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The characterization of beached and marine microplastic debris is critical to
understanding how plastic litter accumulates across the world’s oceans and
identifying hotspots that should be targeted for early cleanup efforts.
Currently, the most common monitoring method to quantify microplastics at
sea requires physical sampling using surface trawling and sifting for beached
microplastics, which are then followed by manual counting and laboratory
analysis. The need for manual counting is time-consuming, operator-
dependent, and incurs high costs, thereby preventing scalable deployment of
consistent marine plastic monitoring worldwide. Here, we describe a workflow
combining a simple experimental setup with advanced image processing
techniques to conduct both quantitative and qualitative assessments of
microplastic (0.05 cm < particle size <0.5 cm). The image processing relies on
deep learning models designed for image segmentation and classification. The
results demonstrated comparable or superior performance in comparison to
manual identification formicroplastic particles with a 96% accuracy. Thus, the use
of the model offers an efficient, more robust, standardized, highly replicable, and
less labor-intensive alternative to particle counting. In addition to the relative
simplicity of the network architecture used that made it easy to train, the model
presents promising prospects for better-standardized reporting of plastic
particles surveyed in the environment. We also made the models and datasets
open-source and created a user-friendly web interface for directly annotating
new images.
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Introduction

An exponentially increasing trend in plastic production and worldwide demand thereof
has drawn attention to the mismanagement of anthropogenic waste and the effect the
accumulation of this waste has on the environment (Law et al., 2014; Europe, 2021; Walker
and Fequet, 2023). In particular, marine pollution from microplastics, typically defined as
plastic particles <5 mm in diameter, has been recognized as a worldwide environmental and
ecological threat (GESAMP, 2019; 2015; Hartmann et al., 2019). To address the detrimental
effects of plastic pollution on a variety of ecosystems across the globe, it is essential for the
research community to harmonize data collection and reporting of plastic waste
concentrations, distribution, and overall trends. This ensures that their finding can
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efficiently be communicated to the public and policymakers. Their
understanding of the fate of plastic debris across various
environmental compartments is crucial for the development of
efficient, evidence-based strategies for cleanup and mitigation
(Haward, 2018; Critchell et al., 2019).

Advances in global oceanographic modelling (Lebreton et al.,
2019; Isobe and Iwasaki, 2022; Kaandorp et al., 2023), coupled with
existing reporting on plastics concentrations and dynamics, have
significantly improved our ability to predict primary pathways of
plastic transportation and key environmental reservoirs, including
river systems, oceanic gyres, sea surface, sea water column, coastal
waters, shorelines, beach sediments and the deep ocean floor
(Eriksen et al., 2014; Law et al., 2014; Lebreton et al., 2019; 2018;
González-fernández et al., 2021; Weiss et al., 2021). While these
large-scale models are valuable in identifying priority research areas,
they are often too coarse in resolution to comprehensively
understand the temporal and spatial variations in plastic
accumulation within these regions (Critchell et al., 2015; Critchell
and Lambrechts, 2016; Ryan et al., 2020). Increasing observational
debris data within these high-priority zones and across geographical
regions is crucial for a more refined understanding of the fates and
impacts of plastic which is instrumental for local management
agencies and authorities to develop targeted intervention
strategies (Thompson et al., 2009; Critchell and Lambrechts,
2016; Critchell et al., 2019; Ryan et al., 2020). However, existing
methodologies for quantifying, classifying, and reporting debris data
across diverse environmental compartments are often hampered by
operational challenges, such as large sample volumes, slow or
tedious processing steps, or lack of standardization across
classification practices. Furthermore, plastics research is being
conducted in a variety of environmental matrices (air, water,
biota, and sediment), each presenting its unique challenges in
sample processing (Zhang et al., 2023). Discrepancies in
terminology, reporting units, and inconsistencies in
methodologies make accurate geographical comparisons and use
in numerical models difficult for microplastics (Provencher
et al., 2020a).

For small microplastic particles (<5 mm) and debris in beach
sediment or the deep sea, manual sampling, counting, and
categorization are still commonly used. This can lead to
sampling bias and discrepancies, making it challenging to
compare plastic debris data across locations and individuals
(Critchell and Lambrechts, 2016; Provencher et al., 2020a; Ryan
et al., 2020). In addition, manual sampling, only allows the
differentiation of size fractions that are discrete categories based
on the mesh size of the sifters and does not allow the full tracking of
the size distribution of the particles. Hence, there is a pressing need
for time-efficient, affordable, simplified, and non-biased
standardization of field-sampled data, which has also been
highlighted as a key topic of discussion within the plastic
pollution research community (Waller et al., 2017; Billard and
Boucher, 2019; GESAMP, 2019), and already put into practice in
several studies (Mukhanov et al., 2019; Lorenzo-Navarro et al.,
2020; Lorenzo-Navarro et al., 2021; Razzell et al., 2023; Zhang
et al., 2023), but most are inaccessible and rarely freely available
which prevents the upscaling of these standardized methods.

Here, we propose a new methodology combining a
straightforward experimental procedure and advanced image

processing techniques to quantify and characterize microplastics
found in various environmental compartments. The workflow is
designed to accept images of cell phone quality as input, thus
compatible with simple beach sampling experimental protocols
used by researchers and citizen scientists. The image processing
encompasses three key elements: image segmentation, particle
classification, and particle characterization. The particles are then
individually classified and analyzed to infer size, shape, color, surface
area, and other characteristics. The workflow is designed to process
plastic particles typically found on shorelines of polluted beaches
worldwide as well as any floating debris found in aquatic
environments typically found in the size of 0.05 cm–0.5 cm. In
summary, our automated workflow efficiently determines physical
parameters for each plastic particle from input images, providing a
faster and more robust alternative to manual picking. We aim to
create open-source resources—datasets, models, and interfaces—to
support plastic pollution researchers in standardized and
comparable sample analysis.

Methods

Dataset creation

We categorized sets of particles within a given image into four
distinct classes, all falling within the micro size range of
0.05 cm–0.5 cm. These particle categories included hard plastic
fragments, pre-production pellets, lines, and foam particles. A
comprehensive collection of 4,795 particles was amassed, and
subsequently, these particles’ images underwent processing via
the research protocol outlined in the Supplementary Material
section. In brief, the image collection process featured the
inclusion of a reference point with standardized dimensions in
each image. Further, to facilitate training and validation, we
compiled separate datasets of non-overlapping particles for
each category.

Image dataset annotation
We annotated each image manually from the training and the

validation dataset by creating a bounding box for each particle. We
then converted the coordinates and the label of each particle for a
given image into a TSV file. To facilitate the process, we created a
Graphical User Interface (GUI) (https://gitlab.com/Grouumf/toc_
plastic) using the Python Flask (https://github.com/pallets/flask)
library. The GUI can be deployed locally or on a server and
creates both the annotation file and the sub-images of each
annotated particle.

Image preprocessing
Each image was divided into overlapping frames of 600 ×

600 pixels. To obtain an overlapping frame, the middle of the x
and y-axes of each square was selected and these coordinates were
used as a starting point to create a new square. The original
bounding boxes were also converted into each square. For a
given frame, the bounding boxes having less than 20% of their
original surface were discarded. These new overlapping frame
images and their corresponding annotations were used as
training sets for the segmenters and classifiers. With this process,
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we created a total of 948 frames as a training dataset. Furthermore,
we preprocessed the image defined by the bounding box of each
identified particle into a 48 × 48 pixels image that we organized into
different folders depending on the dataset (training or validation)
and category. These images were then used as input for the ResNet
classifier (see below).

Segmentation models training

Overall, we trained our model on a total of 4,795 particles
displayed on 68 images and divided into 948 overlapping frames
with a 600 × 600 pixels resolution. We relied on AI python libraries
(GluonCV (Guo et al., 2020) andMxNet (Chen et al., 2015) to train a
Single Shot Detector SSD (Liu et al., 2016) neural network, which
accommodates images of varying resolutions. This is achieved by
partitioning the input image into overlapping frames of a
predetermined size and subsequently resolving the individual
outcomes to yield the final segmentation. We first downloaded a
pre-trained SSD model (ssd_512_resnet50_v1_coco with the pre-
trained option set as ‘True’) downloaded from the GluonCV zoo,
used as a starting point. We then used the
SSDDefaultTrainTransform function from GluonCV to
preprocess each image with multiple data augmentation
processing and the SSDMultiBoxLoss from GluonCV, the
CrossEntropy SmoothL1 from MxNet as loss functions. We only
used the CPU cores with a batch size of four for the computations.
When training the segmenter, we considered each particle besides
the reference coins to belong to one generic class “particle”. This
process was performed to increase the sensitivity of the segmenter
for particle identification while preventing their annotation resulting
sometimes in low confidence due to similarities between categories.
1,200 epochs were used for training the segmenter.

Classification models training

We trained a classifier to label particles into five categories:
“hard”, “pellet”, “line”, “foam”, and “reference”, using a ResNet (He
et al., 2016) neural network architecture. We downloaded the cifar_
resnet56_v1 pre-trained model from GluonCV and used it as a
starting point. The RandomCrop, RandomFlipLeftRight,
RandomFlipTopBottom, RandomRotation, and Normalize
([0.4914, 0.4822, 0.4465] [0.2023, 0.1994, 0.2010]) functions from
GluonCV were used to preprocess the training images. We divided
the 4,795 particles from our annotated database into training (70%)
and test (30%) datasets with the latter being excluded for training the
model. The SoftmaxCrossEntropyLoss from GluonCV function was
used to compute the loss. The model was trained using 600 epochs
and a batch size of 30.

Segmentation of a new image
To effectively segment a new image utilizing both the segmenter

and classifier models, we have devised a comprehensive protocol.
This protocol begins by partitioning an input image, of any
dimensions, into fixed and overlapping frames. Each frame
undergoes individual processing before the results are reconciled
across frames. A detailed explanation of this frame division and

reconciliation process, as well as the background and foreground
inference protocols, can be found in the Supplementary Material.
Briefly, the workflow uses an axis-aligned bounding boxes (AABB;
https://aabbtree.readthedocs.io/en/latest/) tree data structure to
index the annotated boxes based on their coordinates. The boxes
are then sorted by size and a recursive procedure is then used to
merge the overlapping boxes (see Supplementary Material).

Evaluation by an external classifier
Each annotated region was then optionally annotated again

using the trained classifier. If the score of the region inferred by
the segmenter was below a user-defined threshold (0.80) and the
particle had the generic “particle” annotation, the region was re-
annotated again by the classifier and the annotation and score
updated if the new score was not below a second classifier-
specific threshold (0.32).

Removal of multiple references

Since each processed image was supposed to contain only one
particle used as a reference, only the region annotated as the legend
and with the highest score was kept in the case of multiple reference
annotations.

Foreground and background inference

After the segmentation and particle annotation, the foreground
and the background of the image are then inferred using multiple
image processing functions from the Python OpenCV library (cv2,
https://github.com/opencv/opencv). Briefly, the Watershed
algorithm (Kornilov and Safonov, 2018) was applied after pre-
processing to find the exact boundaries of the particles within the
boxes. The detailed protocol is described in details in the
Supplementary Material.

Visual characteristics inference
For each particle region identified by the segmentation step,

multiple characteristics are then inferred by the workflow. First, the
particle boxes, defined as rectangles surrounding the particles, are
ordered by size and an AABB tree (see above) is constructed. Then,
the background and foreground of each particle are inferred. Using
the background regions of the entire image (see above), we identified
the background label of a particle image as the most representative
region label found in the extremities of the label image. We then
defined all the other region labels as foreground. Then, we set the
areas of all smaller overlapping particle boxes as background. We re-
segmented into region the binary image box, defined by whether a
pixel is from the background or not, using the Scikit-Image label
function and removed the minor regions accounting for less than
25% of the most representative region, background excluded.
Finally, we defined the particle foreground as the agglomeration
of the convex representation of each remaining region. Again, the
convex representation of a region is similar to smoothing and was
directly obtained using the convex_image attribute of each region
(see the regionprops function documentation). For particles
annotated as “line”, or if no foreground is found with the
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previous procedure, we used a slightly different protocol. Instead of
using the background regions inferred from the entire image, we
inferred again the background/foreground on the individual particle
box, using the protocol described in the paragraph above. This
alternative is useful for smaller particles, which can be missed and
seen as background when processing the entire image. Then, for
each particle with its identified foreground and background, we used
the Scikit-Image regionprops function to infer the perimeter, the
eccentricity, the ferret diameter, and the orientation.We also reported
the size of the minimum and maximum axis, the surface area, the
number of pixels of the foreground, and the height and width in pixels
of the foreground. If a reference coin is detected (with a known
diameter), these measurements are scaled to millimeters.

Color inference for an annotated region
For each annotated region, the workflow computed an average

Hex color code of this region and the closed reference color from a
list of 12 colors: black, white, blue, green, red, orange, salmon, yellow,
lightblue, lightgreen, indigo, turquoise, and lightgray, according to
the color codes of the color python library. The average color was
defined as the median of the red, green, and blue values from the
positive background of the given region. The closed reference color
was inferred by computing the Euclidean distances between the
average color and the reference colors, using the RGB values.

Use of manual annotations
The segmentation workflow can optionally accept manual

annotation labels as input which are compared with the labels
inferred. To manually annotate an image and obtain compatible
manual labels, one could use our annotation GUI, available as a Git
package: https://gitlab.com/Grouumf/toc_plastic. If provided, the
workflow first creates an AABB tree (see above) from the manual
label boxes. Then, it iterates through each of the manual boxes and,
thanks to the AABB tree, finds the best match amongst the
overlapping inferred label boxes. To do so, it computes and
maximizes the geometric mean of the ratio overlaps (overlap
surface/box surface) from the manual and inferred boxes. The
results, the overlapping volumes, the coordinates, and the
annotations of each manual box are then saved into a results
TSV file. The results file also reports the inferred boxes with no
intersection with the reference labels. Finally, an image displaying
the labels matches and misses with respect to the manual
annotations is created.

If a reference coin is added to the image and successfully
identified, the workflow detects its foreground and background as
explained above. Then it finds the centroid and the diameter of the
foreground. The number of pixels per millimeter relationship is then
inferred based on the reference diameter length. All the particle
properties calculated are then converted to centimeters. Finally, an
image of the inferred diameter and centroid is created as a
quality control.

Sample selection
Samples of microplastics collected using a manta trawl of

500 μm that filtered surface seawater in the North Pacific
Garbage Patch (NPGP) led by The Ocean Cleanup in 2022 were
selected for evaluating and testing the performance of the model.
Four samples between 298 and 822 particles were selected

(Supplementary Figure S1) which offer a good representation of
the marine plastic particles and were photographed using the
research protocol described in Supplementary Material and
represented in Figure 1A. For each sample station, the particles
were displayed carefully on a blue background sheet alongside a
reference coin of 37 mm diameter and were taken in picture with a
resolution of at least 10 pixels in diameter (Figure 1). The same
particles were shuffled and photographed which resulted in five
different replicates of the samples per station. Four images were the
results of all of the particles shuffled (mixed particles dispersed
across the sheet) and one image was also taken where all of the
particles were categorized manually. Afterwards the image is then
processed using an analytical workflow which segments, classifies,
and then characterizes each plastic particle present (Figure 2). The
procedure relies on simple yet efficient neural network models to
segment and classify each particle from the image (Figure 2A). An
original procedure is developed, that splits an input image into
overlapping frames of fixed size allowing the processing of images of
any resolution without the loss of accuracy (see above).

Fine-tuning of the sensitivity and specificity of
the segmenter

The sensitivity and the specificity of the segmenter can be fine-
tuned with the cutoff parameter which can be seen as a confidence
score (default: cutoff = 0.45 with 0 < cutoff <1), of the segmenter to
correctly identify a particle within the image. Conversely, training
the segmenter with more epochs or a larger, more diverse dataset
results in higher overall scores. Essentially, this leads to models with
greater confidence in particle identification, enhancing performance,
especially in the recognition of low-resolution particles.

Output results and parameters

Each identified particle is labeled in the results file and in an
additional output image with a specific particle label allowing to target
subsets of particles for further analysis such as Raman spectroscopy or
Fourier-transform infrared spectroscopy analysis for polymer
identification. The outputted features and coordinates are generated
into two TSV files for each individual image processed. The outputted
features: ref_color, avg_color, min_length_rectangle, max_length_
rectangle, surface, perimeter, min_axis, max_axis, eccentricity,
orientation, max_feret_diameter, sum_feret_diameter, class, nb_pixels,
nb_pixels_width, nb_pixels_height, equivalent_diameter, are described
in Table 1. Amongst these parameters, surface, perimeter, eccentricity,
orientation, feret_diameter, and equivalent_diameter are inferred from
the Sciki-Image measure class.

Performances evaluation
Two strategies were used to evaluate the performance of the

classifier and the segmenter. Firstly, we processed validation images
through the workflow and compared the expected versus the
inferred labels. For doing so, we used the real environmental
samples from four stations (see above), took images of them, and
used these images as validation datasets that were manually
annotated and counted with two methods. We first annotated the
images by drawing squares around particles and visually
determining their label. In addition, we manually counted the
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particles and determined their labels directly from the samples.
These steps were performed by two different analysts. The particles
were manually shuffled to take four additional images for each
sample. A comparison between the inferred annotation using the
model versus the manual annotations by the user was then
conducted. When segmenting an image, our workflow can
optionally include reference labels with which the particles
inferred from the image are compared.

Secondly, we directly measured the accuracy scores of the labels
inferred when training the classifier with a test set where we
compared the inferred with the manual counts. We built our
validation dataset by collecting plastic particles from four
samples and for each sample, we took five different pictures (one
image sorted and four manual shuffling) with different particle
displays (see above). Having multiple images per sample allowed us

to compute a variance for each sample and particle type. We
compared the total particle count for each category obtained for
each sample with both the manual count obtained from the image
and the experimental samples. This was done to estimate the
variance between samples but also within samples. When using
validation images, the workflow annotates a given particle with the
classifier only if the inferred probability is higher than a user-defined
threshold (0.60 by default), otherwise the generic annotation
“particle” is used. We considered all generic particles as hard
fragments since it is the most generic and diverse class and
inferred the particle count for each class, sample and image,
allowing us to compute the means and variances. These counts
were compared to the manual counts obtained directly from the
image. Also, for each sample, one of the images was manually
segmented. We intersected the manual with the inferred

FIGURE 1
Image prototypes, imagery setup and particle distribution used for the training of the microplastic model with particles ranging from 0.05 to 0.5 cm.
(A). Image capture setup demonstrated in chronological order with the final result being the capture of the image. (B). Typical images of the particles are
classified into the four categories recognised by the segmentation model: hard fragment, pellet, line, and foam. (C). Particle distribution for each of the
categories used by the classifier.
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segmentation (see above) and measured how many intersections
were found for each sample. Also, the particles were directly counted
experimentally when sorting the samples with the manual counts
from the image and the experiment performed by two different
analysts. To compute the accuracy scores of the classifier, we only
used 70% of the dataset for training the classifier and used the
remaining 30% as test sets. For each category, we computed the
Precision � TP

TP+FP, Recall � TP
TP+FN, and the f1score � 2 Precision .Recall

Precision+Recall
with TP, FP, TN, FP the number of true and false positives and true
and false negatives, respectively.

Code availability

The source code and documentation for the computer vision
segmentation model framework is free for non-commercial use
under Apache 2.0 license. The algorithm for the particle detection
can be found at: https://gitlab.com/Grouumf/particle_detect and the
web interface to manually annotate a new image can be found at:

https://gitlab.com/Grouumf/toc_plastic. The workflow is written in
Python3 and tested under Linux, OSX, and Windows. The package
contains instructions for installation and usage and the different
requirements. Also, a docker image containing all the dependencies
installed is also freely available at: docker.io/opoirion/particle_detect.

Availability of data and materials

The full dataset (image and manual annotation) used for
training the model is available as Figshare datasets.

Web interface and online portal

A web interface (https://research-segmentation.toc.yt) free to
use is now available online per request and allows users to upload
their images processed and their respective data available as
a TSV file.

FIGURE 2
Analytical workflow. (A) A new image is first annotated with a graphical user that allows the storage of the particle type and location within the image.
A dataset is then used to train an SSD and a ResNet neural network for segmentation and classification, respectively. (B) A new image is segmented by the
workflow using the trained parameters file, which will output a segmented image with individual particle images together with the output TSV file
containing the different metrics for each particle. Reference labels for images can optionally be used as input to compare expected versus inferred
labels. (C). The segmentation workflow divides the input into multiple overlapped images of fixed size that are segmented. These particles are annotated
and the final segmentation is obtained bymerging and resolving the annotations for all of the sub-images. A background detection analytical procedure is
applied to identify the inferred background of each particle. Different metrics (colors, size, surface area) are inferred for each particle. (D). The workflow is
available via a git package docker image or directly through the web portal. The entire dataset with annotation is freely available.
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Results

Segmentation workflow

A procedure for efficiently quantifying and describing plastic
particles within a sample, employing a robust and straightforward
method was established. Overall, the model was trained on
68 images divided into 948 overlapping frames, gathering
4,795 particles in total, and used two categories: “reference” or
“particle” (Figure 2B). To elaborate, each particle is first segmented
(Figure 2C) as a generic “particle” thereby reducing the false negative
detection rate of the segmenter if all categories were used directly
(Supplementary Figure S1). Subsequently, a classifier trained on the
4,795 particles, labels each segmented particle into four categories:
“hard”, “pellet”, “line”, or “foam”. Finally, the annotated particles are
characterized with multiple image transformations to extract multiple
geometrical properties such as surface area, dimensions, and colors (see
Methods for more details). If a reference coin is present, the workflow
will automatically infer the absolute size of a pixel to convert the relative
sizes and surfaces of the particles inferred. It is accessible as a Git
package or Docker image, accompanied by thorough documentation at
https://gitlab.com/Grouumf/particle_detect for the main pipeline. A
user-friendly web interface, outlined below, has also been created.

Model validation
For assessing the accuracy and the performance of the model,

the output of images processed by the model was compared to

particles that were counted manually using the same samples. The
particles in the selected environmental samples (Supplementary
Figure S1) corresponded to the four commonly found categories
for microplastics (hard fragment, pellet, line, and foam). Examples
for each category are shown in Figure 1B. Reflecting the real
distribution, unequal numbers of particles were used for each
category but a minimum of at least 200 particles was used for
each category. Hard fragments predominated, constituting 72% of
the total particles. Lines, pellets, and foams made up smaller
fractions, with 14%, 10%, and 4%, respectively (Figure 1C). These
two approaches (model output vs manual count) indicated both
methods to be similar with a small variance and a count varying
between 298 and 822 for the four different microplastic categories
provided by the model and used for manual annotation.

Performances and limitations of the models
To assess the performance of the workflow we used the real

environmental samples from the four stations (see above), took
images of them, and used these images as validation datasets
(Figure 3). For each sample, the overall accuracy of the
segmenter was evaluated by comparing the number of matches/
mismatches between the inferred and annotated image labels
(Figures 3B, C). Overall, the segmenter was able to identify more
than 96% of the particles for the four samples selected and was fast
with an average processing time of less than 25 s per image on a
regular laptop. However, as the particles become smaller the
performance of the model decreases. Indeed, smaller particles

TABLE 1 List of parameters and their definitions outputted by the computer vision segmentation model after conducting the image analysis.

Parameters measured Definition

ref_color The closest colour amongst a set of reference colour that corresponds to 40 distinct common colour names

avg_color The computed HEX colour code which is an average of the colour of all of the pixels represented on the surface area of the particle
boundary

min_length_rectangle Based on a rectangle shape, the minimum length measured by the model relative to the reference coin (mm)

max_length_rectangle Based on a rectangle shape, the maximum length measured by the model relative to the reference coin (mm)

surface The surface area of the photographed particle (mm2)

perimeter The perimeter of the photographed particle (mm2)

min_axis After fitting an oval shape on top of the particle this represents the minimal axis (mm)

max_axis After fitting an oval shape on top of the particle this represents the maximal axis (mm)

eccentricity Represent the distance from any point on the conic section to the focus divided by the perpendicular distance from that point

orientation Angle defining the orientation o (cos(o) is the projection of min_axis in the x-axis)

max_feret_diameter Distance is determined by isolating the corner pixels of the object’s perimeter and taking the maximum distance between each corner
pixel to all other corner pixels. In other words, the distance between the two parallel planes restricting the object perpendicular to that
direction

sum_feret_diameter The largest distance between two parallel planes restricting the object perpendicular to that direction

class Categories under which the plastic particle falls based on OSPAR definition (i.e., hard fragment, pellets, line, etc.)

nb_pixels Total number of pixels (nb. pixels width x height) for a given particle

nb_pixels_width Particle width as the number of pixels

nb_pixels_height Particle height as the number of pixels

equivalent_diameter The diameter of a circle with the same area as the particle
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have higher chances of being either missed or being a false positive,
with all the missing annotated particles (1%). The performance of
the segmenter is not solely driven by the size of the particles but even
more so by the number of pixels per frame, highlighting the
importance of taking high-resolution images for particle count.

The optimum number of pixels is 45–65 pixels per frame. In
some cases, and this varies when adjusting the sensitivity of the
image, the model can either miss particles or annotate particles that
were not seen by the operator and are considered as noise. The
latter might be due to patterns from the blue sheets or noise from

FIGURE 3
Segmenter performance based on the selection of four oceanographic stations where samples of microplastics were collected using a manta trawl
that filtered surface seawater in the North Pacific Garbage Patch during the North PacificMission 4 led by TheOcean Cleanup in 2022. (A). For each of the
four stations, the particles were shuffled four times with mixed particles dispersed across the sheet, one image was also taken where all of the particles
were categorized manually. These five resulting images were used as replicates for the inferred annotation analysis (left) and the manual annotation
analysis (right). The inferred annotation using the model provides an output image with the particles segmented. The red box represents a particle
captured by the model and numbered (Figure 3A left). The manual annotation that corresponds to the drawing of a rectangle around each particle
manually provides an output image with the particles segmented with three distinct colors (Figure 3A right). Cyan represents a match between the
inferred and the manual annotations, red represents the missing annotated particles, and purple represents unannotated particles, meaning these were
captured by the model but not annotated manually. (B). The comparison between the manual experimental count (hand-counted), the manual image
count (annotation), and the inferred count (model) using visual images. Results are shown for all of the particles (light cyan) and the three separate
categories (hard fragment, pellets, and lines). The cross corresponds to the manual count referred to as the manual experimental count and the star
corresponds to the manual image count that was conducted by an independent operator. The bars and the error bars represent the mean for the data
generated by the model estimated using the five replicates per station, respectively. The stars represent the manual counts. (C). The cumulative
distribution of the matching particles between the annotated and inferred label, the missing particles from the reference (false positive), and the missing
particles from the classifier (false negative) as a function of the pixel size.
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the image that results in the overestimation of the number
of particles.

False positives refer to instances where the segmenter annotates
particles that do not actually exist, including noise, reflections,
disturbances, or the sheet matrix. However, a fraction of these
particles was simply not manually annotated due to their small
size rendering them barely visible to the human eye (Supplementary
Figure S2). The flexibility of the workflow allows for the adjustment
of sensitivity and specificity by fine-tuning the detection thresholds
of the segmenter model (see below). Additional analyses were also
conducted to assess the effect of the dimensions of the pixel (image
resolution) related to the percent of successes, highlighting an
overall 97% of successful matches (Figures 3B, C). Moreover, all
missing reference particles and false positive particles wrongfully
detected by the workflow were less than 40 pixels wide.
Supplementary Figure S3 is a different way of visualizing the effect
of the pixel dimensions versus the performance of the model (100%
being perfect) where on average in proportion, false positive and false
negative occur for smaller particles which are harder to detect as
demonstrated above. Hence, data demonstrates that as we decrease
the pixel dimension the results are further away from 100% where an
increase in false positives and false negatives are seen for smaller pixel
sizes (Supplementary Figure S3). Furthermore, amongst the particles
annotated only by the segmenter (putative false positive), we found

that a significant fraction were small particles missed by the analyst
(Supplementary Figure S2). Others seem to be either ambiguous or
originated because of patterns from the background misleading the
segmenter (Supplementary Figure S2).

Classification performance
To estimate the accuracy of labels inferred, we compared the

inferred and the manual counts of the four selected samples and
computed a variance for each sample and particle type. and
observed overall a very good agreement between the observed and
expected counts (Figure 3B). The average observed error was less than
2% ( ± 1%) for identifying the particles, however, a larger error was
observed for identifying the correct labels for pellets, hard fragments,
and lines which are explained by the visual similarities of some particles
of a given class with another (Figure 4). Indeed, it was virtually
impossible to manually correct some of the mislabeled particles
based only on visual attributes (Figure 4A). It is worth noting that
the observed error remains in most cases small. For example, three out
of the four samples have an error of less than 5% for the hard fragments,
while the fourth sample (NPM4_2_29) had an error of 25%. This could
be explained by the lower number of annotated hard fragments (65) and
their similarities with the pellets (Figure 4A).

Precision and recall are convenient metrics to reflect the true
positive rates amongst labeled and unlabeled particles of a given

FIGURE 4
Classifier performance based on the test dataset representing 30% of the full dataset (30% of 4,795 particles). (A). Examples of mis-annotated
particles and the resemblance between the different categories for these mismatches. The number below each annotated particle represents the f1-
score. (B). The score for the precision, the recall, and the f1-score are shown for the reference (score = 1.0) and the different categories of the test data set
(hard fragment, pellet, line. and foam particles). (C). Confusion matrix displaying the match between the test set inferred labels and the test set
annotation for the reference and the different categories of the test data set (hard fragment, pellet, line, and foam particles). Note that the results should
be read horizontally (i.e., the classifier shows most difficulties in distinguishing pellets from hard fragments with 18 misclassified particles for the pellets.
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class while the f1-score reflects the overall accuracy. We then
assessed the classification performance by randomly creating a
test dataset containing 30% (1,439 particles) of the particles and
trained our classifier on the remaining 70% (3,556 particles). From
the labels inferred from the test dataset, we obtained high precision,
recall, and f1-score for all classes, with the highest scores obtained
for the reference (f1-score = 1.0), followed by the hard fragments (f1-
score = 0.98) and the lowest obtained for the pellets (f1-score = 0.88)
(Figure 4B), with an average weighted f1-score of 0.97. The most
significant mislabeling occurs with pellets being identified as hard
fragments, or vice versa. This highlights the classifier’s challenges in
distinguishing between pellets and hard fragments (Figure 4C),
attributed to the striking similarity in shape, size, and colors of
both categories. Small lines are also particularly hard to distinguish
since their shape, size, and morphology overlap with other small-
type particles (Figure 4C). Overall, larger and very distinct particles
such as long lines and hard fragments with sharp edges are easily
identifiable and thus correctly labeled.

Workflow calibration
The efficiency of our workflow is intricately linked to the quality

and resolution of the analyzed images. Thus, it is crucial to possess the
capability to fine-tune sensitivity and specificity, tailored to the specifics
of each experimental setup. To achieve this objective, our workflow
provides the flexibility to incorporate external labels and annotations,
serving as benchmarks for comparison with the particles and
annotations inferred by the model (see Methods). Additionally, we
have developed an intuitive Graphical User Interface (GUI) to facilitate
the annotation of new images (see Methods). By leveraging annotated
reference images, the sensitivity and specificity of the segmentation can
be precisely adjusted through a customizable cutoff hyperparameter
(see Methods). Lowering this cutoff enhances the workflow’s sensitivity
by identifying lower-resolution particles. However, it also leads to an
increase in false positives—annotated particles that do not correspond
to actual particles. Likewise, the classifier’s sensitivity and specificity can
be configured using a distinct cutoff. Increasing this cutoff will lower the
frequency of misclassified particles, albeit at the cost of a higher
occurrence of particles that will retain the generic “particle” label by
not meeting the threshold criteria.

Training and processing time

Thanks to the use of a relatively simple model architecture (SSD
and ResNet56, see Methods), training a new segmentation or
classification model can be performed with CPUs of a standard
laptop in a reasonable time. The time required to train one epoch
was measured, which corresponds to using all the training samples
one time, using a standard laptop CPU (Intel i7 1.8 GHz). We
measured 900 s for 1,000 frames of 600 × 600 pixels for the
segmenter (Figure 5A) and of 31 s for 4,000 particles of 48 ×
48 pixels per frame for the classifier (Figure 5B). We also found a
linear relationship in the processing time with a maximum of 35 s and
an increasing number of particles with dimensions (frame width,
Figure 5C). These results indicate that these models can be directly
built on conventional computers. In practice, we trained our models
on faster CPUs using 600 and 1,200 epochs for a total training time of
two and six hours for the classifier and the segmenter respectively.

Freely accessible web interface
A freely accessible web interface has been developed for the

seamless upload and processing of images. The interface generates a
TSV file containing all measured parameters. The image processing
involves both segmentation and classification of particles, withflexibility
in selecting either the micro or meso model (briefly described in the
Supplementary Material). This graphical interface is available at no cost
and can be accessed upon request via the following web address: https://
research-segmentation.toc.yt/. The website offers a concise, clean, and
efficient user experience. Upon initial use, the user creates an account,
enters image-related information, and selects parameters like the size of
the reference coin (default value is 37 mm) and sensitivity, which can be
fine-tuned later through the cut-off setting (Figure 6). After completing
these steps, the image can be uploaded. In the second phase, once all
required details are entered, the job is submitted, and the image
undergoes processing. The process is swift, and the results, along
with the processed image, are organized in a dedicated section of
the app. Here, users can easily visualize and download all results.
Multiple results can be conveniently assembled and accessed in the
future under the user’s identification. The portal offers live updates for
newer models, allowing users to choose the most up-to-date version for
their work. This flexibility is particularly valuable for maintaining
consistency in processing samples over time series, while also
providing opportunities for optimizing methods and improving results.

Discussion

Estimation of microplastic concentrations in the environment is a
challenging task due to the large varieties of terrestrial and oceanic
environments, the wide range of plastic sources, and the variability in the
shapes, sizes, and types of microplastic particles. To streamline and
standardize essential steps in the process, we advocate for a dual-pronged
standardized methodology. The first step involves capturing images of
microplastic samples through a straightforward experimental procedure,
while the second step focuses on processing these images using computer
vision approaches in the modeling phase. In summary, this workflow
establishes a robust method for the characterization of microplastics and
we believe it offers significant advantages described below.

Reporting plastic particle size is crucial as it plays a critical role
in understanding size distributions, predicting the eventual fate of
plastic particles in various environments, and for their impact and
risk analysis in these environments (Koelmans et al., 2022; Schnepf,
2023). However, variations in reported plastic particle sizes are
common which can often be attributed to the different methods
of measurements. To date, the two most widely used methods to
measure plastic particle size or size distribution are based on visual
observation with manual measurements through the use of rulers or
post-processing using a numerical model with a size reference and
sieving (Reinhardt, 2021; Huang et al., 2023). Microscopic
techniques such as electron scanning microscopy (Hidalgo-Ruz
et al., 2012; Shim et al., 2017) and laser diffraction particle size
analysis (Huang et al., 2023) are also two techniques that are gaining
popularity in reporting plastic particle sizes (Shim et al., 2017). Each
method will produce different results due to the nature of the
distinctive measurement techniques. For example, visual
measurements usually report the maximum length or diameter of
the particle, whereas in microscopy it is common to report the
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Feret’s diameter, which is the distance between two tangents on
opposite sides of a particle and parallel to a fixed dimension
(Reinhardt, 2021).

Overall, our model presents important benefits with regard to
manual annotation. First, it greatly improves the annotation speed,
diminishes the complexity of the preparation and thus cost-
effectiveness. Secondly, multiple morphological characteristics
difficult to measure manually such as the surface area, the
diameter, or the color, are inferred. It is also very valuable to be
able to view the particle sizes as a continuous dataset instead of in
discrete size fractions binned in sizes of 0.05–0.15 cm, 0.15–0.5 cm,
etc. Other advantages are the replicability of the method, the
possibility of making changes to the script and adapting it to
specific datasets, and the ease of using the model by different
organizations and communities. With regards to speed efficiency,
our workflow can process a high-resolution image containing more
than 800 particles in less than 30 s. The speed difference with
manual counting will be even more magnified when using larger
images with high numbers of particles. Another important
advantage of our workflow is the ability to mitigate sampling
bias through impartial particle annotations. This stands in
contrast to human annotations, which may be prone to
variations, especially when multiple annotators interpret the
annotation guidelines differently.

In general, comparing studies becomes challenging because of the
diverse data collectionmethods employed. Furthermore, as sample sizes
increase and particle sizes decrease, conventional visual techniques
become increasingly labor-intensive and intricate. Our segmentation
workflow on the other hand, provides consistent measurements with
the possibility of adding more parameters, identically regardless of the
data collector and environmental compartments where the particles
were sampled. The workflow not only offers greater consistency and
efficiency in comparison to the manual techniques employed today but
also mitigates the potential for human error. Furthermore, the data
generated after the processing of the images provide parameters difficult
or time-consuming to measure with manual characterization, such as
the surface area of the particle, the perimeter, and the eccentricity
(“roundness”). These additional parameters open up new possibilities

FIGURE 5
Speed efficiency and training time per Epoch using a conventional Intel i7 1.8 GHz Laptop CPU. (A) A given number of particles processed by the
segmenter SSD 512 against the epoch time (sec) using a conventional CPU laptop. The input images were 600 × 600 pixels per frame. (B) A given number
of particles processed by the classifier ResNet56 against the epoch time (sec). The input images were 48 × 48 pixels per frame. The light cyan represents
the variability around the mean for each data point. (C). The frame width and the number of particles against the processing time (sec).

FIGURE 6
Segmentation model accessibility and the processing of a new
image using the graphical web interface. A Scheme of the graphical
web interface that is readily available and free of charge for users and
allows the generation of the data after the processing of the
image and available as a TSV file.
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for quantitative comparison within the realm of plastic pollution in
various environmental compartments.

Our workflow also grants users to customize the script and
tailor the algorithm to their specific datasets, enabling, for
example, the inclusion or exclusion of additional categories, or
changing the sensitivity detection thresholds. Consequently, our
method can be seamlessly adapted to diverse environmental
conditions, facilitating the estimation of plastic concentrations
in water bodies, along shorelines, and even in sediments. This
uniform approach enables the monitoring of different
environments using the same method, capturing the evolution
of microplastic concentrations over time. Finally, our workflow is
available through a user-friendly graphical interface enhancing
ease of use for a broad audience, directly segmenting an input
image and storing the results online. This accessibility is
particularly beneficial for diverse communities engaged in
plastic pollution research, ensuring that the method is readily
available and easily utilized by different stakeholders.

Currently, an experimental model exists for meso (0.5–5 cm)
and macro (>5 cm) plastic objects. However, insufficient annotated
data hampers its performance. Ongoing efforts involve collecting
more particles in these size ranges to enhance the model. Accessible
online, the model and the datasets support individual users and
benefiting diverse researchers and citizen scientists in the plastic
pollution community. Furthermore, upcoming developments could
lead to the availability of new models trained on additional particle
classes or more extensive datasets.

While the model presents several advantages, it also has notable
limitations. Visual recognition alone does not allow users to assess
the three dimensions of particles. This limitation affects
distinguishing between foam and pellets versus hard fragments,
where touch and three-dimensional evaluation are beneficial. By
touching these two different types of items, the user can evaluate the
particle being a foam by feeling the texture and can also identify a
pellet better by its 3D-rounded shape that can be hard to detect from
an image.

In summary, while the segmenter achieves high accuracy in
particle counting, the classifier’s performance is lower, particularly
for categories with high variability, such as pellets and smaller foam
particles. Increasing further the number of particles in the training
dataset is expected to improve performance for these categories. The
hard fragment category, with its diverse shapes and sizes, dominates
the training dataset, leading to a higher annotation of hard fragment
particles by the model. This aligns with environmental sample
realities, as demonstrated by Egger et al. (2020) in the NPGP,
where hard fragments prevail. User-dependent qualitative data
could introduce variability, but the model ensures repeatability
and standardization in microplastic categorization.
Understanding the limitations is crucial for interpreting the data
appropriately for its intended use but we believe this methodology
will significantly improve data quality.
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