi Super city 7.4908 4,627.47 356

Jiaxing Type I big city 5.551 3,915 163.42

FIGURE 7
Spatial distributions for Theil-Sen slopes of themulti-year average NSUHII (A1,B1,C1) and SUHII in typical cities in the YRD region from 2001 to 2018
(A2,B2,C2) and corresponding remote sensing images (A3,B3,C3).
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vegetation is replaced by impervious surface, which in turn
accelerates the changes in SUHII.

Concerning the different urban sizes, population levels, city area
and urban built-up area (Table 2), three cities-Shanghai, Wuxi and
Jiaxing are selected as typical urban areas. The differences between
NSUHII and SUHII variations in these three typical areas are further
investigated, as shown in Figure 7.

According to the remote sensing images (Figure 7A3), the
central urban area of Shanghai City exhibits relatively smaller
variation trends of NSUHII (Figure 7A1) and SUIHII (Figure
7A2). Various factors may contribute to this phenomenon, such
as the increase in green areas within the central urban area and the
reconstruction of old urban districts in mega-cities like Shanghai,
leading to a decrease in the warming rate within the
central urban area.

For Wuxi City, deviations are observed between the distribution
of NSUHII and SUHII. While most areas exhibit a slow warming
rate (0.03–0.06°C/yr) in the NSUHII (Figure 7B1), the SUHII
(Figure 7B2) in the central urban area shows a significantly
larger warming trend (0.06–0.12°C/yr) than the areas outside the
central urban region and water bodies. Wuxi City is one of the top
10 cities by gross domestic product in the YRD region, and its central
urban area has undergone rapid development over the past
2 decades. The slow warming trend in the NSUHII
demonstrating that the urbanization in Wuxi City has not had a
significant impact on the NSUHII.

In Jiaxing City, the variation trends of NSUHII (Figure 7C1)
and SUHII (Figure 7C2) in the central urban area are
comparable to those outside the central urban area, with
some regions showing a weak warming trend. This
phenomenon may be attributed to the fact that Jiaxing City
belongs to Type I large city, which has a smaller population and
slower economic development in comparison to mega-cities.

Overall, over the past 2 decades, both near-surface and surface
UHI effects in the study area have been developing intensely and
exhibit an obvious increase trend. The areas with the largest increase
rates are not necessarily the most developed regions but rather the
fastest developing ones. The increase rate of near-surface NSUHII is
smaller than that of SUHII.

4 Discussion

Generally, most UHI effect is monitored by satellite remote
sensing, which spatial distribution and trends have been widely
studied on global, regional and city scale. The study of near-
surface UHI effect is normally studied using air temperature data
from meteorological stations at 2 m above the ground due to the
lack of data. In this study, a spatialization method suitable for air
temperature in complex and highly urbanized areas is
determined. The RF-based estimation method has good
accuracy and outperforms three other remote sensing
estimation methods. Hence, it serves as an ideal high-
resolution air temperature dataset for studying the UHI
effects. This method retains the advantages of station
observations in terms of temporal resolution and high
precision, and makes up for its disadvantage of spatial
discontinuity, thereby achieving good gridding effect. Previous

studies also use several machine learning methods for air
temperature estimation in different places, however, the
estimation accuracies were not as good as this study (Yao
et al., 2021). For example, (Yang et al., 2023), also used SVM
and RF methods in air temperature estimation in China. Though
RF and SVM outperform other methods in in Yang’s study, MAE
and RMSE values for RF (RMSE = 2.01, MAE = 1.36) and SVM
(RMSE = 2.33, MAE = 1.58) are still larger than results in this
study. With the development of machine learning techniques,
new deep learning models such as long short-term memory
(LSTM) and XGboost are continually emerging (Reichstein
et al., 2019; Amato et al., 2020; Yang et al., 2023). Meanwhile,
the dense observation stations and new remote sensing data lay
the foundations for further enhancing the accuracy of gridded
datasets of air temperature. Therefore, research on near-surface
UHI effects based on station observed air temperature should
move towards the way of greater precision and refinement (Liu
et al., 2021; Bird et al., 2022).

The spatial distributions and temporal variations of near-
surface UHIs and surface UHIs are quite consistent. Although
the SUHII and NSUHII are closely related, there are still certain
differences especially in the rapidly expanding urban areas and in
summer. The SUHII is mainly influenced by surface properties,
including vegetation cover, reflectance and anthropogenic heat,
whereas the NSUHII is influenced not only by surface properties
but also by meteorological elements under local climate (Arnfield,
2003; Liu et al., 2020). Previous studies have suggested that both
SUHII and NSUHII can be used to characterize human comfort,
but the NSUHII is a more accurate representation (Yao et al.,
2021). In addition, the continuous increase in thermal
environments exerts pressure on human health and energy
consumption (Zhang et al., 2023), which thus should be given
enough attention. Therefore, more attention should be paid to the
study of NSUHII and driving factors so as to find applicable
mitigation strategies. Previous studies generally analyzed the
NSUHII and SUHII effect based on several meteorological
stations to represent the air temperature of the entire urban or
rural area (Sun et al., 2020; Hu et al., 2019). However, this kind of
comparison may cause great uncertainty considering the location
and number of stations.

This study only focuses on the UHI effect with respect to daily
maximum air temperature, without considering daily minimum
air temperature or nighttime UHI effects. However, numerous
studies have shown that there are significant differences between
nighttime and daytime UHI effects (Sun et al., 2020). Therefore,
relevant research can be conducted on the nighttime UHI effect
in the future.

5 Conclusion

In this study, a spatialization method suitable for air
temperature in complex and highly urbanized areas is
determined. Specifically, the 1-km gridded air temperature data
derived from RF method and LST data from the Moderate-
resolution Imaging Spectroradiometer are used to analyze the
spatial distribution characteristics of NSUHII and SUHII in the
YRD region over the past 2 decades. The results show that both the
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NSUHII and SUHII are rather strong in the study area over the past
20 years, presenting similar spatial distributions. The situation that
the NSUHII is higher than the SUHII with significant differences
appears over water bodies, while the situation of SUHII higher than
the NSUHII is often found in the core areas of rapidly urbanizing
cities in the YRD, and the differences are more prominent in
summer. Although there is a certain degree of correlation
between the temporal variations of SUHII and NSUHII, some
discrepancies still exists. Notably, the R values between them are
relatively lower in the core areas of rapidly urbanizing cities in the
Yangtze River Delta region, with the lowest in winter. From 2001 to
2018, most areas in the study region witnessed an increase in both
NSUHII and SUHII, especially in regions with rapid urbanization.
However, the area with the largest increase rate is not necessarily the
most developed region but the fastest developed one. In well-
developed cities, the increase rates in the central urban areas are
lower than those in the surrounding regions.
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